首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The primary structure of the exopolysaccharide produced by a clinical isolate of the bacterium Burkholderia cepacia was studied by means of methylation analysis, selective degradation, NMR spectroscopy, and electrospray mass spectrometry. The resulting data showed that the parent repeating unit of the exopolysaccharide is a highly branched heptasaccharide with the following structure: Two acetyl groups are present per repeating unit, as noncarbohydrate substituents.  相似文献   

2.
Burkholderia cepacia is an opportunistic pathogen involved in pulmonary infections related to cystic fibrosis. A clinical strain, BTS13, was isolated and the production of exopolysaccharides was tested growing the bacteria on two different media, one of which was rich in mannitol as carbon source. The primary structure of the polysaccharides was determined using mostly mass spectrometry and NMR spectroscopy. On both media an exopolysaccharide having the following repeating unit was produced: -->5)-beta-Kdop-(2-->3)-beta-D-Galp2Ac-(1-->4)-alpha-D-Galp-(1-->3)-beta-D-Galp-(1--> This polysaccharide has already been described as the biosynthetic product of another Burkholderia species, B. pseudomallei, the microbial agent causing melioidosis. In addition to this, when grown on the mannitol-rich medium, B. cepacia strain BTS13 produced another polysaccharide that was established to be levan: -->6)-beta-D-Fruf-(2-->. The content of levan was about 20% (w/w) of the total amount of polymers. The ability of B. cepacia to produce these two exopolysaccharides opens new perspectives in the investigation of the role of polysaccharides in lung infections.  相似文献   

3.
Conformational energy calculations and molecular dynamics investigations, both in water and in dimethyl sulfoxide, were carried out on the exopolysaccharide cepacian produced by the majority of the clinical strains of Burkholderia cepacia, an opportunistic pathogen causing serious lung infection in patients affected by cystic fibrosis, The investigation was aimed at defining the structural and conformational features, which might be relevant for clarification of the structure-function relationships of the polymer. The molecular dynamics calculations were carried out by Ramachandran-type energy plots of the disaccharides that constitute the polymer repeating unit. The dynamics of an oligomer composed of three repeating units were investigated in water and in Me2SO, a non-aggregating solvent. Analysis of the time persistence of hydrogen bonds showed the presence of a large number of favourable interactions in water, which were less evident in Me2SO. The calculations on the cepacian chain indicated that polymer conformational features in water were affected by the lateral chains, but were also largely dictated by the presence of solvent. Moreover, the large number of intra-chain hydrogen bonds in water disappeared in Me2SO solution, increasing the average dimension of the polymer chains.  相似文献   

4.
A method is described for constructing a conformational model in water of a heteropolysaccharide built up from repeating units, and is applied to the exopolysaccharide produced by Lactobacillus helveticus 766. The molecular modeling method is based on energy minima, obtained from molecular mechanics calculations of each of the constituting disaccharide fragments of the repeating unit in vacuo, as starting points. Subsequently, adaptive umbrella sampling of the potential of mean force is applied to extract rotamer populations of glycosidic dihedral angles of oligosaccharide fragments in solution. From these analyses, the most probable conformations are constructed for the hexasaccharide-repeating unit of the polysaccharide. After exploring the conformational space of each of the individual structures by molecular dynamics simulations, the different repeating unit conformations are used as building blocks for the generation of oligo- and polysaccharide models, by using a polysaccharide building program. The created models of the exopolysaccharide produced by L. helveticus 766 exhibit a flexible twisted secondary structure and tend to adopt a random coil conformation as tertiary structure.  相似文献   

5.
The structure of an acidic exopolysaccharide (EPS) from eight strains of Burkholderia cepacia has been investigated by methylation and sugar analysis, periodate oxidation-Smith degradation, and partial acid-hydrolysis. An enzyme preparation obtained from the same organisms producing the EPS was also used to depolymerize the polysaccharide. Detailed NMR studies of the chemical and enzymatic degradation products showed that this EPS consists of a highly branched heptasaccharide-repeating unit with the following structure: [abstract: see text]. About three O-acetyl groups per repeating unit are present at undetermined positions.  相似文献   

