首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Axin is a negative regulator of the Wnt pathway essential for down-regulation of beta-catenin. Axin has been considered so far as a cytoplasmic protein. Here we show that, although cytoplasmic at steady state, Axin shuttles in fact in and out of the nucleus; Axin accumulates in the nucleus of cells treated with leptomycin B, a specific inhibitor of the CRM1-mediated nuclear export pathway and is efficiently exported from Xenopus oocyte nuclei in a RanGTP- and CRM1-dependent manner. We have characterized the sequence requirement for export and identified two export domains, which do not contain classical nuclear export consensus sequences, and we show that Axin binds directly to the export factor CRM1 in the presence of RanGTP.  相似文献   

5.
6.
7.
Transport of proteins into and out of the nucleus occurs through nuclear pore complexes (NPCs) and is mediated by the interaction of transport factors with nucleoporins at the NPC. Nuclear import of proteins containing classical nuclear localization signals (NLSs) is mediated by a heterodimeric protein complex, composed of karyopherin α and β1, that docks via β1 the NLS-protein to the NPC. The GTPase Ran; the RanGDP binding protein, p10; and the RanGTP binding protein, RanBP1 are involved in translocation of the docked NLS-protein into the nucleus. Recently, new distinct nuclear import and export pathways that are mediated by members of the karyopherin β family have been discovered. Karyopherin β2 mediates import of mRNA binding proteins, whereas karyopherin β3 and β4 mediate import of a set of ribosomal proteins. Two other β karyopherin family members, CRM1 and CAS, mediate export of proteins containing leucine-rich nuclear export signals (NES) and reexport of karyopherin α, respectively. This growing family contains new members that constitute potential transport factors for cargoes yet to be identified in the future. The common features of the members of karyopherin β family are the ability to bind RanGTP and the ability to interact directly with nucleoporins at the NPC. The challenge for the future will be to identify the distinct or, perhaps, overlapping cargo(es) for each member of the karyopherin β superfamily and to characterize the molecular mechanisms of translocation of karyopherins together with their cargoes through the NPC. J. Cell. Biochem. 70:231–239, 1998.© 1998 Wiley-Liss, Inc.  相似文献   

8.
The inhibitor of kappa B alpha (IkappaBalpha) protein is able to shuttle between the cytoplasm and the nucleus. We have utilized a combination of in vivo and in vitro approaches to provide mechanistic insight into nucleocytoplasmic shuttling by IkappaBalpha. IkappaBalpha contains multiple functional domains that contribute to shuttling of IkappaBalpha between the cytoplasm and the nucleus. Nuclear import of IkappaBalpha is mediated by the central ankyrin repeat domain. Similar to previously described nuclear import pathways, nuclear import of IkappaBalpha is temperature and ATP dependent and is blocked by a dominant-negative mutant of importin beta. However, in contrast to classical nuclear import pathways, nuclear import of IkappaBalpha is independent of soluble cytosolic factors and is not blocked by the dominant-negative RanQ69L protein. Nuclear export of IkappaBalpha is mediated by an N-terminal nuclear export sequence. Nuclear export of IkappaBalpha requires the CRM1 nuclear export receptor and is blocked by the dominant-negative RanQ69L protein. Our results are consistent with a model in which nuclear import of IkappaBalpha is mediated through direct interactions with components of the nuclear pore complex, while nuclear export of IkappaBalpha is mediated via a CRM1-dependent pathway.  相似文献   

9.
Most colorectal cancers have mutations of the adenomatous polyposis coli (APC) gene or the beta-catenin gene that stabilize beta-catenin and activate beta-catenin target genes, leading ultimately to cancer. The molecular mechanisms of APC function in beta-catenin degradation are not completely known. APC binds beta-catenin and is involved in the Axin complex, suggesting that APC regulates beta-catenin phosphorylation. Some evidence also suggests that APC regulates beta-catenin nuclear export. Here, we examine the effects of APC mutations on beta-catenin phosphorylation, ubiquitination, and degradation in the colon cancer cell lines SW480, DLD-1, and HT29, each of which contains a different APC truncation. Although the current models suggest that beta-catenin phosphorylation should be inhibited by APC mutations, we detected significant beta-catenin phosphorylation in these cells. However, beta-catenin ubiquitination and degradation were inhibited in SW480 but not in DLD-1 and HT29 cells. The ubiquitination ofbeta-catenin in SW480 cells can be rescued by exogenous expression of APC. The APC domains required for beta-catenin ubiquitination were analyzed. Our results suggest that APC regulates beta-catenin phosphorylation and ubiquitination by distinct domains and by separate molecular mechanisms.  相似文献   

