首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Serotonergic neurons play key roles in modulating a wide variety of behavioral and homeostatic processes. However, there is a paucity of good model systems to study these neurons at a molecular level. In this review we will present evidence that cell lines derived from an unexpected source, thyroid parafollicular cells (PF) (also called C cells), fit the criteria for use as models for the study of serotonergic neurons. A strength of PF cell lines over other cell lines is that the parental PF cells have serotonergic properties and a neuronal potential that is consistent with their neural crest origin. Futhermore, PF cells and PF cell lines are capable of expressing the fundamental properties of serotonergic neurons, including: (1) serotonin (5-HT) biosynthesis by tryptophan hydroxylase (TPH), (2) vesicular 5-HT storage and regulated release, (3) expression of a 5-HT autoreceptor, and (4) expression of the 5-HT transporter. In this review, we will focus primarily on the serotonergic and neuronal properties of the rat CA77 PF cell line and the parental rat PF cells. The applicability of CA77 cells for molecular analyses will be described. First, their use for studies on the glucocorticoid regulation of the TPH gene will be discussed. Second, control of the calcitonin/calcitonin gene-related peptide (CT/CGRP) gene will be discussed, with particular emphasis on the application of serotonergic drugs in treating migraine headaches. These examples highlight the versatility of thyroid PF cell lines as a system for studying the control of both serotonin biosynthesis and physiological actions.  相似文献   

3.
Summary Neuroendocrine cells of the lung, occurring singly or in clusters known as neuroepithelial bodies, contain a variety of biologically active compounds, including several neuropeptides. We have investigated the localization of calcitonin and calcitonin gene-related peptide (CGRP) within single and grouped neuroendocrine cells in the respiratory epithelium of rats by an immunohistochemical double-staining technique which uses specific antisera raised in heterogeneous animal species. Calcitonin- and CGRP-immunoreactivities were nearly totally co-localized in both single neuroendocrine cells and neuroepithelial bodies. CGRP-immunoreactivity was also present in neurons in the jugular, nodose and dorsal root ganglia. The calcitonin-immunoreactivity in neuroendocrine cells, as in thyroid parafollicular (C) cells, was abolished by preincubation of the anticalcitonin serum with synthetic calcitonin. The CGRP-immunoreactivity in neuroendocrine cells and in the neuronal cells was abolished by preincubation of anti-CGRP serum with synthetic CGRP. Thus, while the calcitonin gene is expressed exclusively or predominantly as either calcitonin or CGRP in all other tissues except thyroid C-cells, our results strongly suggest that both peptides are expressed in the rat bronchopulmonary neuroendocrine cells.  相似文献   

4.
5.
Calcitonin-containing cells in serial, 6-micrometer sections of the thyroid glands of Swiss Webster mice, at 1 day, 2 weeks, 4 weeks and 8 weeks of age, were demonstrated by an immunoperoxidase method, using antiserum to human calcitonin. C-cell nuclei were counted in every sixth section of both left and right lobes. The average number of C-cells counted in the thyroid glands of 8-week-old animals was 18-fold, 5.5-fold and 2.5-fold greater than the number observed in 1-day, 2-week and 4-week-old animals, respectively. C-cell concentration was found to be greatest in 4-week-old mice. Mitoses of C-cells were observed in animals which were 1 day, 2 weeks and four weeks old. No mitotic figures were seen in 8-week-old animals. A few C-cells were seen in close association with neurons. The volume of the thyroid glands of 8-week-old animals was about 14-, 4- and 3-fold greater than the volume in the 1-day-old, 2-week-old and 4-week-old mice, respectively. These changes in the C-cell population during development provide a model for the study of C-cell proliferation and storage of calcitonin.  相似文献   

6.
7.
8.
9.
10.
Thyroid glands from 8-day-old rat pups were incubated in serum-free medium for 6 hr. Both calcitonin (CT) and calcitonin gene-related peptide (CGRP) released into medium were measured by radioimmunoassay. In 6 separate experiments CGRP was easily detected in medium in ng/ml concentrations. In 4 of the 6 experiments, where CT release was stimulated by high medium [Ca], the concentration of CGRP in medium showed a positive, significant correlation with the medium CT concentration (r = 0.41-0.69, p less than .05- less than .01). The results are in concert with reports describing the presence of CGRP in the C-cell, and they further show that CGRP, as well as CT, can be secreted by C-cell.  相似文献   

