首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Benthic organic matter dynamics in Texas prairie streams   总被引:1,自引:1,他引:0  
Concentrations of benthic particulate organic matter (POM) in six Texas prairie streams (2nd–4th order, intermittent and perennial) were monitored over a 20 month period to determine temporal and spatial dynamics. Benthic POM mass was highly variable, having coefficients of variation (CV) in excess of 300%. Benthic POM mass in all streams was similar with the exception of the 4th order intermittent stream which had significantly higher concentrations. Benthic POM at all sites was dominated by coarse POM (CPOM), followed by fine POM (FPOM), ultrafine POM (UPOM), and medium POM (MPOM). The dominance by CPOM is especially noteworthy in the 4th order intermittent stream where it accounted for 83% of the annual POM mass. Seasonally, benthic POM was highest in summer and lowest in the fall.  相似文献   

2.
The effects of aquatic macrophyte (willows and sawgrass) removal on flow velocity, tufa deposition, POM dynamics, and macroinvertebrate community structure were studied in the tufa barrier habitats of the barrage system of Plitvice Lakes, Croatia. Samples were collected from two hydraulic habitats (fast > 100 cm s−1 and slow < 100 cm s−1) at both a control (no macrophytes removed) and impact (macrophytes removed) site. Samples were collected with a core sampler (four layers in vertical profile of barrier bed) monthly on 6 dates before and 7 dates after the removal of macrophytes. Macrophytes were removed in May 2002 at the impact site. After the macrophyte removal flow velocity decreased significantly at both hydraulic habitats. Retarded flow resulted in: (a) a decrease in macroinvertebrate density and diversity since most of the taxa were rheophilic (preferring habitats with higher flow velocity) and (b) an increase in POM concentrations (FPOM and UPOM) since decreases in flow velocity facilitate particle deposition in lotic habitats. The effects of macrophyte removal were present, and diminish along the vertical sediment profile of the barrier bed. Tufa deposition was not influenced by the macrophyte removal. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

3.
We studied the diet of 50 individuals of Hyalella sp. collected in the karstic headwaters of a high‐altitude Andean river (3817 m a.s.l. Peru) in four different habitats: macrophytes, bryophytes, leaf litter, and layers of travertine. The gut content analysis showed a dominance of fine particulate organic matter (FPOM) in most habitats – layers of travertine (69.5%), Myriophylum (58.5%) and bryophytes (56.8%) – except for individuals collected in leaf litter where coarse particulate organic matter (CPOM) represented 68% of gut content, which indicates a high trophic flexibility of Hyalella sp. Likewise, in an experiment with feeding chambers in situ during three days, twenty individuals of Hyalella sp. presented a higher consumption of leaf litter of native species (Polylepis sp.) (0.025 mg/day) than those of an introduced species (Eucalyptus globulus) (0.008 mg/day). (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Dissolved organic matter (DOM), produced through leaching from particulate organic matter (POM), is an essential component of the carbon cycle in streams. The present study investigated the instream DOM release from POM, varying in size and chemical quality. We produced large and medium sized fine particulate organic matter (L-FPOM, 250–500 μm; M-FPOM, 100–250 μm) of defined quality by feeding five types of coarse particulate organic matter (CPOM) to shredding amphipods (Gammarus spp.). Microscopic observations showed that L-FPOM and M-FPOM mainly consisted of the fecal pellets of amphipods, and incompletely eaten plant fragments, respectively. DOM release experiments were conducted by exposing CPOM and M- and L-FPOM fractions in natural stream water over a two week period. For CPOM, the release of dissolved organic carbon (DOC) by leaching was highest during the first 6 h (3.64–23.9 mg C g C?1 h?1) and decreased rapidly afterwards. For M- and L-FPOM, the DOC release remained low during the entire study period (range: 0.008–0.15 mg C g C?1 h?1). Two-way ANOVA revealed that the DOC release rate significantly differed with POM source and size fraction, both at day 1 and after a week of exposure. Multiple regression analyses revealed a significant correlation of elemental contents and lignin content to DOC release rate after a week of exposure. Overall, the results indicated that DOC release rate of FPOM, on a carbon basis, is comparable to that of CPOM after leaching, while size and source of POM significantly affect DOC release rate.  相似文献   

