首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Potassium- and proton-dependent membrane potential, conductance, and current-voltage characteristics (IV curves) have been measured on rhizoid cells of the liverwort Riccia fluitans. The potential difference (Em) measured with microelectrodes across plasmalemma and tonoplast is depolarized to the potassium-sensitive diffusion potential (ED) in the presence of 1 mM NaCN, 1 mM NaN3, or at temperatures below 6°C. Whereas the temperature change from 25°C to 5°C decreases the membrane conductance (gm) from 0.71 to 0.43 S ? m?2, 1 mM NaCN increases gm by about 25%. The membrane displays potassium-controlled rectification which gradually disappears at temperatures below 5°C. The potassium pathway can be described by an equivalent circuit of a diode and an ohmic resistor in parallel. In the potential interval of ED ± 100 mV the measured I-V curves roughly fit the theoretical curves obtained from a modified diode equation. 86Rb+(K+)-influx is voltage sensitive: In the presence of 1 mM NaCN, 86Rb+-influx follows a hyperbolic function corresponding to a low conductance at low [K+]o and high conductance at high [K+]o. On the contrary 86Rb+-influx is linear with [K+]o when pump activity is normal. It is believed that there are two K+-transport pathways in the Riccia membrane, one of which is assigned to the low conductance (0.2 S · m?2), the other to a temperature-dependent facilitated diffusion system with a higher conductance (7.7 S · m?2). The electrogenic pump essentially acts as a current source and consumes about 39% of the cellular ATP-turnover. In the presence of 30 μM CCCP the saturation current of 0.1 A · m?2 is doubled to about 0.2 A · m?2, and the electromotive force of ?360 mV switches to ?250 mV. It is suggested that this may be due to a change in stoichiometry from one to two transported charges per ATP hydrolyzed.  相似文献   

2.
The electrophysiological properties of cytoplasm-rich fragments (single membrane samples) prepared from internodal cells of Chara corallina were explored in conjunction with K+-sensitive microelectrode and current-voltage (I-V) measurements. This system eliminated the problem of the inaccessible cytoplasmic layer, while preserving many of the electrical characteristics of the intact cells. In 0.1 millimolar external K concentration (Ko+), the resting conductance (membrane conductance Gm, 0.85 ± 0.25 Siemens per square meter (±standard error)) of the single membrane samples, was dominated by the proton pump, as suggested by the response of the near-linear I-V characteristic to changes in external pH. Initial cytoplasmic K+ activities (aK+), judged most reliable, gave values of 117 ± 67 millimolar; stable aK+ values were 77 ± 31 millimolar. Equilibrium potentials for K+ (Nernst equilibrium potential) (EK) calculated, using either of these data sets, were near the mean membrane potential (Vm). On a cell-to-cell basis, however, EK was generally negative of the Vm, despite an electrogenic contribution from the Chara proton pump. When Ko+ was increased to 1.0 millimolar or above, Gm rose (by 8- to 10-fold in 10 millimolar Ko+), the steady state I-V characteristics showed a region of negative slope conductance, and Vm followed EK. These results confirm previous studies which implicated a Ko+-induced and voltage-dependent permeability to K+ at the Chara plasma membrane. They provide an explanation for transitions between apparent Ko+-insensitive and Ko+-sensitive (`K+ electrode') behavior displayed by the membrane potential, as recorded in many algae and higher plant cells.  相似文献   