11.
12.
Summary Continued from the previous study in fetal animals (Kameda et al. 1980), the development and maturation of C-cell complexes in postnatal dogs from newborn to adult were investigated by use of an immunoperoxidase method using antisera to calcitonin, C-thyroglobulin (C-Tg) and 19S thyroglobulin, respectively. The younger the animals were, the more numerous were undifferentiated cells and high columnar epithelial cells in the complexes. With increasing age, the constituent elements of the complexes progressively differentiated. In one type of complex there are a large number of C-cells in various developmental stages, as well as undifferentiated cells and cysts. C-cell complexes composed mostly of mature C-cells were regarded as the more highly differentiated structures of this type. A second type contains follicular cells in various stages of differentiation in addition to undifferentiated cells and C-cells, i.e., 19S-positive cell masses not yet organized into follicles, primordial follicles with small lacunae and comparatively larger follicles. The follicular cells in the complexes were similar with respect to immunoreaction and folliculogenesis to the cells of fetal thyroids, but they developed very slowly. In conclusion, the present study indicates that follicular thyroid cells can differentiate within C-cell complexes, i.e., they develop from cells of ultimobranchial body origin.  相似文献   

13.
Morphological changes induced by capsaicin were studied in the serotonergic metacerebral giant neurons of the cerebral ganglia of Helix pomatia under in vitro conditions. Capsaicin at a concentration of 10-4 M caused characteristic structural alterations in the giant serotonergic neurons but did not significantly influence serotonin immunoreactivity in the neurons. At the lightmicroscopic level, the most conspiciuous structural alterations were swelling of the cell bodies, which contained a swollen pale nucleus. Under the electron microscope, the nuclei,mitochondria and the cisternae of the endoplasmic reticulum were swollen in the capsaicin-affected metacerebral giant neurons. Electron-microscopic cytochemical techniques for calcium demonstration revealed electron-dense deposits in the swollen mitochondria and in the cisternae of the endoplasmic reticulum, suggesting an increased Ca2+ influx. The serotonergic metacerebral giant neurons could be labelled by cobalt (1 mM) in the presence of capsaicin (10-4 M) suggesting that capsaicin opens the cation chanels of the capsaicin-sensitive neuronal membrane. The morphological and cytochemical alterations induced by capsaicin in the serotonergic metacerebral giant neurons of Helix pomatia closely resemble those induced in sensory neurons of mammalian dorsal root ganglion.This work was supported by OTKA grants No.: 2477, T016861, T017127 and ETT 587/93  相似文献   

14.
《Endocrine practice》2014,20(8):e140-e144
ObjectiveWe report the presentation and novel therapy of a calcitonin-secreting pancreatic neuroendocrine tumor (PNET) and review the literature on this unusual neoplasm.Methods:We cite the history of a 38-year-old male who presented with fatigue, weight loss, and diarrhea and was found to have a pancreatic head mass on cross-sectional imaging, as well as liver metastases.Results:The patient’s laboratory evaluation was notable for a >100-fold elevation of the peptide hormone calcitonin in serum. As calcitonin is typically secreted by thyroid C-cells, hypercalcitoninemia is considered a marker for medullary thyroid cancer (MTC) or C-cell hyperplasia, but it may be present in several physiologic or pathologic conditions or may be ectopically secreted in rare PNETs. An octreotide scan confirmed the presence of somatostatin (SST) receptors on the pancreatic mass and liver metastases, leading to the diagnosis of a calcitonin-secreting PNET. We initiated treatment with long-acting SST analogs and peptide receptor radionuclide therapy (90Yttrium-DOTATOC) and achieved disease regression while maintaining a high quality of life.Conclusion:Functional PNETs that secrete calcitonin are exceedingly rare, but they are important to consider in the differential diagnosis of nonthyroid-mediated hypercalcitonemia or pancreatic tumors that present with diarrhea, as the management differs markedly from both MTC and other pancreatic malignancies. (Endocr Pract. 2014;20:e140-e144)  相似文献   

