首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Galactose-1-phosphate uridylyltransferase (uridine diphosphoglucose: α-d-galactose-1-phosphate uridylyltransferase, EC 2.7.7.12) has been purified 4000-fold from human placenta in four chromatographic steps using DEAE-cellulose, hydrocylapatite, ethyliminohexylagarose, and Sephacryl S-200. The specific activity of the homogeneous enzyme was 56 units/mg protein. The placental enzyme consists of two similar subunits, each of molecular weight about 48,000. The placental enzyme was similar to published results for the red cell enzyme (V. P. Williams, Arch. Biochem. Biophys., 1978, 191, 182–191) with respect to subunit molecular weight, electrophoretic migration, and immunological properties. The more purified fractions of the placental enzyme invariably contained a glycoprotein which was removed in the gel filtration step. After this glycoprotein was removed, the enzyme was very labile and only about 20% of the catalytic activity was recovered.  相似文献   

2.
Impairment of the human enzyme galactose-1-phosphate uridylyltransferase (hGALT) results in the potentially lethal disorder classic galactosemia. Although a variety of naturally occurring mutations have been identified in patient alleles, few have been well characterized. We have explored the functional significance of a common patient mutation, F171S, using a strategy of conservative substitution at the defined residue followed by expression of the wild-type and, alternatively, substituted proteins in a null-background strain of yeast. As expected from patient studies, the F171S-hGALT protein demonstrated <0.1% wild-type levels of activity, although two of three conservatively substituted moieties, F171L- and F171Y-hGALT, demonstrated approximately 10% and approximately 4% activity, respectively. The third protein, F171W, demonstrated severely reduced abundance, precluding further study. Detailed kinetic analyses of purified wild-type, F171L- and F171Y-hGALT enzymes, coupled with homology modeling of these proteins, enabled us to suggest that the effects of these substitutions resulted largely from altering the position of a catalytically important residue, Gln-188, and secondarily, by altering the subunit interface and perturbing hexose binding to the uridylylated enzyme. These results not only provide insight into the functional impact of a single common patient allele and offer a paradigm for similar studies of other clinically or biochemically important residues, but they further help to elucidate activity of the wild-type human GALT enzyme.  相似文献   

3.
4.
Erythrocyte (RBC) galactokinase (GALK) and galactose-1-phosphate uridylyl-transferase (GALT) activities were measured in a random sample of 1,700 (1.082 black and 618 white) pregnant women from the Philadelphia area to estimate the frequency of the genes GALKG and GALTG responsible for the two biochemically distinct forms of galactosemia. Blacks have significantly lower mean RBC GALK activities than whites (P less than .0005). The distribution of individual GALK activities for blacks differs from a normal distribution (X227=43.0, P less than .03) whereas that for whites does not (X224=25.5, P approximately equal to .30). These results are consistent with the thesis that reduced RBC GALK activity in blacks is due to the Philadelphia variant (GALKP), which is common in blacks and rare in whites. The frequency of heterozygotes (GALKG/GALKA, GALKG/GALKP) for GALK galactosemia observed in this sample is 1/340 for the total, 1/347 for blacks, and 1/309 for whites. The existence of the GALKP variant allele has been considered in this determination. However, because a method for distinguishing the GALKP and GALKG alleles became available only in the latter part of the study, the frequency of the GALK G allele in the black population may be underestimated. The mean RBC GALT activity for blacks is higher than that for whites, a difference that may be due to a higher frequency of the Duarte variant allele GALTD in whites. Heterozygotes (GALTG/GALTA) for GALT galactosemia were distinguished by family studies and starch gel electrophoresis from individuals who have half-normal RBC GALT activity due to the GALTD allele. The GALTG/GALTA frequency is 1/212 for the total, 1/217 for blacks, and 1/206 for whites. Of the 1,700 individuals surveyed three had atypically high RBC GALK activity, similar to that found in red blood cells of newborns.  相似文献   