10.
11.
12.
tRNAs in yeast and vertebrate cells move bidirectionally and reversibly between the nucleus and the cytoplasm. We investigated roles of members of the β-importin family in tRNA subcellular dynamics. Retrograde import of tRNA into the nucleus is dependent, directly or indirectly, upon Mtr10. tRNA nuclear export utilizes at least two members of the β-importin family. The β-importins involved in nuclear export have shared and exclusive functions. Los1 functions in both the tRNA primary export and the tRNA reexport processes. Msn5 is unable to export tRNAs in the primary round of export if the tRNAs are encoded by intron-containing genes, and for these tRNAs Msn5 functions primarily in their reexport to the cytoplasm. The data support a model in which tRNA retrograde import to the nucleus is a constitutive process; in contrast, reexport of the imported tRNAs back to the cytoplasm is regulated by the availability of nutrients to cells and by tRNA aminoacylation in the nucleus. Finally, we implicate Tef1, the yeast orthologue of translation elongation factor eEF1A, in the tRNA reexport process and show that its subcellular distribution between the nucleus and cytoplasm is dependent upon Mtr10 and Msn5.  相似文献   

13.
We studied the cellular requirements for the translocation of CRM1 (exportin 1) between the nucleus and the cytoplasm. CRM1 import requires neither ATP, Ran, Ran-dependent GTP hydrolysis, nor a particular temperature. CRM1 and importin beta compete with each other during their import. Thus, CRM1 is able to enter the nucleus in a manner similar to importinbeta. In contrast, the in vivo export of CRM1 involves ATP-consuming step(s).  相似文献   

14.
The Drosophila HIFα homologue, Sima, is localized mainly in the cytoplasm in normoxia and accumulates in the nucleus upon hypoxic exposure. We have characterized the mechanism governing Sima oxygen-dependent subcellular localization and found that Sima shuttles continuously between the nucleus and the cytoplasm. We have previously shown that nuclear import depends on an atypical bipartite nuclear localization signal mapping next to the C-terminus of the protein. We show here that nuclear export is mediated in part by a CRM1-dependent nuclear export signal localized in the oxygen-dependent degradation domain (ODDD). CRM1-dependent nuclear export requires both oxygen-dependent hydroxylation of a specific prolyl residue (Pro850) in the ODDD, and the activity of the von Hippel Lindau tumor suppressor factor. At high oxygen tension rapid nuclear export of Sima occurs, whereas in hypoxia, Sima nuclear export is largely inhibited. HIFα/Sima nucleo-cytoplasmic localization is the result of a dynamic equilibrium between nuclear import and nuclear export, and nuclear export is modulated by oxygen tension.  相似文献   

15.
Beta-catenin not only plays a role in cadherin-dependent cell adhesion, but also interacts with T-cell factor (TCF)/lymphoid enhancer factor-1 (LEF-1) to affect gene expression. In this report, we describe the effects of exogenous LEF-1 and of treatment with leptomycin B (LMB), a specific inhibitor of CRM1-medicated nuclear export, on the nuclear localization and export of beta-catenin. Normal epithelial cells overexpressing LEF-1 accumulate nuclear beta-catenin in a LEF-1 concentration-dependent manner. Nuclear beta-catenin, once imported from the cytoplasm, is rapidly removed from the nucleus. Treatment with LMB results in dramatic retention of nuclear beta-catenin in normal epithelial cells transfected with LEF-1, and this effect is intensified by treatment of N-Acetyl-leucyl-leucyl-norleucinal together with LMB. Colon carcinoma cells containing an adenomatous polyposis coli mutation retain significant amounts of LEF-1 induced nuclear beta-catenin considerably after the time-point when beta-catenin disappears from the nuclei of LEF-1 transfected normal epithelial cells. beta-Catenin binds directly to CRM1, and overexpression of CRM1 reduces nuclear beta-catenin-mediated transactivation function.  相似文献   