15.
The motor circuits that control telson flexion in the crayfish (Procambarus clarkii) include a curiously arranged sub-circuit: a premotor 'command' neuron excites a motor neuron via a trisynaptic pathway, but also inhibits (and prevents firing of) the motor neuron via a shorter latency pathway (Kramer et al. 1981 a). The premotor and motor neurons in this circuit have been previously identified (Kramer et al. 1981 a; Dumont and Wine 1985a, b; see Fig. 1). We have now identified a local interneuron that inhibits the motor neurons. The cell we studied is called the 'C' cell because of its distinctive structure (Figs. 2, 3). A single pair of bilaterally homologous C-cells was found in the last (6th) abdominal ganglion. The C-cells are invariably dye coupled to one another following injections of lucifer yellow into either one of them, and are frequently dye coupled to smaller axons in the 2nd, 3rd, and 6th nerves. In addition, some of the extensive branches of the C-cell extend out into the 6th nerve, where they are in close proximity to the axons of the motor neurons they inhibit (Fig. 3). Two kinds of evidence established that the C-cell directly inhibits the motor neurons. First, when simultaneous recordings were made from the C-cell and the motor neurons, spikes in the C-cell, no matter how evoked, were invariably followed, within 1.5 ms, by depolarizing IPSPs in the motor neuron (Fig. 6). Second, when the C-cell was hyperpolarized so that it could not fire, that same IPSP in the motor neuron was abolished (Fig. 6). The inhibitory pathway to the motor neurons must be fired at short latency in order to prevent firing caused by the trisynaptic excitatory input (Fig. 1). The C-cells were fired at short latency (less than 3 ms) by impulses in either of the escape command cells (Fig. 4), and at even shorter latency by impulses in the Segmental Giant of the 6th ganglion (SG6) (Fig. 5). It has been established elsewhere that the SGs are a major output pathway of the escape command cells; our results suggest that they may be the pathway for command-evoked firing of the C-cell. The C-cells are also excited by two descending, non-giant, flexion premotor neurons, called I2 and I3 (Fig. 5). The EPSPs from a single I2 or I3 impulse were subthreshold, but temporal and spatial summation of EPSPs from the non-giant pathway sometimes fired the C-cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.

Background

The GDNF family ligands (GFLs) are regulators of neurogenic inflammation and pain. We have previously shown that GFLs increase the release of the sensory neuron neuropeptide, calcitonin gene-related peptide (CGRP) from isolated mouse DRG.

Results

Inhibitors of the mitogen-activated protein kinase (MAPK) pathway abolished the enhancement of CGRP release by GDNF. Neurturin-induced enhancement in the stimulated release of CGRP, used as an indication of sensory neuronal sensitization, was abolished by inhibition of the phosphatidylinositol-3 kinase (PI-3K) pathway. Reduction in Ret expression abolished the GDNF-induced sensitization, but did not fully inhibit the increase in stimulus-evoked release of CGRP caused by neurturin or artemin, indicating the presence of Ret-independent GFL-induced signaling in sensory neurons. Integrin β-1 and NCAM are involved in a component of Ret-independent GFL signaling in sensory neurons.

Conclusions

These data demonstrate the distinct and variable Ret-dependent and Ret-independent signaling mechanisms by which GFLs induce sensitization of sensory neurons. Additionally, there is a clear disconnect between intracellular signaling pathway activation and changes in sensory neuronal function.  相似文献   

17.
In the hippocampus and DG, a small number of morphologically and physiologically diverse interneurons controls the neuronal activity of large numbers of the principal excitatory output cells. The inhibitory interneurons are themselves regulated by glutamatergic and GABA-ergic intrinsic hippocampus afferents, as well as by extrinsic afferents, including cholinergic and serotonergic projections from the basal forebrain and the brainstem, respectively. In addition to the slow modulatory effects of the neurotransmitters released from these extrinsic pathways (11), recent evidence has revealed rapid effects of ACh and 5-HT mediated by ligand-gated ion channel receptors for these neurotransmitters. The direct, rapid excitatory action of ACh and 5-HT on hippocampus interneurons can explain many of the effects of these neurotransmitters on neuronal activity in the hippocampus circuit. Because the hippocampus receives both serotonergic and cholinergic innervation, there is strong potential for fast cholinergic and serotonergic synaptic transmission between these fibers and hippocampus interneurons, such as has been reported in other brain regions (e.g., visual cortex) (36). Moreover, these receptors may play important roles in the cognitive functions of the hippocampus, and show impaired function in certain neurological disorders, such as neurodegeneration. Recently McQuiston and Madison (77) have recorded functional nAChR-mediated responses in other interneuronal layers in the CA1 region of the rat hippocampus, and recently nAChR-mediated fast excitatory synaptic transmission has been provided in area CA1 of the rat hippocampus (78, 79). See Jones et al. (80) for a recent review.  相似文献   