5.
6.
Large storm events can not only increase the runoff mass exports of particulate organic matter (POM) from watersheds, but can also alter the sources, size distribution, and composition of POM. We investigated the quantity, particle size distribution, carbon (C) and nitrogen (N) content, and sources of POM for five locations longitudinally along a forested Piedmont stream. POM was sampled for multiple storm events of varying magnitude and intensity over a two-year period. POM was separated into coarse (CPOM), medium (MPOM), and fine (FPOM) size classes, and sources were estimated using stable isotopes of 13C and 15N with a Bayesian mixing model. CPOM largely resembled less-degraded vascular plant material characteristic of forest floor litter, which was estimated to contribute to ~40% of CPOM in upstream locations. FPOM was derived from a more variable mixture of sources with stream beds and stream banks playing a greater role at larger drainage locations (up to ~50 and ~30%, respectively). Contributions from both forest floor litter and humus to CPOM increased with increasing event runoff, and litter contributions increased during events with higher rainfall intensities. Higher C and N content was noted in coarse sediments and finer POM fractions appeared to be more degraded based on C:N and isotope ratios. Climate-change projections predict intensification of large storm events in the Northeastern US. Results of this study suggest that large storms will increase the fluvial exports of coarse, labile, C- and N-rich POM with subsequent impacts on receiving aquatic ecosystems.  相似文献   

7.
SUMMARY.
  • 1 Input of allochthonous material, standing stocks of benthic organic matter (BOM) and suspended paniculate organic matter (POM) were measured in a south-western Cape mountain stream from March 1986 to February 1988. The surrounding fynbos-dominated catch-ment was subjected to a prescribed burn in March 1987.
  • 2 Litter-fall in the pre-burn year exhibited a distinct seasonal pattern, with peak falls during the early summer. Although the riparian canopy was not directly affected by the fire, in that it did not burn, a heavy, aseasonal leaf-fall occurred shortly afterwards. The following summer, litter-fall was less than half that of the pre-burn summer.
  • 3 Standing stocks of BOM were significantly higher in autumn than in winter in the pre-burn year and were inversely related to discharge. Despite the heavy post-burn leaf-fall and low litter-fall during the post-burn summer, there was no significant difference between pre- and post-burn BOM standing stocks.
  • 4 Proportions and quantities of fine benthic organic matter (FBOM) in the soft BOM fraction were significantly higher in the post-burn spring, and monthly accumulation of ultra-fine benthic organic matter (UBOM) was also significantly higher in the post-burn spring and summer. These results may reflect accelerated decay rates of BOM in response to enhanced post-burn nitrate concentrations in stream water.
  • 5 Export of CPOM was low in comparison to FPOM and particularly to UPOM, and the stream appears to be highly retentive of CPOM.
  • 6 The natural resilience of the riparian vegetation minimizes the potentially disturbing effects of fire on the stream environment. As a result, the prescribed burn had a less than expected effect on both standing stocks of BOM and the stream environment in general.
  相似文献   

