首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously, we reported that purinergic ionotropic P2X7 receptors negatively regulate neurite formation in Neuro-2a (N2a) mouse neuroblastoma cells through a Ca(2+)/calmodulin-dependent kinase II-related mechanism. In the present study we used this cell line to investigate a parallel though faster P2X7 receptor-mediated signaling pathway, namely Ca(2+)-regulated exocytosis. Selective activation of P2X7 receptors evoked exocytosis as assayed by high resolution membrane capacitance measurements. Using dual-wavelength total internal reflection microscopy, we have observed both the increase in near-membrane Ca(2+) concentration and the exocytosis of fluorescently labeled vesicles in response to P2X7 receptor stimulation. Moreover, activation of P2X7 receptors also affects vesicle motion in the vertical and horizontal directions, thus, involving this receptor type in the control of early steps (docking and priming) of the secretory pathway. Immunocytochemical and RT-PCR experiments evidenced that N2a cells express the three neuronal SNAREs as well as vesicular nucleotide and monoamine (VMAT-1 and VMAT-2) transporters. Biochemical measurements indicated that ionomycin induced a significant release of ATP from N2a cells. Finally, P2X7 receptor stimulation and ionomycin increased the incidence of small transient inward currents, reminiscent of postsynaptic quantal events observed at synapses. Small transient inward currents were dependent on extracellular Ca(2+) and were abolished by Brilliant Blue G, suggesting they were mediated by P2X7 receptors. Altogether, these results suggest the existence of a positive feedback mechanism mediated by P2X7 receptor-stimulated exocytotic release of ATP that would act on P2X7 receptors on the same or neighbor cells to further stimulate its own release and negatively control N2a cell differentiation.  相似文献   

2.
ATP-mediated signaling has widespread actions in the nervous system from neurotransmission to regulation of proliferation. In addition, ATP is released during injury and associated to immune and inflammatory responses. Still, the potential of therapeutic intervention of purinergic signaling during pathological states is only now beginning to be explored because of the large number of purinergic receptors subtypes involved, the complex and often overlapping pharmacology and because ATP has effects on every major cell type present in the CNS. In this review, we will focus on a subclass of purinergic-ligand-gated ion channels, the P2X7 receptor, its pattern of expression and its function in the spinal cord where it is abundantly expressed. We will discuss the mechanisms for P2X7R actions and the potential that manipulating the P2X7R signaling pathway may have for therapeutic intervention in pathological events, specifically in the spinal cord.  相似文献   

3.
Extracellular nucleotides act as paracrine regulators of cellular signaling and metabolic pathways. Adenosine polyphosphate (adenosine triphosphate (ATP) and adenosine diphosphate (ADP)) release and metabolism by human hepatic carcinoma cells was therefore evaluated. Hepatic cells maintain static nanomolar concentrations of extracellular ATP and ADP levels until stress or nutrient deprivation stimulates a rapid burst of nucleotide release. Reducing the levels of media serum or glucose has no effect on ATP levels, but stimulates ADP release by up to 10-fold. Extracellular ADP is then metabolized or degraded and media ADP levels fall to basal levels within 2–4 h. Nucleotide release from hepatic cells is stimulated by the Ca2+ ionophore, ionomycin, and by the P2 receptor agonist, 2′3′-O-(4-benzoyl-benzoyl)-adenosine 5′-triphosphate (BzATP). Ionomycin (10 μM) has a minimal effect on ATP release, but doubles media ADP levels at 5 min. In contrast, BzATP (10–100 μM) increases both ATP and ADP levels by over 100-fold at 5 min. Ion channel purinergic receptor P2X7 and P2X4 gene silencing with small interference RNA (siRNA) and treatment with the P2X inhibitor, A438079 (100 μM), decrease ADP release from hepatic cells, but have no effect on ATP. P2X inhibitors and siRNA have no effect on BzATP-stimulated nucleotide release. ADP release from human hepatic carcinoma cells is therefore regulated by P2X receptors and intracellular Ca2+ levels. Extracellular ADP levels increase as a consequence of a cellular stress response resulting from serum or glucose deprivation.