18.
The colocalization of immunoreactivities to substance P and calcitonin gene-related peptide (CGRP) in nervous structures and their correlation with other peptidergic structures were studied in the stellate ganglion of the guinea pig by the application of double-labelling immunofluorescence. Three types of fibre were distinguished. (1) Substance P+/CGRP+ fibres, which sometimes displayed additional immunoreactivity for enkephalin, constituted a small fibre population of sensory origin, as deduced from retrograde labelling of substance P+/CGRP+ dorsal root ganglion cells. (2) Substance P+/CGRP fibres were more frequent; some formed baskets around non-catecholaminergic perikarya that were immunoreactive to vasoactive intestinal polypeptide (VIP). (3) CGRP+/substance P fibres were most frequent and were mainly distributed among tyrosine hydroxylase (TH)-immunoreactive cell bodies. The peptide content of fibre populations (2) and (3) did not correspond to that of sensory ganglion cells retrogradely labelled by tracer injection into the stellate ganglion. Therefore, these fibres are throught to arise from retrogradely labelled preganglionic sympathetic neurons of the spinal cord, in which transmitter levels may have been too low for immunohistochemical detection of substance P or CGRP. CGRP-immunoreactivity but no substance P-immunolabelling was observed in VIP-immunoreactive postganglionic neurons. Such cell bodies were TH-negative and were spared by substance P-immunolabelled fibre baskets. Retrograde tracing with Fast Blue indicated that the sweat glands in the glabrous skin of the forepaw were the targets of these neurons. The streptavidin-biotin-peroxidase method at the electron-microscope level demonstrated that immunoreactivity to substance P and CGRP was present in dense-cored vesicles of 50–130 nm diameter in varicosities of non-myelinated nerve fibres in the stellate ganglion. No statistically significant difference in size was observed between vesicles immunolabelled for substance P and CGRP. Immunoreactive varicosities formed axodendritic and axosomatic synaptic contacts, and unspecialized appositions to non-reactive neuronal dendrites, somata, and axon terminals. Many varicosities were partly exposed to the interstitial space. The findings provide evidence for different pathways utilizing substance P and/or CGRP in the guinea-pig stellate ganglion.  相似文献   

19.
This review focuses on the evolutionary and functional relationship of calcitonin receptor-stimulating peptide (CRSP) with calcitonin (CT)/calcitonin gene-related peptide (CGRP) in mammals. CRSP shows high sequence identity with CGRP, but distinct biological properties. CRSP genes (CRSPs) have been identified in mammals such as pigs and dogs of the Laurasiatheria, but not in primates and rodents of the Euarchontoglires or in non-placental mammals. CRSPs have genomic organizations highly similar to those of CT/CGRP genes (CT/CGRPs), which are located along with CGRPs in a locus between CYP2R1 and INSC, while the other members of the CGRP superfamily, adrenomedullin and amylin, show genomic organizations and locations distinct from CT, CGRP, and CRSP. Thus, we categorized these three peptides into the CT/CGRP/CRSP family. Non-placental mammals having one and placental mammals having multiple CT/CGRP/CRSP family genes suggests that multiplicity of CT/CGRP started at an early stage of mammalian evolution. In the placental mammals, Laurasiatheria generally possesses multiple CRSPs and only one CT/CGRP, while Euarchontoglires possesses CT/CGRP and CGRPβ but no CRSP, indicating an increase in the diversity and multiplicity of this family of genes in mammalian evolution. Phylogenetic analysis suggests that some CRSPs have been generated very recently in mammalian evolution. Taken together, the increase in the number and complexity of the CT/CGRP/CRSP family genes may have due to evolutionary pressure to facilitate adaptation during mammalian evolution. In this regard, it is important to elucidate the physiological roles of CT, CGRP and CRSP from the viewpoint of the CT/CGRP/CRSP family even in Euarchontoglires.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号