8.
Coarse particulate organic matter distribution was investigated in a 270-m interval of a 2nd-order forest stream, the Yanase River. The dominant tree type was Keyaki (Zelkova serrata). CPOM sampling was conducted, and the sampled CPOM was sorted into leaves and branches, and water depth and current velocity were measured along with stone width, stone height and distance between the stones in the riffles. The collected CPOM was categorized by their accumulation type: LSS, SLP, SLPi, SLPo and DD. LSS was leaf packs at the leading edge of the stones, SLP was the sinking leaf packs in the pools, SLPi was the sinking leaf packs at the inner side of the stream bend in the pools, while SLPo was the sinking leaf packs at the outer side of the stream bend, and finally, DD was the leaf packs in the debris dams. The accumulated CPOM amounts at each leaf pack type were correlated with the measured physical stream variables. From the results, CPOM accumulation in riffles is controlled by stones projecting above the water surface and by their arrangements. In pools, CPOM accumulation occurs at high stream flow where the pools provide low velocities and a thick boundary layer of relatively quiescent flow. At stream meandering points, CPOM accumulation occurs by production of a secondary flow. Finally, CPOM accumulation in debris dams is important where they occur frequently. LSS was the largest in CPOM amount, and the stones in the riffles were the most retentive structures. On the other hand, SLP and SLPo were the least CPOM amounts, and the pools in the mainstream and at the outer side of the stream bend were the least retentive stream morphologies.  相似文献   

9.
1. Urbanisation severely affects stream hydrology, biotic integrity and water quality, but relatively little is known about effects on organic matter dynamics. Coarse particulate organic matter (CPOM) is a source of energy and nutrients in aquatic systems, and its availability has implications for ecosystem productivity and aquatic communities. In undisturbed environments, allochthonous inputs from riparian zones provide critical energy subsidies, but the extent to which this occurs in urbanised streams is poorly understood. 2. We investigated CPOM inputs, standing stocks, retention rates and retention mechanisms in urban and peri‐urban streams in Melbourne, Australia. Six streams were chosen along a gradient of catchment urbanisation, with the presence of reach scale riparian canopy cover as a second factor. CPOM retention was assessed at baseflow via replicate releases of marked Eucalyptus leaves where the retention distance and mechanism were recorded. CPOM and small wood (>1 cm diameter) storage were measured via cores and direct counts, respectively, while lateral and horizontal CPOM inputs were assessed using riparian litter traps. Stream discharge, velocity, depth and width were also measured. 3. CPOM inputs were not correlated with urbanisation, but were significantly higher in ‘closed’ canopy reaches. Urbanisation and riparian cover altered CPOM retention mechanisms, but not retention distances. Urban streams showed greater retention by rocks; while in less urban streams, retention by small wood was considerably higher. CPOM and small wood storage were significantly lower in more urban streams, but we found only a weak effect of riparian cover. 4. These findings suggest that while riparian vegetation increases CPOM inputs and has modest/weak effects on storage, catchment scale urbanisation decreases organic matter availability. Using an organic matter budget approach, it appears likely that the increased frequency and magnitude of high flows associated with catchment urbanisation exerts an overriding influence on organic matter availability. 5. We conclude that to maintain both organic matter inputs and storage, the restoration and protection of streams in urban or rapidly urbanising environments relies on the management of both riparian vegetation and catchment hydrology.  相似文献   

10.
SUMMARY. 1. This study was designed to determine how catchment use affects stream phosphorus retention by comparing retention in streams draining three mixed hardwood catchments and three catchments that were planted in white pine in the 1950s.
2. Catchments of similar area and stream discharge were chosen and phosphorus uptake was measured monthly in each catchment along with temperature, discharge, velocity, coarse particulate organic matter (CPOM), fine particulate organic matter (FPOM), and microbial respiration associated with FPOM.
3. On an annual basis, average phosphorus retention was not different between streams draining pine and hardwood catchments nor were there significant differences between physical (temperature, velocity and discharge) or biological (CPOM, FPOM and respiration) parameters based on catchment type. However, discharge was more variable in streams draining pine catchments.
4. Because phosphorus uptake was correlated with discharge, phosphorus retention was also more variable in streams draining pine catchments. Storms caused a greater increar.e in discharge and loss of phosphorus in pine streams than in mixed hardwood streams, but discharge returned to baseline more quickly in pine streams.
5. We suggest that discharge regimes and phosphorus dynamics of streams draining pine catchments are less resistant to change but more resilient than streams draining mixed hardwood forests.  相似文献   