Electronic supplementary material

The online version of this article (doi:10.1007/s11302-014-9419-2) contains supplementary material, which is available to authorized users.  相似文献   

4.
5.
It has been reported that in human neutrophils, external ATP activates plasma membrane purinergic P2X7 receptors (P2X7R) to elicit Ca2+ entry, production of reactive oxygen species (ROS), processing and release of pro-inflammatory cytokines, shedding of adhesion molecules and uptake of large molecules. However, the expression of P2X7R at the plasma membrane of neutrophils has also been questioned since these putative responses are not always reproduced. In this work, we used electrophysiological recordings to measure functional responses associated with the activation of membrane receptors, spectrofluorometric measurements of ROS production and ethidium bromide uptake to asses coupling of P2X7R activation to downstream effectors, immune-labelling of P2X7R using a fluorescein isothiocyanate-conjugated antibody to detect the receptors at the plasma membrane, RT-PCR to determine mRNA expression of P2X7R and Western blot to determine protein expression in neutrophils and HL-60 cells. None of these assays reported the presence of P2X7R in the plasma membrane of neutrophils and non-differentiated or differentiated HL-60 cells—a model cell for human neutrophils. We concluded that P2X7R are not present at plasma membrane of human neutrophils and that the putative physiological responses triggered by external ATP should be reconsidered.  相似文献   

6.
Purinergic Signalling - The P2X receptor 7 (P2X7R) is a plasma membrane receptor sensing extracellular ATP associated with a wide variety of cellular functions. It is most commonly expressed on...  相似文献   

7.
Excitatory ATP responses in rat cultured thoracolumbar sympathetic neurones are mediated by somatic P2X(2) receptors. The present study investigated a possible role of axonal P2X(2) as well as P2X(7) receptors on the same preparation. Confocal laser scanning microscopy demonstrated P2X(2) and P2X(7) immunoreactivity along the axons as well as P2X(7) immunoreactivity surrounding the cell nuclei. P2X(7) mRNA expression was detected in individual neurones using a single-cell RT-PCR approach. Adenosine triphosphate (ATP) caused a significant increase in axonal Ca(2+) concentration which was dependent on external Ca(2+) but insensitive to depletion of the cellular Ca(2+) pools by cyclopiazonic acid. Pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate (PPADS; 30 micro m) virtually abolished the ATP response, whereas brilliant blue G (0.1 micro m), a selective P2X(7) receptor antagonist, had no effect. Dibenzoyl-ATP (BzATP; 100 micro m) induced a much smaller increase in axonal [Ca(2+)] concentration than ATP at equimolar concentrations. The response to BzATP was distinctly reduced by PPADS but not by brilliant blue G. The overall pharmacological profile of the axonal P2X receptors resembled closely that of the somatic P2X(2) receptors. In conclusion, the present data suggest the occurrence of axonal excitatory P2X(2) receptors in thoracolumbar sympathetic neurones. However, the functional significance of axonal and (peri)-nuclear P2X(7) receptors has still to be proven.  相似文献   

8.
ATP acts on cellular membranes by interacting with P2X (ionotropic) and P2Y (metabotropic) receptors. Seven homomeric P2X receptors (P2X1–P2X7) and seven heteromeric receptors (P2X1/2, P2X1/4, P2X1/5, P2X2/3, P2X2/6, P2X4/6, P2X4/7) have been described. ATP treatment of Leydig cells leads to an increase in [Ca2+]i and testosterone secretion, supporting the hypothesis that Ca2+ signaling through purinergic receptors contributes to the process of testosterone secretion in these cells. Mouse Leydig cells have P2X receptors with a pharmacological and biophysical profile resembling P2X2. In this work, we describe the presence of several P2X receptor subunits in mouse Leydig cells. Western blot experiments showed the presence of P2X2, P2X4, P2X6, and P2X7 subunits. These results were confirmed by immunofluorescence. Functional results support the hypothesis that heteromeric receptors are present in these cells since 0.5 μM ivermectin induced an increase (131.2 ± 5.9%) and 3 μM ivermectin a decrease (64.2 ± 4.8%) in the whole-cell currents evoked by ATP. These results indicate the presence of functional P2X4 subunits. P2X7 receptors were also present, but they were non-functional under the present conditions because dye uptake experiments with Lucifer yellow and ethidium bromide were negative. We conclude that a heteromeric channel, possibly P2X2/4/6, is present in Leydig cells, but with an electrophysiological and pharmacological phenotype characteristic of the P2X2 subunit.  相似文献   