3.
Inastrocytes, as [K+]o was increased from 1.2 to 10 mM, [K+]i and [Cl]i were increased, whereas [Na+]i was decreased. As [K+]o was increased from 10 to 60 mM, intracellular concentration of these three ions showed no significant change. When [K+]o was increased from 60 to 122 mM, an increase in [K+]i and [Cl]i and a decrease in [Na+]i were observed.Inneurons, as [K+]o was increased from 1.2 to 2.8 mM, [Na+]i and [Cl]i were decreased, whereas [K+]i was increased. As [K+]o was increased from 2.8 to 30 mM, [K+]i, [Na+]i and [Cl]i showed no significant change. When [K+]o was increased from 30 to 122 mM, [K+]i and [Cl]i were increased, whereas [Na+]i was decreased. Inastrocytes, pHi increased when [K+]o was increased. Inneurons, there was a biphasic change in pHi. In lower [K+]o (1.2–2.8 mM) pHi decreased as [K+]o increased, whereas in higher [K+]o (2.8–122 mM) pHi was directly related to [K+]o. In bothastrocytes andneurons, changes in [K+]o did not affect the extracellular water content, whereas the intracellular water content increased as the [K+]o increased. Transmembrane potential (Em) as measured with Tl-204 was inversely related to [K+]o between 1.2 and 90 mM, a ten-fold increase in [K+]o depolarized the astrocytes by about 56 mV and the neurons about 52 mV. The Em values measured with Tl-204 were close to the potassium equilibrium potential (Ek) except those in neurons at lower [K+]o. However, they were not equal to the chloride equilibrium potential (ECl) at [K+]o lower than 30 mM in both astrocytes and neurons. Results of this study demonstrate that alteration of [K+]o produced different changes in [K+]i, [Na+]i, [Cl]i, and pHi in astrocytes and neurons. The data show that astrocytes can adapt to alterations in [K+]o, in such a way to maintain a more suitable environment for neurons.  相似文献   

4.
The mechanisms of the hyperpolarizing and depolarizing actions of cesium were studied in cardiac Purkinje fibers perfused in vitro by means of a microelectrode technique under conditions that modify either the Na+-K+ pump activity or If. Cs+ (2 mM) inconsistently increased and then decreased the maximum diastolic potential (MDP); and markedly decreased diastolic depolarization (DD). Increase and decrease in MDP persisted in fibers driven at fast rate (no diastolic interval and no activation of If). In quiescent fibers, Cs+ caused a transient hyperpolarization during which elicited action potentials were followed by a markedly decreased undershoot and a much reduced DD. In fibers depolarized at the plateau in zero [K+]o (no If), Cs+ induced a persistent hyperpolarization. In 2 mM [K+]o, Cs+ reduced the undershoot and suppressed spontaneous activity by hyperpolarizing and thus preventing the attainment of the threshold. In 7 mM [K+]o, DD and undershoot were smaller and Cs+ reduced them. In 7 and 10 mM [K+]o, Cs+ caused a small inconsistent hyperpolarization and a net depolarization in quiescent fibers; and decreased MDP in driven fibers. In the presence of strophanthidin, Cs+ hyperpolarized less. Increasing [Cs+]o to 4, 8 and 16 mM gradually hyperpolarized less, depolarized more and abolished the undershoot. We conclude that in Purkinje fibers Cs+ hyperpolarizes the membrane by stimulating the activity of the electrogenic Na+-K+ pump (and not by suppressing If); and blocks the pacemaker potential by blocking the undershoot, consistent with a Cs+ block of a potassium pacemaker current.  相似文献   

5.
In isolated Elodea densa leaves, the relationships between H+ extrusion (-ΔH+), K+ fluxes and membrane potential (Em) were investigated for two different conditions of activation of the ATP-dependent H+ pump. The ‘basal condition’ (darkness, no pump activator present) was characterized by low values of-ΔH+ and K+ uptake (ΔK+), wide variability of the ?ΔH+/ΔK+ ratio, relatively low membrane polarization and Em values more positive than EK for external K+ concentrations (|K+]o of up to 2mol m?3. A net K+ uptake was seen already at [K+]o below 1 mol m?3, suggesting that K+ influx in this condition was a thermodynamically uphill process involving an active mechanism. When the H+ pump was stimulated by fusicoccin (FC), by cytosol acidification, or by light (the ‘high polarization condition’), K+ influx largely dominated K+ and C? efflux, and the ?ΔH+/ΔK+ ratio approached unity. In the range 50 mmol m?3?5 mol m?3 [K+]0, Em was consistently more negative than EK. The curve of K+ influx at [K+]0 ranging from 50 to 5000mmol m?3 fitted a monophasic, hyperbolic curve, with an apparent half saturation value = 0–2 mol m?3. Increasing |K+]0 progressively depolarized Em, counteracting the strong hyperpolarizing effect of FC. The effects of K+ in depolarizing Em were well correlated with the effects on both K+ influx and ?ΔH+, suggesting a cause-effect chain: K+0 influx → depolarization → activation of H+ extrusion. Cs+ competitively inhibited K+ influx much more strongly in the ‘high polarization’ than in the ‘basal’ condition (50% inhibition at [Cs+]/[K+]0 ratios of 1:14 and 1:2, respectively) thus confirming the involvement of different K+ uptake systems in the two conditions. These results suggest that in E. densa leaves two distinct modes of interactions rule the relationships between H+ pump, membrane polarization and K+ transport. At low membrane polarization, corresponding to a low state of activation of the PM H+-ATPase and to Em values more positive than EK, K+ influx would mainly  相似文献   