16.
Glucocorticoid receptors (GRs) are shuttling proteins, yet they preferentially accumulate within either the cytoplasmic or nuclear compartment when overall rates of nuclear import or export, respectively, are limiting. Hormone binding releases receptors from stable heteromeric complexes that restrict their interactions with soluble nuclear import factors and contribute to their cytoplasmic retention. Although hormone dissociation leads to the rapid release of GRs from chromatin, unliganded nuclear receptors are delayed in their export. We have used a chimeric GR that contains a heterologous, leucine-rich nuclear export signal sequence (NES) to assess the consequences of accelerated receptor nuclear export. Leucine-rich NESs utilize the exportin 1/CRM1-dependent nuclear export pathway, which can be blocked by leptomycin B (LMB). The fact that rapid nuclear export of the NES-GR chimera, but not the protracted export of wild-type GR, is sensitive to LMB, suggests that GR does not require the exportin 1/CRM1 pathway to exit the nucleus. Despite its more rapid export, the NES-GR chimera appears indistinguishable from wild-type GR in its transactivation activity in transiently transfected cells. However, accelerated nuclear export of the NES-GR chimera is associated with an increased rate of hormone-dependent down-regulation. The increase in NES-GR down-regulation is overcome by LMB treatment, thereby confirming the connection between receptor nuclear export and down-regulation. Given the presence of a nuclear recycling pathway for GR, the protracted rate of receptor nuclear export may increase the efficiency of biological responses to secondary hormone challenges by limiting receptor down-regulation and hormone desensitization.  相似文献   

17.
18.
19.
BACKGROUND: At M phase, cyclin B1 is phosphorylated in the cytoplasmic retention sequence (CRS), which is required for nuclear export. During interphase, cyclin B1 shuttles between the nucleus and the cytoplasm because constitutive nuclear import is counteracted by rapid nuclear export. In M phase, cyclin B moves rapidly into the nucleus coincident with its phosphorylation, an overall movement that might be caused simply by a decrease in its nuclear export. However, the questions of whether CRS phosphorylation is required for cyclin B1 translocation in mitosis and whether a reduction in nuclear export is sufficient to explain its rapid relocalisation have not been addressed. RESULTS: We have used two forms of green fluorescent protein to analyse simultaneously the translocation of wild-type cyclin B1 and a phosphorylation mutant of cyclin B1 in mitosis, and correlated this with an in vitro nuclear import assay. We show that cyclin B1 rapidly translocates into the nucleus approximately 10 minutes before breakdown of the nuclear envelope, and that this movement requires the CRS phosphorylation sites. A cyclin B1 mutant that cannot be phosphorylated enters the nucleus after the wild-type protein. Phosphorylation of the CRS creates a nuclear import signal that enhances cyclin B1 import in vitro and in vivo, in a manner distinct from the previously described import of cyclin B1 mediated by importin beta. CONCLUSIONS: We show that phosphorylation of human cyclin B1 is required for its rapid translocation to the nucleus towards the end of prophase. Phosphorylation enhances cyclin B1 nuclear import by creating a nuclear import signal. The phosphorylation of the CRS is therefore a critical step in the control of mitosis.  相似文献   

20.
The tumor suppressor adenomatous polyposis coli (APC) is mutated in familial adenomatous polyposis and in sporadic colorectal tumors. APC forms a complex with beta-catenin, Axin, and glycogen synthase kinase-3beta and induces the degradation of beta-catenin. In the present study, we examined whether APC association with Axin is required for degradation of beta-catenin. We found that a fragment of APC that induces beta-catenin degradation was rendered inactive by disruption of its Axin-binding sites. Also, overexpression of an Axin fragment spanning the regulator of the G-protein signaling domain inhibited APC-mediated beta-catenin degradation. An APC fragment with mutated beta-catenin-binding sites but intact Axin-binding sites also failed to induce degradation of beta-catenin. These results suggest that APC requires interaction with Axin and beta-catenin to down-regulate beta-catenin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号