9.
Adenosine triphosphate (ATP) is an ancient and fundamentally important biological molecule involved in both intracellular and extracellular activities. P2X ionotropic and P2Y metabotropic receptors have been cloned and characterised in mammals. ATP plays a central physiological role as a transmitter molecule in processes including the sensation of pain, taste, breathing and inflammation via the activation of P2X receptors. P2X receptors are structurally distinct from glutamate and Cys-loop/nicotinic receptors and form the third major class of ligand-gated ion channel. Yet, despite the importance of P2X receptors, both as physiological mediators and therapeutic targets, the evolutionary origins and phylogenicity of ATP signalling via P2X receptors remain unclear.  相似文献   

10.
After the primary structure of P2X receptors had been identified, their function had to be characterized on the molecular level. Since these ligand-gated ion channels become activated very quickly after binding of ATP, methods with adequate time resolution have to be applied to investigate the early events induced by the agonist. Single-channel recordings were performed to describe conformational changes on P2X2, P2X4, and P2X7 receptors induced by ATP and also by allosteric receptor modifiers. The main results of these studies and the models of P2X receptor kinetics derived from these observations are reviewed here. The investigation of purinoceptors by means of the patch clamp technique following site-directed mutagenesis will probably reveal more details of P2X receptor function at the molecular level.  相似文献   

11.
Stimulation of P2X receptors by ATP in vascular smooth muscle cells (VSMCs) is proposed to mediate vascular tone. However, understanding of P2X receptor-mediated actions in human blood vessels is limited, and therefore, the current work investigates the role of P2X receptors in freshly isolated small human gastro-omental arteries (HGOAs). Expression of P2X1 and P2X4 receptor subunit messenger RNA (mRNA) and protein was identified in individual HGOA VSMCs using RT-PCR and immunofluorescent analysis and using Western blot in multi-cellular preparations. ATP of 10 μmol/l and αβ-meATP of 10 μmol/l, a selective P2X receptor agonist, evoked robust increases in [Ca2+]i in fluo-3-loaded HGOA VSMCs. Pre-incubation with 1 μmol/l NF279, a selective P2X receptor antagonist, reduced the amplitude of αβ-meATP-induced increase in [Ca2+]i by about 70 %. ATP of 10 μmol/l and αβ-meATP of 10 μmol/l produced similar contractile responses in segments of HGOA, and these contractions were greatly reduced by 2 μmol/l NF449, a selective P2X receptor inhibitor. These data suggest that VSMCs from HGOA express P2X1 and P2X4 receptor subunits with homomeric P2X1 receptors likely serving as the predominant target for extracellular ATP.

Electronic supplementary material

The online version of this article (doi:10.1007/s11302-014-9415-6) contains supplementary material, which is available to authorized users.  相似文献   

12.
Diabetic neuropathic pain (DNP) is highly common in diabetes patients. P2X receptors play critical roles in pain sensitization. We previously showed that elevated P2X3 expression in dorsal root ganglion (DRG) contributes to DNP. However, the role of other P2X receptors in DNP is unclear. Here, we established the DNP model using a single high-dose streptozotocin (STZ) injection and investigated the expression of P2X genes in the DRG. Our data revealed elevated P2X2, P2X4, and P2X7 mRNA levels in DRG of DNP rats. The protein levels of P2X4 and P2X7 in DNP rats increased, but the P2X2 did not change significantly. To study the role of P2X4 and P2X7 in diabetes-induced hyperalgesia, we treated the DNP rats with TNP-ATP (2’,3’-O-(2,4,6-trinitrophenyl)-adenosine 5’-triphosphate), a nonspecific P2X1–7 antagonist, and found that TNP-ATP alleviated thermal hyperalgesia in DNP rats. 2 Hz electroacupuncture is analgesic against DNP and could downregulate P2X4 and P2X7 expression in DRG. Our findings indicate that P2X4 and P2X7 in L4–L6 DRGs contribute to diabetes-induced hyperalgesia, and that EA reduces thermal hyperalgesia and the expression of P2X4 and P2X7.  相似文献   