6.
Cepacian is an exopolysaccharide produced by the majority of the isolates belonging to the Burkholderia cepacia complex bacteria, a group of 17 species, some of which infect cystic fibrosis patients, sometime with fatal outcome. The repeating unit of cepacian consists of a backbone having a trisaccharidic repeating unit with three side chains, as reported in the formula below. The exopolysaccharide is also acetylated, carrying from one to three acetyl esters per repeating unit, depending on the strain examined. The consequences of O-acetyl substitution in a polysaccharide are important both for its biological functions and for industrial applications, including the preparation of conjugated vaccines, since O-acetyl groups are important immunogenic determinants. The location of acetyl groups was achieved by NMR spectroscopy and ESI mass spectrometry and revealed that these substituents are scattered in non-stoichiometric ratio on many sugar residues in different positions, a feature which adds to the already unique carbohydrate structure of the polysaccharide.  相似文献   

7.
A novel structure of exopolysaccharide from the lactic acid bacteria (LAB) Lactobacillus rhamnosus KL37B, from the human intestinal flora, is described. During the structural investigation of the exopolysaccharide it was found that the repeating unit is a nonasaccharide, which is the largest repeating unit found in LAB exopolysaccharides to date. The polysaccharide material was prepared by TCA extraction of a bacterial cell mass, purified by anion-exchange and gel permeation chromatography and characterized using chemical and enzymatic methods. On the basis of monosaccharide and methylation analysis and also 1D and 2D 1H and 13C NMR spectroscopy the exopolysaccharide was shown to be composed of the following nonasaccharide repeating unit:The physicochemical cell surface study and adhesive properties indicated distinct surface properties of Lactobacillus rhamnosus strain KL37B with high adhesive abilities to Caco-2 cells, hydrophobicity and slime production, in comparison to other Lactobacillus strains used as controls.  相似文献   

8.
Conformational analyses of the branched repeating unit of the O-antigenic polysaccharide of Shigella dysenteriae type 2 have been performed with molecular mechanics MM3. A filtered systematic search on the trisaccharide alpha-D-GalNAc-(1-->3)-[alpha-D-GlcNAc-(1-->4)]-alpha-D-GalNAc forming the branch, shows essentially a single favored conformation. Also, the downstream alpha-D-GalNAc-(1-->4)-alpha-D-Glc linkage is sterically constrained. The alpha-D-Glc-(1-->4)-beta-D-Gal moiety, however, forms a more flexible link region between the branch points, and shows a 90 degrees bend similar to what is known for the galabiose moiety occurring in globo-glycolipids. The calculations indicate that consecutive repeating units in their minimum energy conformation arrange in a helical structure with three repeating units per turn. This helix is very compact and appears to be stabilized by hydrophobic interactions involving the N-acetyl groups at the branch points. Random conformational search suggests the existence of another helical structure with four repeating units per turn. It appears possible that the alpha-D-Glc-(1-->4)-beta-D-Gal moiety, which is exposed on the surface of the helical structures, can evade recognition by the immune system of the host by the mimicry of globo structures.  相似文献   

9.
The Gram-negative bacterial strain HKI 0380 was isolated from biofilms located on palaeolithic rock paintings in the Cave of Bats in Zuheros, southern Spain. It was identified as the phytopathogenic Erwinia persicina and attracted attention due to the production of considerable quantities of slime. The acidic exopolysaccharide produced by the E. persicina was studied after O-deacylation by sugar and methylation analyses, along with (1)H and (13)C NMR spectroscopy. The following structure of the branched pentasaccharide repeating unit of the O-deacylated exopolysaccharide was established: [carbohydrate structure: see text].  相似文献   

10.
The exopolysaccharide from the lactic acid bacterium Lactobacillus rhamnosus strain KL37C isolated from human intestinal flora was prepared by sonication of bacterial cell mass suspended in water followed by centrifugation and cold ethanol precipitation of the supernatant. The polysaccharide material was purified by gel permeation chromatography on an TSK HW-50 column and characterised using chemical and enzymatic methods. On the basis of sugar and methylation analysis and 1H, 13C, 1D and 2D NMR spectroscopy the exopolysaccharide was shown to be composed of the following pentasaccharide repeating unit:-->3)-alpha-D-Glcp-(1-->2)-beta-D-Galf-(1-->6)-alpha-D-Galp-(1-->6)-alpha-D-Glcp-(1-->3)-beta-D-Galf-(1-->  相似文献   