5.
6.
The human galactose-1-phosphate uridyltransferase gene.   总被引:11,自引:0,他引:11  
Classical galactosemia is an inborn error of metabolism caused by a deficiency of galactose-1-phosphate uridyltransferase (GALT). Standard treatment with dietary galactose restriction will reverse the potentially lethal symptoms of the disease that are manifest in the newborn period. However, the long-term prognosis for these patients is variable. As a first step toward investigating the molecular basis for phenotypic variation in galactosemia, we have cloned and sequenced the entire gene for human galactose-1-phosphate uridyltransferase. This gene is organized into 11 exons spanning 4 kb. In exons 6, 9, and a portion of 10, there is a high degree of amino acid sequence conservation among Escherichia coli, yeast, mouse, and human. We have identified a number of nucleotide changes in the GALT genes of galactosemic patients that alter conserved amino acids. The most common of these is an A to G transition at nucleotide position 1470, converting a glutamine to an arginine at amino acid codon position 188 (Q188R).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Impairment of the human enzyme galactose-1-phosphate uridylyltransferase (GALT) results in the potentially lethal disorder galactosemia; the biochemical basis of pathophysiology in galactosemia remains unknown. We have applied a yeast expression system for human GALT to test the hypothesis that genotype will correlate with GALT activity measured in vitro and with metabolite levels and galactose sensitivity measured in vivo. In particular, we have determined the relative degree of functional impairment associated with each of 16 patient-derived hGALT alleles; activities ranged from null to essentially normal. Next, we utilized strains expressing these alleles to demonstrate a clear inverse relationship between GALT activity and galactose sensitivity. Finally, we monitored accumulation of galactose-1-P, UDP-gal, and UDP-glc in yeast expressing a subset of these alleles. As reported for humans, yeast deficient in GALT, but not their wild type counterparts, demonstrated elevated levels of galactose 1-phosphate and diminished UDP-gal upon exposure to galactose. These results present the first clear evidence in a genetically and biochemically amenable model system of a relationship between GALT genotype, enzyme activity, sensitivity to galactose, and aberrant metabolite accumulation. As such, these data lay a foundation for future studies into the underlying mechanism(s) of galactose sensitivity in yeast and perhaps other eukaryotes, including humans.  相似文献   

8.
Isoelectric focusing (IEF) in polyacrylamide gels has been used to study the isozymes of human galactose-1-phosphate uridylyltransferase (GALT) in erythrocytes and fibroblasts. In addition to the usefulness of IEF in differentiating normal, Duarte variant, and galactosemic homozygotes and heterozygotes, the ability of IEF to distinguish the residual GALT activity in two different galactosemic fibroblast lines and in revertants from them is demonstrated.  相似文献   

9.
10.
The gene for galactose-1-phosphate uridylyltransferase (GALT) has previously been assigned to human chromosomes 2, 3, and 9. We have studied a further series of human-mouse hybrids and are able to confirm that the human gene for GALT is located on human chromosome 9.  相似文献   

11.
12.
Galactose-1-phosphate uridyl transferase activity of normal, heterozygous and galactosemic strains is determined throughout the culture cycle of human fibroblasts using a new direct method of assay. The enzyme activities of high-density, stationary-phase cultures define three nonoverlapping classes, which correspond to the genotypes of the donors. During rapid growth, however, galactosemic strains show near-normal transferase activity. The incorporation of 14C from 14C1-galactose by living cells is measured. While heterozygous strains do not appear to differ from normal controls, homozygous mutant cells incorporate 14C at about one-half the normal rate throughout the culture cycle. Variables affecting the assay are investigated and the implications of our results for further genetic studies of mutations affecting transferase are discussed.Paper # 1105 from the Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin. This work was supported by the National Institutes of Health (Grants # GM-08217, # GM-398, and # GM-06983).  相似文献   