13.
Neuroinflammation limits tissue damage in response to pathogens or injury and promotes repair. There are two stages of inflammation, initiation and resolution. P2X receptors are gaining attention in relation to immunology and inflammation. The P2X7 receptor in particular appears to be an essential immunomodulatory receptor, although P2X1 and P2X4 receptors also appear to be involved. ATP released from damaged or infected cells causes inflammation by release of inflammatory cytokines via P2X7 receptors and acts as a danger signal by occupying upregulated P2X receptors on immune cells to increase immune responses. The purinergic involvement in inflammation is being explored for the development of novel therapeutic strategies.  相似文献   

14.
15.
Effective therapeutic measures against the development of brain edema, a life-threatening complication of cerebral ischemia, are necessary to improve the functional outcome for the patient. Here, we identified a beneficial role of purinergic receptor P2X7 activation in acute ischemic stroke. Involvement of P2X7 in the development of neurological deficits, infarct size, brain edema, and glial responses after ischemic cerebral infarction has been analyzed. Neurologic evaluation, magnetic resonance imaging, and immunofluorescence assays were used to characterize the receptor’s effect on the disease progress during 72 h after transient middle cerebral artery occlusion (tMCAO). Sham-operated animals were included in all experiments for control purposes. We found P2X7-deficient mice to develop a more prominent brain edema with a trend towards more severe neurological deficits 24 h after tMCAO. Infarct sizes, T2 times, and apparent diffusion coefficients did not differ significantly between wild-type and P2X7?/? animals. Our results show a characteristic spatial distribution of reactive glia cells with strongly attenuated microglia activation in P2X7?/? mice 72 h after tMCAO. Our data indicate that P2X7 exerts a role in limiting the early edema formation, possibly by modulating glial responses, and supports later microglia activation.  相似文献   

16.
Microglia, glial cells with an immunocompetent role in the CNS, react to stimuli from the surrounding environment with alterations of their phenotypic response. Amongst other activating signals, the endotoxin lipopolysaccharide (LPS) is widely used as a tool to mimic bacterial infection in the CNS. LPS-activated microglia undergo dramatic changes in cell morphology/activity; in particular, they stop proliferating and differentiate from resting to effector cells. Activated microglia also show modifications of purinoreceptor signalling with a significant decrease in P2X(7) expression. In this study, we demonstrate that the down-regulation of the P2X(7) receptor in activated microglia may play an important role in the antiproliferative effect of LPS. Indeed, chronic blockade of the P2X(7) receptor by antagonists (oxidized ATP, KN62 and Brilliant Blue G), or treatment with the ATP-hydrolase apyrase, severely decreases microglial proliferation, down-regulation of P2X(7) receptor expression by small RNA interference (siRNA) decreases cell proliferation, and the proliferation of P2X(7)-deficient N9 clones and primary microglia, in which P2X(7) expression is down-regulated by siRNA, is unaffected by either LPS or P2X(7) antagonists. Furthermore, flow cytometric analysis indicates that exposure to oxidized ATP or treatment with LPS reversibly decreases cell cycle progression, without increasing the percentage of apoptotic cells. Overall, our data show that the P2X(7) receptor plays an important role in controlling microglial proliferation by supporting cell cycle progression.  相似文献   