11.
The repeating unit of cepacian, the exopolysaccharide produced by the majority of the microorganisms belonging to the Burkholderia cepacia complex, was isolated from inner bacterial membranes and investigated by mass spectrometry, with and without prior derivatisation. Interpretation of the mass spectra led to the determination of the biological repeating unit primary structure, thus disclosing the nature of the oligosaccharide produced in vivo. Moreover, mass spectra recorded on the native sample revealed that acetyl substitution was very variable, producing a mixture of repeating units containing zero to four acyl groups. At the same time, finding acetylated oligosaccharides showed that binding of these substituents occurred in the cellular periplasmic space, before the polymerisation process took place. In the chromatographic peak containing the repeating unit, oligosaccharides shorter than the repeating unit co-eluted. Mass spectrometric analysis showed that they were biosynthetic intermediates of the repeating unit and further investigation revealed the biosynthetic sequence of cepacian building block.  相似文献   

12.
Lactococcus lactis subsp. cremoris B39 grown on whey permeate produced an exopolysaccharide containing L-Rha, D-Gal and D-Glc in a molar ratio of 2:3:2. The polysaccharide was modified using an enzyme preparation from Aspergillus aculeatus, resulting in the release of Gal and a polymer with approximately the same hydrodynamic volume as the native polysaccharide. Linkage analysis and 1H NMR studies of both the native and modified exopolysaccharides elucidated that terminally linked Gal was released during modification and that the chemical structure of the branches within the repeating units is: beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->. 2D NMR experiments (both 1H-1H and 1H-13C) revealed that exopolysaccharide B39 consists of a branched heptasaccharide repeating unit with the following structure: [structure: see text].  相似文献   

13.
The bceA gene is part of the Burkholderia cepacia IST408 exopolysaccharide (EPS) biosynthetic cluster. It encodes a 55.3-kDa bifunctional protein (type II PMI family) with phosphomannose isomerase (PMI) and GDP-mannose pyrophosphorylase (GMP) activities. GMP activity is strongly dependent on the presence of Ca(2+) or Mn(2+), while PMI activity can use a broader variety of divalent cations (Ca(2+)>Mn(2+)>Mg(2+)>Co(2+)>Ni(2+)). The lack of a functional bceA gene does not affect EPS production yield in a non-polar insertion bceA mutant. The in silico search for putative bceA homologues revealed the presence of 2-5 bceA orthologues in the Burkholderia genomes available. This suggests that in B. cepacia IST408 putative bceA functional homologues may compensate the bceA mutation. However, the viscosity of aqueous solutions prepared with the EPS produced by the bceA mutant was significantly reduced compared with wild-type biopolymer and the mutant forms biofilms with a size reduced by 6-fold.  相似文献   

14.
The slime-forming bacterium Methylobacterium sp. was isolated from a Finnish paper machine and its exopolysaccharide (EPS) was produced on laboratory scale. Sugar compositional analysis revealed a 100% galactan (EPS). However, FT-IR showed a very strong peak at 1611 cm(-1) showing the presence of pyruvate. Analysis of the pyruvate content revealed that, based on the sugar composition, the EPS consists of a trisaccharide repeating unit consisting of D-galactopyranose and [4,6-O-(1-carboxyethylidene)]-D-galactopyranose with a molar ratio of 1:2, respectively. Both linkage analysis and 2D homo- and heteronuclear 1H and 13C NMR spectroscopy revealed the following repeating unit: -->3)-[4,6-O-(1-carboxyethylidene)]-alpha-D-Galp-(1-->3)[4,6-O-(1-carboxyethylidene)]-alpha-D-Galp-(1-->3)-alpha-D-Galp-(1-->. By enrichment cultures from various ground and compost heap samples a polysaccharide-degrading culture was obtained that produced an endo acting enzyme able to degrade the EPS described. The enzyme hydrolysed the EPS to a large extent, releasing oligomers that mainly consisted out of two repeating units.  相似文献   