11.
Shallow high-latitude lakes and ponds are usually characterized by an oligotrophic water column overlying a biomass-rich, highly productive benthos. Their pelagic food webs often contain abundant zooplankton but the importance of benthic organic carbon versus seston as their food sources has been little explored. Our objectives were to measure the δ13C and δ15N isotopic signatures of pelagic and benthic particulate organic matter (POM) in shallow water bodies in northern Canada and to determine the relative transfer of this material to zooplankton and other aquatic invertebrates. Fluorescence analysis of colored dissolved organic matter (CDOM) indicated a relatively strong terrestrial carbon influence in five subarctic waterbodies whereas the CDOM in five arctic water columns contained mostly organic carbon of autochthonous origin. The isotopic signatures of planktonic POM and cohesive benthic microbial mats were distinctly different at all study sites, while non-cohesive microbial mats often overlapped in their δ13C signals with the planktonic POM. Zooplankton isotopic signatures indicated a potential trophic link with different fractions of planktonic POM and the non-cohesive mats whereas the cohesive mats did not appear to be used as a major carbon source. The zooplankton signals differed among species, indicating selective use of resources and niche partitioning. Most zooplankton had δ13C values that were intermediate between the values of putative food sources and that likely reflected selective feeding on components of the pelagic or benthic POM. The results emphasize the likely importance of benthic-pelagic coupling in tundra ecosystems, including for species that are traditionally considered pelagic and previously thought to be dependent only on phytoplankton as their food source.  相似文献   

12.
13.
Spatial distributions of particulate organic matter (POM) and microbes were investigated during the summer of 1989–1990 in the coastal waters of Terra Nova Bay (Antarctica). The elemental (organic carbon and nitrogen) and biochemical (lipids, proteins, carbohydrates, DNA and RNA) composition of organic matter was related to bacterioplankton abundance, and pico-phytoplankton density. The ATP concentrations were also measured to gather information about the relationships between particulate matter composition and microbial distribution in Antarctic waters. Total seston was characterized by little spatial variation and was unrelated to the distance from the coast. Suspended particulate matter included some terrestrial components but was mostly composed of autochthonous material. POM was characterized by a uniform distribution and homogeneous composition (mostly of phytoplanktonic origin), and was associated with a relatively scarce microbial community characterized at the surface by high picophytoplankton density. The increase with depth of the living carbon fraction suggested an increase in the microheterotrophic community in the deeper water layers. A significant positive relationship between total bacterioplankton density, and carbohydrate and RNA concentrations was found. Similar significant relationships between pico-phytoplankton abundance and lipids, proteins, carbohydrates and nucleic acids were observed. On the basis of the close coupling found between microbiological and chemical compartments, it seems that, in Terra Nova Bay, bacterial distribution depends on suspended matter and in particular to the labile fraction of the organic detritus.  相似文献   

14.
流溪河水库颗粒有机物及浮游动物碳、氮稳定同位素特征   总被引:2,自引:0,他引:2  
宁加佳  刘辉  古滨河  刘正文 《生态学报》2012,32(5):1502-1509
为了解影响流溪河水库颗粒有机物(POM)碳和氮稳定同位素(δ13C和δ15N)变化的主要因素,及其与浮游动物δ13C和δ15N之间的关系,于2008年5月至12月份对POM及浮游动物的δ13C和δ15N进行了研究。颗粒有机物碳稳定同位素(δ13CPOM)和氮稳定同位素(δ15NPOM)的季节性变化幅度分别为5.1‰和2.2‰,5月和7月份δ13CPOM较高,而在10月和12月份降低,这主要与降雨将大量外源有机物带入水库而引起的外源及内源有机物在POM组成上发生变化有关。δ15NPOM总体呈上升趋势,可能是由降雨引起的外源负荷、初级生产力、生物固氮等因素共同作用的结果。浮游动物的δ13C及δ15N总的变化趋势与POM的相似,也具有明显的季节性变化,食物来源的季节变化可能是造成其变化的主要原因。在5月份,浮游动物的食物来源为POM中δ13C较高的部分,也就是外源有机物,而在10月及12月份,其食物则可能主要为浮游植物。  相似文献   