6.
The current-voltage (I/V) profiles of Ventricaria (formerly Valonia) membranes were measured at a range of external potassium concentrations, [K+] o , from 0.1 to 100 mm. The conductance-voltage (G/V) characteristics were computed to facilitate better resolution of the profile change with time after exposure to different [K+] o . The resistance-voltage (R/V) characteristics were computed to attempt resolution of plasmalemma and tonoplast. Four basic electrophysiological stages emerged: (1) Uniform low resistance between −60 and +60 mV after the cell impalement. (2) High resistance between +50 and +150 for [K+] o from 0.1 to 1.0 mm and hypotonic media. (3) High resistance between −150 and −20 mV for [K+] o of 10 mm (close to natural seawater) and hypertonic media. (4) High resistance between −150 and +170 mV at [K+] o of 100 mm. The changes between these states were slow, requiring minutes to hours and sometimes exhibiting spontaneous oscillations of the membrane p.d. (potential difference). Our analysis of the I/V data supports a previous hypothesis, that Ventricaria tonoplast is the more resistive membrane containing a pump, which transports K+ into the vacuole to regulate turgor. We associate state (1) with the plasmalemma conductance being dominant and the K+ pump at the tonoplast short-circuited probably by a K+ channel, state (2) with the K+ pump ``off' or short-circuited at p.d.s more negative than +50 mV, state (3) with the K+ pump ``on,' and state (4) with the pump dominant, but affected by high K+. A model for the Ventricaria membrane system is proposed. Received: 5 November 1998/Revised: 11 May 1999  相似文献   

7.
The Membrane Potential of Acetabularia mediterranea   总被引:8,自引:1,他引:7  
The cytoplasm of an Acetabularia cell is normally at a potential of about -170 mv relative to the external solution; the vacuole is also at this potential. Although there is strict flux equilibrium for all ions, the potential is more negative than the Nernst potentials of any of the permeating ions. Darkness, CCCP, low temperature, and reducing [Cl-]o by a factor of 25 all rapidly depolarize the membrane and inhibit Cl- influx. Some of these treatments do not inhibit the effluxes of K+ and Na+. Increasing [K+]o also depolarizes the membrane both under normal conditions and at low temperature; in the latter case the membrane is partially depolarized in normal seawater (low [K+]o) and in high [K+]o positive potentials of up to +15 mv are attained. It is concluded that the membrane potential is controlled by the electrogenic influx of Cl-, and also, at least in some circumstances, by the diffusion of K+. In addition, it is suggested that electrogenic efflux of H+ may be important in transient nonequilibrium situations. An Appendix deals with the interpretation of simple nonsteady-state tracer kinetic data.  相似文献   

8.
Summary We have studied the hyperpolarizing, electrogenic pump located on the apical membrane of the retinal pigment epithelium (RPE) in anin vitro preparation of bullfrog RPE-choroid. Changes in RPE [K+] i alter the current produced by this pump. Increasing [K+] o in the solution perfusing thebasal membrane increases RPE [K+] i (measured with a K+-specific microelectrode), and also depolarizes theapical membrane. This depolarization is due to a decrease in electrogenic pump current flowing across the apical membrane resistance, since it is abolished when the pump is inhibited by apical ouabain, by cooling the tissue, or by 0mm [K+] o outside the apical membrane. Removal of Cl from the solution perfusing the basal membrane abolishes the K+-evoked apical depolarization by preventing the entry of K+ (as KCl) into the cell. We conclude that the increase in [K+] i causes the decrease in pump current. This result is consistent with the finding that [K+] i is a competitive inhibitor of the Na+–K+ pump in red blood cells.It is possible that the light-evoked changes in [K+] o in the distal retina could alter RPE [K+] i , and thus could affect the pump from both sides of the apical membrane. Any change in pump current is likely to influence retinal function, since this pump helps to determine the composition of the photoreceptor extracellular space.  相似文献   