17.
Human P2X2 receptors (hP2X2) are strongly inhibited by zinc over the range of 2–100 μm, whereas rat P2X2 receptors (rP2X2) are strongly potentiated over the same range, and then inhibited by zinc over 100 μm. However, the biological role of zinc modulation is unknown in either species. To identify candidate regions controlling zinc inhibition in hP2X2 a homology model based on the crystal structure of zebrafish P2X4.1 was made. In this model, His-204 and His-209 of one subunit were near His-330 of the adjacent subunit. Cross-linking studies confirmed that these residues are within 8 Å of each other. Simultaneous mutation of these three histidines to alanines decreased the zinc potency of hP2X2 nearly 100-fold. In rP2X2, one of these histidines is replaced by a lysine, and in a background in which zinc potentiation was eliminated, mutation of Lys-197 to histidine converted rP2X2 from low potency to high potency inhibition. We explored whether the zinc-binding site lies within the vestibules running down the central axis of the receptor. Elimination of all negatively charged residues from the upper vestibule had no effect on zinc inhibition. In contrast, mutation of several residues in the hP2X2 middle vestibule resulted in dramatic changes in the potency of zinc inhibition. In particular, the zinc potency of P206C could be reversibly shifted from extremely high (∼10 nm) to very low (>100 μm) by binding and unbinding MTSET. These results suggest that the cluster of histidines at the subunit interface controls access of zinc to its binding site.  相似文献   

18.
19.
The presence of P2X7 on erythroid cells is well established, but its physiological role remains unclear. The current study aimed to determine if P2X7 activation induces reactive oxygen species (ROS) formation in murine erythroleukaemia (MEL) cells, a commonly used erythroid cell line. ATP induced ROS formation in a time- and concentration-dependent fashion. The most potent P2X7 agonist, 2′(3′)-O-(4-benzoylbenzoyl)ATP, but not UTP or ADP, also induced ROS formation. The P2X7 antagonist, A-438079, impaired ATP-induced ROS formation. The ROS scavenger, N-acetyl-l-cysteine, and the ROS inhibitor, diphenyleneiodonium, also impaired P2X7-induced ROS formation, but use of enzyme-specific ROS inhibitors failed to identify the intracellular source of P2X7-induced ROS formation. P2X7-induced ROS formation was impaired partly by physiological concentrations of Ca2+ and Mg2+ and almost completely in cells in N-methyl-d-glucamine chloride medium. The p38 MAPK inhibitors SB202190 and SB203580, and the caspase inhibitor Z-VAD-FMK, but not N-acetyl-l-cysteine, impaired P2X7-induced MEL cell apoptosis. ATP also stimulated p38 MAPK and caspase activation, both of which could be impaired by A-438079. In conclusion, these findings indicate that P2X7 activation induces ROS formation in MEL cells and that this process may be involved in events downstream of P2X7 activation, other than apoptosis, in erythroid cells.  相似文献   

20.
Although originally cloned from rat brain, the P2X7 receptor has only recently been localized in neurones, and functional responses mediated by these neuronal P2X7 receptors (P2X7 R) are largely unknown. Here we studied the effect of P2X7 R activation on the release of neurotransmitters from superfused rat hippocampal slices. ATP (1-30 mm) and other ATP analogues elicited concentration-dependent [3 H]GABA outflow, with the following rank order of potency: benzoylbenzoylATP (BzATP) > ATP > ADP. PPADS, the non-selective P2-receptor antagonist (3-30 microm), Brilliant blue G (1-100 nm) the P2X7 -selective antagonist and Zn2+ (0.1-30 microm) inhibited, whereas lack of Mg2+ potentiated the response by ATP. In situ hybridization revealed that P2X7 R mRNA is expressed in the neurones of the cell body layers in the hippocampus. P2X7 R immunoreactivity was found in excitatory synaptic terminals in CA1 and CA3 region targeting the dendrites of pyramidal cells and parvalbumin labelled structures. ATP (3-30 microm) and BzATP (0.6-6 microm) elicited concentration-dependent [14 C]glutamate efflux, and blockade of the kainate receptor-mediated transmission by CNQX (10-100 microm) and gadolinium (100 microm), decreased ATP evoked [3 H]GABA efflux. The Na+ channel blocker TTX (1 microm), low temperature (12 degrees C), and the GABA uptake blocker nipecotic acid (1 mm) prevented ATP-induced [3 H]GABA efflux. Brilliant blue G and PPADS also reduced electrical field stimulation-induced [3 H]GABA efflux. In conclusion, P2X7 Rs are localized to the excitatory terminals in the hippocampus, and their activation regulates the release of glutamate and GABA from themselves and from their target cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号