15.
In forested streams, surrounding riparian forests provide essential supplies of organic matter to aquatic ecosystems. We focused on two pathways of particulate organic matter inputs: direct input from upper riparian forests and indirect lateral input from bank slopes, for which there are limited quantitative data. We investigated the inputs of coarse particulate organic matter (CPOM) and carbon and nitrogen in the CPOM into the uppermost reaches of a headwater stream with steep bank slopes in Hokkaido, Japan. CPOM collected by litter traps was divided into categories (e.g., leaves, twigs) and weighed. Monthly nitrogen and carbon inputs were also estimated. The annual direct input of CPOM (ash-free dry mass) was 472 g m−2, a common value for temperate riparian forests. The annual lateral CPOM input was 353 g m−1 and 941 g m−2 when they were converted to area base. This value surpassed the direct input. Organic matter that we could not separate from inorganic sediments contributed to the total lateral input from the bank slopes (124 g m−1); this organic matter contained relatively high amounts of nitrogen and carbon. At uppermost stream reaches, the bank slope would be a key factor to understanding the carbon and nitrogen pathways from the surrounding terrestrial ecosystem to the aquatic ecosystem.  相似文献   

16.
四川黄龙沟森林和钙化滩流地两种生境中分布着大量的少花鹤顶兰,而且生长在这两种生境中的少花鹤顶兰有性繁殖成功存在着差异,目前尚不清楚这种差异是否是由生境差异所致,及其影响有性繁殖成功的机制。通过对黄龙沟少花鹤顶兰两种生境主要环境因子的调查和两种生境中的花部特征和传粉情况的测量,结果表明森林生境中林木盖度、土壤厚度、土壤含水量、土壤有机质、土壤全氮以及空气相对湿度比钙化滩流地中的高,而灌木盖度、草本盖度、苔藓盖度、空气温度、相对光照强度、土壤温度、全钙以及pH则是钙化滩流地中更高。而两种生境中少花鹤顶兰的形态特征和有性繁殖成功之间也存在明显的差异。在森林生境中的个体与钙化滩流地中的个体相比,最大叶长和最大叶宽更大,花朵数更多,距长也更长,单花和花序寿命更长。但花粉移走率和结实率却是钙化滩流地中的更高。两种生境中温度和光照的差异可能是导致两种生境中少花鹤顶兰花粉移走率和结实率差异的重要原因。  相似文献   

17.
Alpine streams can exhibit naturally high levels of flow intermittency. However, how flow intermittency in alpine streams affects ecosystem functions such as food web trophic structure is virtually unknown. Here, we characterized the trophic diversity of aquatic food webs in 28 headwater streams of the Val Roseg, a glacierized alpine catchment. We compared stable isotope (δ13C and δ15N) trophic indices to high temporal resolution data on flow intermittency. Overall trophic diversity, food chain length and diversity of basal resource use did not differ to a large extent across streams. In contrast, gradient and mixing model analysis indicated that primary consumers assimilated proportionally more periphyton and less allochthonous organic matter in more intermittent streams. Higher coarse particulate organic matter (CPOM) C:N ratios were an additional driver of changes in macroinvertebrate diets. These results indicate that the trophic base of stream food webs shifts away from terrestrial organic matter to autochthonous organic matter as flow intermittency increases, most likely due to reduced CPOM conditioning in dry streams. This study highlights the significant, yet gradual shifts in ecosystem function that occur as streamflow becomes more intermittent in alpine streams. As alpine streams become more intermittent, identifying which functional changes occur via gradual as opposed to threshold responses is likely to be vitally important to their management and conservation.  相似文献   