9.
The effects of changes in extracellular K+ concentration ([K+]o) on the resting membrane potential, the input resistance and 86Rb efflux (as a marker of K+ efflux) were examined with use of the cultured mouse neuroblastoma cells (N-18 clone). The results obtained are as follows. (1) The membrane potential was depolarized, with an increase in [K+]o at concentrations above 10–20 mM at a rate of 55–58 mV per 10-fold change in [K+]o, but practically unchanged with varying [K+]o below this concentration. (2) Above the critical [K+]o of 10–20 mM, the input membrane resistance decreased sharply by a factor of 14?15 with an increase in [K+]o. A similar decrease in the resistance occurred even under the conditions that the membrane potential was held at control level (about ?55 mV) by a steady-state current passage. (3) Elimination of Na+ and Cl? from the external solution brought about practically no change in the membrane potential. (4) A fractional escape rate of 86Rb from N-18 cells remained constant at relatively low level (0.125%/min on average) in the low [K+]o range, but increased sharply with increasing [K+]o above 15 mM (e.g., approx. 3.4- and 4.5-fold at 30 and 100 mM [K+]o, respectively). (5) The high K+-induced 86Rb efflux was not practically inhibited by 1 mM tetraethylammonium or 0.1 mM 4-aminopyridine, indicating that the K+ channels activated by an elevation of [K+]o are not the delayed (voltage-dependent) K+ channels. The present results favoured the conclusion that N-18 cells carry K+ channels which open at high [K+]o but are closed at low [K+]o including the physiological range for the mouse neuroblastoma cells (around 5.4 mM). This conclusion leads to the notion that in the mouse neuroblastoma N-18 cells the K+ permeability does not mainly contribute to determining the resting membrane potential under physiological conditions.  相似文献   

10.
M. Katsuhara  M. Tazawa 《Protoplasma》1986,135(2-3):155-161
Summary The mechanism of salt tolerance was studied using isolated internodal cells of the charophyteNitellopsis obtusa grown in fresh water. When 100 mM NaCl was added to artificial pond water (0.1 mM each of NaCl, KC1, CaCl2), no cell survived for more than one day. Within the first 30 minutes, membrane potential (Em) depolarized and membrane resistance (Rm) decreased markedly. Simultaneously, cytoplasmic Na+ increased and K+ decreased greatly. At steady state the increase in Na+ content was roughly equal to the decrease in K+ content. The Cl content of the cytoplasm did not change. These results suggest that Na+ enters the cytoplasm by exchange with cytoplasmic K+. Both the entry of Na+ and the exit of K+ are assumed to be passive and the latter being caused by membrane depolarization. Vacuolar K+, Na+, and Cl remained virtually constant, suggesting that rapid influx of Na+ from the cytoplasm did not occur.In 100 mM NaCl containing 10 mM CaCl2, membrane depolarization, membrane resistance decrease and changes in cytoplasmic [Na+] and [K+] did not occur, and cells survived for many days. When cells treated with 100 mM NaCl were transferred within 1 hour to 100 mM NaCl containing 10 mM CaCl2, Em decreased, Rm increased, cytoplasmic Na+ and K+ returned to their initial levels, and cells survived. Two possible mechanisms for the role of Ca2+ in salt tolerance inNitellopsis are discussed; one a reduction in plasmalemma permeability to Na+ and the other a stimulation of active Na+-extrusion.  相似文献   

