首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD40 ligand blockade induces CD4+ T cell tolerance and linked suppression.   总被引:15,自引:0,他引:15  
The CD40-CD40 ligand (CD40L) interaction is a key event in the initiation of an adaptive immune response, and as such the therapeutic value of CD40L blockade has been studied in many experimental models of tissue transplantation and autoimmune disease. In rodents, transplantation of allogeneic tissues under the cover of anti-CD40L Abs has resulted in prolonged graft survival but not tolerance. In this report, we show that failure to induce tolerance probably results from the inability of anti-CD40L Abs to prevent graft rejection elicited by the CD8+ T cell subset. When the CD8+ T cell population is controlled independently, using anti-CD8 Abs, then tolerance is possible. Transplantation tolerance induced by anti-CD4 mAbs can often be associated with dominant regulation, manifested as infectious tolerance and linked suppression, both of which are mediated by CD4+ T cells. We show here that CD4+ T cells rendered tolerant using anti-CD40L therapy exhibit the same regulatory property of linked suppression, as demonstrated by their ability to accept grafts expressing third party Ags only if they are expressed in conjunction with the tolerated Ags. This observation of linked suppression reveals a hitherto undocumented consequence of CD40L blockade that suggests the tolerant state is maintained by a dominant regulatory mechanism. Our results suggest that, although anti-CD40L Abs are attractive clinical immunotherapeutic agents, additional therapies to control aggressive CD8+ T cell responses may be required.  相似文献   

2.
The immune tolerance to rat kidney allografts induced by a perioperative treatment with anti-CD28 Abs is associated with a severe unresponsiveness of peripheral blood cells to donor Ags. In this model, we identified an accumulation in the blood of CD3(-)class II(-)CD11b(+)CD80/86(+) plastic-adherent cells that additionally expressed CD172a as well as other myeloid markers. These cells were able to inhibit proliferation, but not activation, of effector T cells and to induce apoptosis in a contact-dependent manner. Their suppressive action was found to be under the control of inducible NO synthase, an enzyme also up-regulated in tolerated allografts. Based on these features, these cells can be defined as myeloid-derived suppressor cells (MDSC). Interestingly, CD4(+)CD25(high)FoxP3(+) regulatory T cells were insensitive in vitro to MDSC-mediated suppression. Although the adoptive transfer of MDSC failed to induce kidney allograft tolerance in recently transplanted recipients, the maintenance of tolerance after administration of anti-CD28 Abs was found to be dependent on the action of inducible NO synthase. These results suggest that increased numbers of MDSC can inhibit alloreactive T cell proliferation in vivo and that these cells may participate in the NO-dependent maintenance phase of tolerance.  相似文献   

3.
Selective interference with the CD45RB isoform by mAb (anti-CD45RB) reliably induces donor-specific tolerance. Although previous studies suggest participation of regulatory T cells, a mechanistic understanding of anti-CD45RB-induced tolerance is lacking. We report herein the unexpected finding that tolerance induced by this agent is not established in B cell-deficient mice but can be recovered by preemptive B lymphocyte transfer to B cell-deficient hosts. Using B cells from genetically modified donors to reconstitute B cell-deficient recipients, we evaluate the role of B lymphocyte-expressed CD45RB, T cell costimulatory molecules, and the production of Abs in this novel tolerance mechanism. Our data document an Ab-induced tolerance regimen that is uniquely B lymphocyte-dependent and suggest mechanistic contributions to tolerance development from the B cell compartment through interactions with T cells.  相似文献   

4.
Nondepleting anti-CD4 Abs have been used in vivo to induce Ag-specific immunological tolerance in Th1 responses, including tissue allograft rejection and autoimmune diabetes. To examine whether this Ab (YTS177.9) acts by provoking a Th2 shift, we tested the effect in a mouse model of allergic lung inflammation. Interestingly, nondepleting anti-CD4 treatment induces tolerance to allergens as well, especially when given during initial priming. In vitro studies indicate that the effect of the Ab is independent of CD4 coreceptor function, as Ab treatment also inhibits proliferation and induces a persistent anergy in naive CD4 T cells stimulated by anti-CD3/CD28. Moreover, the Ab stimulated a distinct pattern of tyrosine phosphorylation in T cells even in the absence of TCR triggering, suggesting that signaling through CD4 alone induces significant physiological changes in T cell function. These results show that tolerance induced by anti-CD4 triggering is not a simple shift in Th1/Th2 effector function or depletion of Ag-specific cells, but may instead induce a persistent clonal anergy capable of blocking subsequent immunity.  相似文献   