13.
Active site geometry of glucose-1-phosphate uridylyltransferase   总被引:2,自引:0,他引:2       下载免费PDF全文
Glucose-1-phosphate uridylyltransferase, or UGPase, catalyzes the production of UDP-glucose from glucose-1-phosphate and UTP. Because of the biological role of UDP-glucose in glycogen synthesis and in the formation of glycolipids, glycoproteins, and proteoglycans, the enzyme is widespread in nature. Recently this laboratory reported the three-dimensional structure of UGPase from Escherichia coli. While the initial X-ray analysis revealed the overall fold of the enzyme, details concerning its active site geometry were limited because crystals of the protein complexed with either substrates or products could never be obtained. In an effort to more fully investigate the active site geometry of the enzyme, UGPase from Corynebacterium glutamicum was subsequently cloned and purified. Here we report the X-ray structure of UGPase crystallized in the presence of both magnesium and UDP-glucose. Residues involved in anchoring the ligand to the active site include the polypeptide chain backbone atoms of Ala 20, Gly 21, Gly 117, Gly 180, and Ala 214, and the side chains of Glu 36, Gln 112, Asp 143, Glu 201, and Lys 202. Two magnesium ions are observed coordinated to the UDP-glucose. An alpha- and a beta-phosphoryl oxygen, three waters, and the side chain of Asp 142 ligate the first magnesium, whereas the second ion is coordinated by an alpha-phosphoryl oxygen and five waters. The position of the first magnesium is conserved in both the glucose-1-phosphate thymidylyltransferases and the cytidylyltransferases. The structure presented here provides further support for the role of the conserved magnesium ion in the catalytic mechanisms of the sugar-1-phosphate nucleotidylyltransferases.  相似文献   

14.
To better understand the pathophysiology of galactose-1-phosphate uridyltransferase (GALT) deficiency in humans, we studied the mechanisms by which a GALT-deficient yeast survived on galactose medium. Under normal conditions, GALT-deficient yeast cannot grow in medium that contains 0.2% galactose as the sole carbohydrate, a phenotype of Gal(-). We isolated revertants from a GALT-deficient yeast by direct selection for growth in galactose, a phenotype of Gal(+). Comparison of gene expression profiles among wild-type and revertant strains on galactose medium revealed that the revertant down-regulated genes encoding enzymes including galactokinase, galactose permease, and UDP-galactose-4-epimerase (the GAL regulon). By contrast, the revertant strain up-regulated the gene for UDP-glucose pyrophosphorylase, UGP1. There was reduced accumulation of galactose-1-phosphate in the galactose-grown revertant cells when compared to the GALT-deficient parent cells. In vitro biochemical analysis showed that UDP-glucose pyrophosphorylase had bifunctional properties and could catalyze the conversion of galactose-1-phosphate to UDP-galactose in the presence of UTP. To test if augmented expression of this gene could produce a Gal(+) phenotype in the GALT-deficient parent cells, we overexpressed the yeast UGP1 and the human homolog, hUGP2 in the mutant strain. The Gal(-) yeast transformed with either UGP1 or hUGP2 regained their ability to grow on galactose. We conclude that revertant can grow on galactose medium by reducing the accumulation of toxic precursors through down-regulation of the GAL regulon and up-regulation of the UGP1 gene. We speculate that increased expression of hUGP2 in humans could alleviate poor outcomes in humans with classic galactosemia.  相似文献   

15.
S Geeganage  P A Frey 《Biochemistry》1999,38(40):13398-13406
Galactose-1-phosphate uridylyltransferase (GalT) catalyzes the reversible transformation of UDP-glucose and galactose-1-phosphate (Gal-1-P) into UDP-galactose and glucose-1-phosphate (Glc-1-P) by a double displacement mechanism, with the intermediate formation of a covalent uridylyl-enzyme (UMP-enzyme). GalT is a metalloenzyme containing 1.2 mol of zinc and 0.7 mol of iron/mol of subunits [Ruzicka, F. J., Wedekind, J. E., Kim, J., Rayment, I., and Frey, P. A. (1995) Biochemistry 34, 5610-5617]. The zinc site lies 8 A from His 166 in active site, and the iron site lies 30 A from the active site [Wedekind,J. E., Frey, P. A., & Rayment, I. (1995) Biochemistry 34, 11049-11061]. Zinc is coordinated in tetrahedral geometry by Cys 52, Cys 55, His 115, and His 164. His 164 is part of the highly conserved active-site triad His 164-Pro 165-His 166, in which His 166 is the nucleophilic catalyst. Iron is coordinated in square pyramidal geometry with His 296, His 298, and Glu 182 in bidentate coordination providing the base ligands and His 281 providing the axial ligand. In the present study, site-directed mutagenesis, kinetic, and metal analysis studies show that C52S-, C55S-, and H164N-GalT are 3000-, 600-, and 10000-fold less active than wild-type. None of the variants formed the UMP-enzyme in detectable amounts upon reaction with UDP-Glc in the absence of Gal-1-P. Their zinc content was very low, and the zinc + iron content was about 50% of that for wild-type GalT. Mutation of His 115 to Asn 115 resulted in decreased activity to 2.9% of wild-type, with retention of zinc and iron. In contrast to the zinc-binding site, Glu 182 in the iron site is not important for enzymatic activity. The variant E182A-GalT displayed about half the activity of wild-type GalT, and all of the active sites underwent uridylylation to the UMP-enzyme, similar to wild-type GalT, upon reaction with UDP-Glc. Metal analysis showed that while E182A-GalT contained 0.9 equiv of zinc/subunit, it contained no iron. The residual zinc can be removed by dialysis with 1,10-phenanthroline, with the loss in activity being proportional to the amount of residual zinc. It is concluded that the presence of zinc is essential for maintaining GalT function, whereas the presence of iron is not essential.  相似文献   