11.
The effect of changing [K+], [Na+] and [Cl?] in nutrient solution was studied in bullfrog antrum with and without HCO3? in nutrient. In 25 mM HCO3? (95% O2/5% CO2) and in zero HCO3? (100% O2), nutrient pH was maintained at 7.3. Changing from 4 to 40 mM K+ or from 81 to 8.1 mM Cl? gave a decrease 10 min later in transmucosal PD (nutrient became more negative) — a normal response. These responses were less in zero than in 25 mM HCO3?. A decrease from 102 to 8 mM Na+ decreased PD (anomalous response of electrogenic NaCl symport). This effect was attenuated or eliminated in zero HCO3?. In contrast, change from 4 to 40 mM K+ gave initial anomalous PD response and change from 102 to 8 mM Na+, initial normal PD response with either zero or 25 mM HCO3?. Both responses were associated with (Na+ + K+)-ATPase pump and were greater in zero than in 25 mM HCO3?. Initial PD increases in zero HCO3? are explained as due to increase in the resistance of passive conductance and/or NaCl symport pathways. Thus, removal of HCO3? modifies conductance pathways of nutrient membrane.  相似文献   

12.
The membrane potential (Em) of sartorius muscle fibers was made insensitive to [K+] by equilibration in a 95 mM K+, 120 mM Na+ Ringer solution. Under these conditions a potassium-activated, ouabain-sensitive sodium efflux was observed which had characteristics similar to those seen in muscles with Em sensitive to [K+]. In addition, in the presence of 10 mM K+, these muscles were able to produce a net sodium extrusion against an electrochemical gradient which was also inhibited by 10?4 M ouabain. This suggests that the membrane potential does not play a major role in the potassium activation of the sodium pump in muscles.  相似文献   

13.
In ovarian follicles of Drosophila melanogaster, ion substitution experiments revealed that K+ is the greatest contributor (68%) in setting oocyte steady‐state potential (Em), while Mg2+ and a metabolic component account for the rest. Because of the intense use made of Drosophila ovarian follicles in many lines of research, it is important to know how changes in the surrounding medium, particularly in major diffusible ions, may affect the physiology of the cells. The contributions made to the Drosophila oocyte membrane potential (Em) by [Na+]o, [K+]o, [Mg2+]o, [Ca2+]o, [Cl?]o, and pH (protons) were determined by substitutions made to the composition of the incubation medium. Only K+ and Mg2+ were found to participate in setting the level of Em. In follicles subjected to changes in external pH from the normal 7.3 to either pH 6 or pH 8, Em changed rapidly by about 6 mV, but within 8 min had returned to the original Em. Approximately half of all follicles exposed to reduced [Cl?]o showed no change in Em, and these all had input resistances of 330 kΩ or greater. The remaining follicles had smaller input resistances, and these first depolarized by about 5 mV. Over several minutes, their input resistances increased and they repolarized to a value more electronegative than their value prior to reduction in [Cl?]o. Together, K+ and Mg2+ accounted for up to 87% of measured steady‐state potential. Treatment with sodium azide, ammonium vanadate, or chilling revealed a metabolically driven component that could account for the remaining 13%. © 2009 Wiley Periodicals, Inc.  相似文献   

14.
The electrical membrane properties of cultured human cytotrophoblast were examined by means of a standard electrophysiological technique. The mean values of the membrane potential (Em) and the membrane resistance in a physiological medium were around ?49 mV and 12 MΩ, respectively. The membrane potential was dependent, to a large extent, on the external Ca2+ concentration ([Ca2+]0). Deprivation of external Ca2+ reduced membrane potential to about ?20 mV, and an increase in [Ca2+]0 caused a hyperpolarization in a saturable manner. The Ca2+-dependency of membrane potential was affected remarkably by [K+]0, but not by [Na+]0 or [Cl?]0. The intracellular Ca2+ injection hyperpolarized the membrane in a Ca2+-free medium. A Ca2+ channel blocker, verapamil, completely abolished the Ca2+-dependent Em. The Ca2+-dependent Em was also suppressed by cooling or by the application of metabolic inhibitors. It is suggested that the Ca2+-dependent Em in cultured human cytotrophoblast is caused by a Ca2+ influx which, in turn, increases the K+ conductance of the cell membrane, presumably due to stimulation of Ca2+-activated K+ channel.  相似文献   