18.
1. The functional feeding group approach has been widely used to describe the community structure of benthic invertebrates in relation to organic matter resources. Based on this functional framework, positive interactions between feeding groups (especially shredders and collector‐gatherers) were postulated in the River Continuum Concept. However, relationships with organic matter have been poorly documented for invertebrates living in the hyporheic zone. 2. We hypothesised that the common subterranean amphipod Niphargus rhenorhodanensis would feed on fine particulate organic matter (FPOM), which is more abundant than coarse particulate organic matter (CPOM) in hyporheic habitats, and should be favoured by the occurrence of shredders that produce FPOM from CPOM. 3. We used laboratory experiments to quantify leaf litter processing by N. rhenorhodanensis and a common shredder, the surface amphipod Gammarus roeselii. We estimated rates of feeding and assimilation (using nitrogen stable isotopes) of the two species separately and together to reveal any potential shredder–collector facilitation between them. 4. Measured leaf litter mass loss showed that N. rhenorhodanensis did not act as a shredder, unlike G. roeselii. Organic matter dynamics and 15N/14N ratios in tissues of niphargids indicated that N. rhenorhodanensis was a collector‐gatherer feeding preferentially on FPOM. We also found a positive influence of the gammarid shredders on the assimilation rate of N. rhenorhodanensis, which fed on FPOM produced by the shredders, supporting the hypothesis of a positive interaction between surface shredders and hyporheic collector‐gatherers.  相似文献   

19.
1. We assessed the impacts of deforestation on the energy base of headwater food webs in seven headwater streams in the Upper Chattahoochee basin, GA, U.S.A where percentage forest in catchments ranged from 82 to 96%. We measured terrestrial organic matter standing crop and determined consumer (crayfish and insectivorous fish) dependence on terrestrial versus aquatic energy sources via gut content and stable isotope analyses. 2. Standing crop of coarse particulate organic matter (CPOM) declined with deforestation at large scales (i.e. catchment deforestation and riparian deforestation at the entire stream network scale). Terrestrial plant matter, the dominant component of crayfish guts, declined in crayfish guts with reductions in CPOM standing crop and with deforestation. 3. Crayfish and insectivorous fish δ13C showed enrichment trends with deforestation, indicating isotopic divergence from CPOM, the most 13C‐depleted basal resource, with reductions in catchment and riparian forest cover. Crayfish δ13C also exhibited enrichment with decreased instream CPOM standing crop. 4. A concentration‐dependent mixing model was used to calculate the relative dependence of crayfish and fish on terrestrial versus aquatic basal resources. Results suggested that both allochthonous CPOM and autochthonous production were important basal resources. Consumer dependence on CPOM decreased with reductions in canopy cover. 5. Our data suggest the importance of forest cover to headwater food webs at multiple scales, and that relatively low levels of riparian deforestation along headwater streams can lead to reductions in stream food web dependence on terrestrial subsidies.  相似文献   

20.
Dryland rivers associated with arid and semi-arid land areas offer an opportunity to explore food web concepts and models of energy sources in systems that experience unpredictable flooding and long dry spells. This study investigated the sources of energy supporting three species of fish feeding at different trophic levels within floodplain lagoons of the Macintyre River in the headwaters of the Murray-Darling river system, Australia. Stable isotope analyses revealed that fish consumers derived, on average, 46.9% of their biomass from zooplankton, 38.1% from Coarse Particulate Organic Matter (CPOM) and 24.0% from algae. Ambassis agassizii derived on average 57.6% of its biomass carbon from zooplankton and 20.4–27.8% from algae or CPOM. Leiopotherapon unicolor derived most of its carbon from zooplankton and CPOM (38.3–39.5%), with relatively high contributions from algae compared to the other species (33.3%). An average of 48.4% of the biomass of Nematalosa erebi was derived from zooplankton, with CPOM contributing another 38.1%. Zooplankton was the most important source of organic carbon supporting all three fish species in floodplain lagoons. Phytoplankton, and possibly, particulate organic matter in the seston, are the most likely energy sources for the planktonic suspension feeders (zooplankton) and, consequently, the fish that feed on them. These results indicate a stronger dependence of consumers on autochthonous sources and on locally produced organic matter from the riparian zone (i.e., the Riverine Productivity Model), than on other resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号