16.
Glucose-1-phosphate uridylyltransferase, also referred to as UDP-glucose pyrophosphorylase or UGPase, catalyzes the formation of UDP-glucose from glucose-1-phosphate and UTP. Not surprisingly, given the central role of UDP-glucose in glycogen synthesis and in the production of glycolipids, glycoproteins, and proteoglycans, the enzyme is ubiquitous in nature. Interestingly, however, the prokaryotic and eukaryotic forms of the enzyme are unrelated in amino acid sequence and structure. Here we describe the cloning and structural analysis to 1.9 A resolution of the UGPase from Escherichia coli. The protein is a tetramer with 222 point group symmetry. Each subunit of the tetramer is dominated by an eight-stranded mixed beta-sheet. There are two additional layers of beta-sheet (two and three strands) and 10 alpha-helices. The overall fold of the molecule is remarkably similar to that observed for glucose-1-phosphate thymidylyltransferase in complex with its product, dTDP-glucose. On the basis of this similarity, a UDP-glucose moiety has been positioned into the active site of UGPase. This protein/product model predicts that the side chains of Gln 109 and Asp 137, respectively, serve to anchor the uracil ring and the ribose of UDP-glucose to the protein. The beta-phosphoryl group of the product is predicted to lie within hydrogen bonding distance to the epsilon-nitrogen of Lys 202 whereas the carboxylate group of Glu 201 is predicted to bridge the 2'- and 3'-hydroxyl groups of the glucosyl moiety. Details concerning the overall structure of UGPase and a comparison with glucose-1-phosphate thymidylyltransferase are presented.  相似文献   

17.
S L Yang  P A Frey 《Biochemistry》1979,18(14):2980-2984
The [32P]uridylyl-enzyme intermediate form of Escherichia coli galactose-1-P uridylyltransferase can be converted to a [32P]phosphoryl-enzyme by first cleaving the ribosyl ring with NaIO4 and then heating at pH 10.5 and 50 degrees C for 1 h. After alkaline hydrolysis of the [32P]phosphoryl-enzyme the major radioactive product is N3-[32P]phosphohistidine. A lesser amount of 32Pi is also produced as a side product of the hydrolysis of N3-[32P]phosphohistidine. No N1-phosphohistidine, N-phospholysine, or phosphoarginine can be detected in these hydrolysates. It is concluded that the nucleophile in galactose-1-P uridylyltransferase to which the uridylyl group is bonded in the uridylyl-enzyme intermediate is imidazole N3 of a histidine residue. This degradation procedure should have general applicability in the degradation and characterization of nucleotidyl-proteins.  相似文献   