15.
The involvement of Ca2+-activated K+ channels in the regulation of the plasma membrane potential and electrogenic uptake of glycine in SP 2/0-AG14 lymphocytes was investigated using the potentiometric indicator 3,3′-diethylthiodicarbocyanine iodide. The resting membrane potential was estimated to be −57 ± 6 mV (n = 4), a value similar to that of normal lymphocytes. The magnitude of the membrane potential and the electrogenic uptake of glycine were dependent on the extracellular K+ concentration, [K+]o, and were significantly enhanced by exogenous calcium. The apparent Vmax of Na+-dependent glycine uptake was doubled in the presence of calcium, whereas the K0.5 was not affected. Ouabain had no influence on the membrane potential under the conditions employed. Additional criteria used to demonstrate the presence of Ca2+-activated K+ channels included the following: (1) addition of EGTA to calcium supplemented cells elicited a rapid depolarization of the membrane potential that was dependent on [K+]o; (2) the calmodulin antagonist, trifluoperazine, depolarized the membrane potential in a dose-dependent and saturable manner with an IC50 of 9.4 μM; and (3) cells treated with the Ca2+-activated K+ channel antagonist, quinine, demonstrated an elevated membrane potential and depressed electrogenic glycine uptake. Results from the present study provide evidence for Ca2+-activated K+ channels in SP 2/0-AG14 lymphocytes, and that their involvement regulates the plasma membrane potential and thereby the electrogenic uptake of Na+-dependent amino acids.  相似文献   

16.
Potassium Channels at Chara Plasmalemma   总被引:2,自引:0,他引:2  
Exposure to high K+ medium transforms Chara plasmalemma into[K+]osensitive state (K+ state). The current-voltage (I/V)characteristicsunder such conditions display a negative conductance region.This feature results from the complex time and voltage dependenceof K+ channel opening At potentials more negative than a thresholdp.d. the channels are closed and the I/V characteristics becomelinear with a low slope conductance of 0.8 S m2 and only a weakdependence on [K+]o. Such behaviour is usually associated witha non-specific leak current The threshold level for K+ channelclosing depends on [K+]o. In 2.0 mol m–3 and 5.0 mol m–3K+ medium the membrane resting p.d. follows EK, but hyperpolarizesgradually if the [K+]o is lowered. The proton pump thus appearsto be non-operative, while the cell is in the K+ state, andrecovers slowly as the cell is returned to a low K+ medium.Excitation currents decline if the cells are kept in K+ statefor some hours. Key words: K+ channels, Chara corallina, Proton pump, Current/, oltage characteristics, Conductance  相似文献   

17.
Summary The effect of membrane potential on sodium-dependent calcium uptake by vesicles in an isolated cardiac sarcolemma preparation was examined. Initial time course studies showed that the reaction deviated from initial velocity conditions within minutes. This appeared to be due, in part, to loss of the sodium gradient. Assays carried out to 10 sec revealed a linear component of uptake (2 to 10 sec) and a faster component (complete by 2 sec). The latter was eliminated by loading the preparation with ethyleneglycol-bis-(-aminoethyl ether)N,N-tetraacetic acid (EGTA). This maneuver did not affect the slow component, and subsequent studies used preparations containing EGTA. Potassium Nernst potentials (E K), established by potassium gradients in the presence of valinomycin, were varied from –100 to +30 mV by changing [K+] o from 1.18 to 153.7mM ([K+] i =50mM). The initial velocity of sodium-dependent calcium uptake was stimulated twofold by changingE K from –100 to 0 mV and another twofold by raisingE K from 0 to +30 mV. For the total range ofE K and [K+] o , 32 to 36% of the increase appeared to reflect stimulation by extravesicular potassium. The remainder appeared to be due to membrane potential. The profile of sodium-dependent calcium uptake versusE K suggested that calcium influx through electrogenic sodium/calcium exchange may be much more affected by the positive region of the cardiac action potential than by the negative region.  相似文献   