15.
The production of succinoglycan by Sinorhizobium meliloti Rm1021 is required for successful nodule invasion by the bacterium of its host plant, alfalfa. Rm1021 produces succinoglycan, an acidic exopolysaccharide composed of an octasaccharide repeating unit modified with acetyl, succinyl, and pyruvyl moieties, in both low- and high-molecular-weight forms. Low-molecular-weight (LMW) succinoglycan, previously thought to consist of monomers, trimers, and tetramers of the repeating unit, has been reported as being capable of promoting the formation of nitrogen-fixing nodules by succinoglycan-deficient derivatives of strain Rm1021. We have determined that the three size classes of LMW succinoglycan species are in fact monomers, dimers, and trimers of the repeating unit and that the trimer is the species active in promoting nodule invasion. A detailed structural analysis of the components of LMW succinoglycan by using various chromatographic techniques, along with nuclear magnetic resonance analyses, has revealed that there is considerable heterogeneity within the LMW succinoglycan oligomers in terms of noncarbohydrate substitutions, and we have determined the structural basis of this heterogeneity.  相似文献   

16.
On mild acid degradation of the Pseudomonas cepacia strain IMV 4176 lipopolysaccharide, two polysaccharides were obtained, one of which is a homopolymer of N-acetyl-D-galactosamine and the other is composed of equal amounts of N-acetyl-D-galactosamine and D-ribose. Partial hydrolysis with aqueous oxalic acid caused depolymerization of the heteropolysaccharide, and the homopolysaccharide was isolated in the individual state. On the basis of methylation and 13C NMR analysis, it was concluded that both polysaccharides are built up of disaccharide repeating units having the following structures: ----4)-alpha-D-GalpNAc-(1----4)-beta-D-GalpNAc-(1---- and ----4)-alpha-D-GalpNAc-(1----2)-beta-D-Ribf-(1----. The heteropolysaccharide from P. cepacia strain 4176 is identical by the structure of the repeating unit to the O-specific polysaccharide of P. cepacia strain IMV 4202 (serotype 3), Pseudomonas aeruginosa O12 and Serratia marcescens O14.  相似文献   

17.
Streptococcus thermophilus EU20 when grown on skimmed milk secretes a high-molecular-weight exopolysaccharide that is composed of glucose, galactose and rhamnose in a molar ratio of 2:3:2. Using chemical techniques and 1D and 2D-NMR spectroscopy (1H and 13C) the polysaccharide has been shown to possess a heptasaccharide repeating unit having the following structure: [chemical structure: see text]. Treatment of the polysaccharide with mild acid (0.5 M TFA, 100 degrees C for 1 h) liberates two oligosaccharides; the components correspond to the repeating unit and a hexasaccharide equivalent to the repeating unit minus the terminal alpha-L-Rhap.  相似文献   

18.
A viscous extracellular polysaccharide produced by Lactobacillus helveticus Lb161 isolated from raw milk has been investigated. Sugar and methylation analysis, and 1H and 13C NMR spectroscopy revealed that the polysaccharide is composed of a heptasaccharide repeating unit. The sequence of sugar residues was determined by use of two-dimensional nuclear Overhauser effect spectroscopy and heteronuclear multiple bond connectivity experiments. The structure of the repeating unit of the exopolysaccharide from L. helveticus Lb161 is as follows: carbohydrate structure [see text]. The polysaccharide contains approximately 0.6 equivalents of O-acetyl group per repeating unit (not located).  相似文献   

19.
A viscous extracellular polysaccharide produced by Lactobacillus helveticus K16 has been investigated. Sugar and methylation analysis, 1H and 13C NMR spectroscopy revealed that the polysaccharide is composed of a hexasaccharide repeating unit. The sequence of sugar residues was determined by use of two-dimensional nuclear Overhauser effect spectroscopy and heteronuclear multiple bond connectivity experiments. The structure of the repeating unit of the exopolysaccharide from L. helveticus K16 is as follows: carbohydrate sequence [see text].  相似文献   

20.
A novel extracellular low-molecular-weight polysaccharide was detected as a contaminant within extracellular cyclic beta-1,6-beta-1,3-glucan preparations from Bradyrhizobium japonicum USDA 110 cultures. Compositional analysis, methylation analysis, and nuclear magnetic resonance analysis revealed that this low-molecular-weight polysaccharide was composed of the same pentasaccharide repeating unit previously described for the high-molecular-weight form of the exopolysaccharide (EPS) synthesized by B. japonicum strains. Mass spectrometry analysis indicated that the size of this low-molecular-weight form of EPS was consistent with a dimeric form of the pentasaccharide repeating unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号