18.
The substitution of arginine for glutamine at amino acid 188 (Q188R) ablates the function of human galactose-1-phosphate uridyltransferase (GALT) and is the most common mutation causing galactosemia in the white population. GALT catalyzes two consecutive reactions. The first reaction binds UDP-glucose (UDP-Glu), displaces glucose-1-phosphate (glu-1-P), and forms the UMP-GALT intermediate. In the second reaction, galactose-1-phosphate (gal-1-P) is bound, UDP-galactose (UDP-Gal) is released, and the free enzyme is recycled. In this study, we modeled glutamine, asparagine, and a common mutation arginine at amino acid 188 on the three-dimensional model of the Escherichia coli GALT-UMP protein crystal. We found that the amide group of the glutamine side chain could provide two hydrogen bonds to the phosphoryl oxygens of UMP with lengths of 2.52 and 2.82 A. Arginine and asparagine could provide only one hydrogen bond of 2. 52 and 3.02 A, respectively. To test this model, we purified recombinant human Gln188-, Arg188-, and Asn188-GALT and analyzed the first reaction in the absence of gal-1-P by quantitating glu-1-P released using enzyme-linked methods. Gln188-GALT displaced 80 +/- 7. 0 nmol glu-1-P/mg GALT/min in the first reaction. By contrast, both Arg188- and Asn188-GALT released more glu-1-P (170 +/- 8.0 and 129 +/- 28.4 nmol/mg GALT/min, respectively). The overall, double displacement reaction was quantitated in the presence of gal-1-P. Gln188-GALT produced 80,030 +/- 5,910 nmol glu-1-P/mg GALT/min, whereas the mutant Arg188- and Asn188-GALT released only 600 +/- 71. 2 and 2960 +/- 283.6 nmole glu-1-P/mg GALT/min, respectively. We conclude from these data that glutamine at position 188 stabilizes the UMP-GALT intermediate through hydrogen bonding and enables the double displacement of both glu-1-P and UDP-Gal. The substitution of arginine or asparagine at position 188 reduces hydrogen bonding and destabilizes UMP-GALT. The unstable UMP-GALT allows single displacement of glu-1-P with release of free GALT but impairs the subsequent binding of gal-1-P and displacement of UDP-Gal.  相似文献   

19.
Geeganage S  Ling VW  Frey PA 《Biochemistry》2000,39(18):5397-5404
Galactose-1-phosphate uridylyltransferase (GalT) catalyzes the reversible transformation of uridine 5'-diphosphate glucose (UDPGlc) and galactose-1-phosphate into uridine 5'-diphosphate galactose (UDPGal) and glucose-1-phosphate through a double displacement mechanism, with the intermediate formation of a covalent uridylyl-enzyme (UMP-enzyme). The covalent linkage is a phosphoramidate formed between the UMP moiety and the His 166 N(epsilon)(2) of GalT, with His 166 N(delta1) retaining a proton throughout the catalytic cycle. Cys 160 and Ser 161 in Escherichia coli GalT are engaged in hydrogen bonding with the peripheral phosphoryl oxygen atoms of the substrate in the crystalline UMP-enzyme and in the crystalline complex of H166G-GalT with UDPGlc [Wedekind, J. E., Frey, P. A., and Rayment, I. (1996) Biochemistry 35, 11560-11569; Thoden, J. B., Ruzicka, F. J., Frey, P. A., Rayment, I., and Holden, H. M. (1997) Biochemistry 36, 1212-1222]. Site-directed mutagenesis, thermodynamic, transient kinetic, and steady-state kinetic studies have been performed to investigate the roles of Cys 160 and Ser 161 in catalysis. The absence of the thiol group of Cys 160 in the variants C160S and C160A did not seriously alter the enzymatic activity. However, the variant S161A displayed 7000-fold less activity than wild-type GalT. The low activity of S161A was directly related to impaired uridylylation rate constant (3.7 x 10(-)(2) s(-)(1)) and de-uridylylation rate constant (0.5 x 10(-)(2) s(-)(1)) resulting from a higher kinetic barrier for uridylyl-group transfer by the variant S161A as compared with the wild-type GalT. Equilibrium uridylylation studies showed that neither Cys 160 nor Ser 161 was involved in stabilizing the uridylyl-enzyme intermediate. The results lead to the conclusion that the conserved Cys 160 does not play a critical role in catalysis. Ser 161 is most likely involved in donating a hydrogen bond to the beta-phosphoryl group of a substrate, thereby providing proper orientation for nucleophilic catalysis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号