18.
Although many studies have alluded to a role for boron (B) in membrane function, there is little evidence for a direct effect of B on the plasmalemma of higher plant cells. These studies were conducted to demonstrate, by electrophysiological techniques, a direct effect of B on the membrane potential (Em) of sunflower (Helianthus annuus [L.], cv Mammoth Grey Stripe) root tip cells and to determine if the response to B occurs rapidly enough to account for the previously observed effects of B on ion uptake. By inserting a glass microelectrode into an individual cell in the root tip, the Em of the cell was determined in basal salt medium (BSM), pH 6.0. The perfusion solution surrounding the root tissue was then changed to BSM + 50 micromolar H3BO3, pH 6.0. The exposure to B induced a significant plasmalemma hyperpolarization in sunflower root cells within 20 minutes. After just 3 minutes of exposure to B, the change in Em was already significantly different from the negligible change in Em observed over time in root cells never exposed to B. Membrane hyperpolarization could be caused by a stimulation of the proton pump or by a change in the conductance of one or more permeable ions. Since B has been shown to affect K+ uptake by plants, the electrophysiological techniques described above were used to determine if B has an effect on membrane permeability to K+, and could thereby lead to an increased diffusion potential. When sunflower root tips were pretreated in 50 micromolar B for 2 hours, cell membranes exhibited a significantly greater depolarization with each 10-fold increase in external [K+] than minus-B cells. Subsequent studies demonstrated that the depolarization due to increased external [K+] was also significantly greater when tissue was exposed to B at the same time as the 10-fold increase in [K+], indicating that the effect of B on K+ permeability was immediate. Analysis of sunflower root tips demonstrated that treatment in 50 micromolar B caused a significantly greater accumulation of K+ after 48 hours. The B-induced increase in K+ uptake may cause a subsequent stimulation of the H+-ATPase (proton pump) and lead to the observed hyperpolarization of root cell membranes. Alternatively, B may stimulate the proton pump, with the subsequent hyperpolarization resulting in an increased driving force for K+ influx.  相似文献   

19.
Summary Previous current/voltage (I/V) investigations of theChara K+ state have been extended by increasing the voltage range (up to +200 mV) through blocking the action potential with La3+. A region of negative slope was found in theI/V characteristics at positive PD's, similar to that already observed at PD's more negative than the resting level. These decreases in membrane currents at PD's more negative than –150 mV and at PD's close to 0 or positive are thought to arise from the K+ channel closure. Both the negative slope regions could be reversibly abolished by 0.1mm K+, 20mm Na+, more than 10mm Ca2+ or 5mm tetraethylammonium (TEA). The K+ channels are therefore blocked by TEA, closed by low [K+] o or high [Ca2+] o and are highly selective to K+ over Na+. With the K+ channels closed, the remainingI/V profile was approximately linear over the interval of 400 mV (suggesting a leakage current), but large rectifying currents were observed at PD's more positive than +50 mV. These currents showed a substantial decrease in high [Ca2+] o , sometimes displayed a slight shift to more positive PD's with increasing [K+] o and were unaffected by TEA or changes in [Na+] o . The slope of the linear part of theI/V profile was steeper in low [K+] o than in TEA or high [Na+] o (indicating participation of K+, but not Na+, in the leak current). Diethylstilbestrol (DES) was employed to inhibit the proton pump, but it was found that the leakage current and later the K+ channels were also strongly affected.  相似文献   

20.
The general purpose of this theoretical work is to contribute to understand the physiological role of the electrogenic properties of the sodium pump, by studying a dynamic model that integrates diverse processes of ionic and water transport across the plasma membrane. For this purpose, we employ a mathematical model that describes the rate of change of the intracellular concentrations of Na+, K+ and Cl, of the cell volume, and of the plasma membrane potential (V m ). We consider the case of a nonexcitable, nonpolarized cell expressing the sodium pump; Na+, K+, Cl and water channels, and cotransporters of KCl and NaCl in its plasma membrane. We particularly analyze here the conditions under which the physiological V m can be generated in a predominantly electrogenic fashion, as a result of the activity of the sodium pump. A major conclusion of this study is that, for the cell model considered, a low potassium permeability is not a sufficient condition for a predominantly electrogenic generation of the V m by the sodium pump. The presence of an electroneutral exchange of Na+ and K+ represents a necessary additional requirement. Received: 8 September 1999/Revised: 21 March 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号