5.
CD154 and LFA-1 (CD11a) represent conceptually distinct pathways of receptor/ligand interactions (costimulation and adhesion/homing, respectively) that have been effectively targeted to induce long-term allograft acceptance and tolerance. In the current study, we determined the relative efficacy and nature of tolerance induced by mAbs specific for these pathways. In vitro analysis indicated that simultaneous targeting of CD154 and LFA-1 resulted in profound inhibition of alloreactivity, suggesting that combined anti-CD154/anti-LFA-1 therapy could be highly effective in vivo. Thus, we evaluated combining mAb therapies targeting CD154 and LFA-1 for inducing transplantation tolerance to pancreatic islet allografts. Monotherapy with either anti-CD154 or anti-LFA-1 was partially effective for inducing long-term allograft survival, whereas the combination resulted in uniform allograft acceptance in high-responder C57BL/6 recipients. This combined therapy was not lymphocyte depleting and did not require the long-term deletion of donor-reactive T lymphocytes to maintain allograft survival. Importantly, combined anti-CD154/anti-LFA therapy uniquely resulted in "dominant" transplantation tolerance. Therefore, simultaneous perturbation of CD154 and LFA-1 molecules can result in profound tolerance induction not accomplished through individual monotherapy approaches. Furthermore, results show that such regulatory tolerance can coexist with the presence of robust anti-donor reactivity, suggesting that active tolerance does not require a corresponding deletion of donor-reactive T cells. Interestingly, although the induction of this regulatory state was highly CD4 dependent, the adoptive transfer of tolerance was less CD4 dependent in vivo.  相似文献   

6.
CD4-mediated signals induce T cell dysfunction in vivo.   总被引:1,自引:0,他引:1  
Triggering of CD4 coreceptors on both human and murine T cells can suppress TCR/CD3-induced secretion of IL-2. We show here that pretreatment of murine CD4+ T cells with the CD4-specific mAb YTS177 inhibits the CD3-mediated activation of the IL-2 promoter factors NF-AT and AP-1. Ligation of CD4 molecules on T cells leads to a transient stimulation of extracellular signal-regulated kinase (Erk) 2, but not c-Jun N-terminal kinase (JNK) activity. Pretreatment with anti-CD4 mAb impaired anti-CD3-induced Erk2 activation. Costimulation with anti-CD28 overcame the inhibitory effect of anti-CD4 Abs, by induction of JNK activation. The in vivo relevance of these studies was demonstrated by the observation that CD4+ T cells from BALB/c mice injected with nondepleting anti-CD4 mAb were inhibited in their ability to respond to OVA Ag-induced proliferation and IL-2 secretion. Interestingly, in vivo stimulation with anti-CD28 mAb restored IL-2 secretion. Furthermore, animals pretreated with anti-CD4 elicited enhanced IL-4 secretion induced by OVA and CD28. These observations suggest that CD4-specific Abs can inhibit T cell activation by interfering with signal 1 transduced through the TCR, but potentiate those delivered through the costimulatory molecule CD28. These studies have relevance to understanding the mechanism of tolerance induced by nondepleting anti-CD4 mAb used in animal models for allograft studies, autoimmune pathologies, and for immunosuppressive therapies in humans.  相似文献   

7.
Injection of agonistic anti-CD40 Abs into mice has been shown to amplify weak CD8 T cell responses to poorly immunogenic compounds and to convert T cell tolerance to T cell priming. In this study we demonstrate that anti-CD40 treatment of C57BL/6 mice, without Ag delivery, led to a marked increase in the number of memory phenotype CD4 and CD8 T cells. Adoptive transfer experiments using CD40-deficient hosts further revealed that the proliferative response of memory T cells, induced by systemic CD40 signaling, was dependent on CD40 expression of host APCs. CD40 ligation in vivo induced vigorous cell division of both memory phenotype and bona fide virus-specific memory CD8 T cells in a partially IL-15-dependent manner. However, only memory phenotype, but not Ag-experienced memory CD8 T cells increased in cell number after anti-CD40 treatment in vivo. Taken together our data show that activation of APC via CD40 induces a marked bystander proliferation of memory phenotype T cells. In addition, we demonstrate that bona fide Ag-experienced memory CD8 T cells respond differently to anti-CD40-induced signals than memory phenotype CD8 T cells.  相似文献   

8.
Transplantation tolerance is facilitated by activation-induced apoptosis of peripheral T cells triggered by specific AG: Abs specific for the nonpolymorphic CD3 component of the TCR complex bind to APCs through Fc-FcR interactions, mimic MHC-peptide, and activate polyclonal T cells. In contrast, F(ab')(2) of anti-CD3epsilon Abs do not activate naive T cells but induce apoptosis of Ag-activated, cycling T cells. Here, we report that treatment with anti-CD3epsilon F(ab')(2) can selectively induce apoptosis of donor T cells that recognize a recipient alloantigen, thereby preventing graft-vs-host disease initiated by a TCR-transgenic T cell population. The selective elimination of Ag-activated T cells by non-FcR-binding anti-CD3epsilon Abs could serve as an ideal strategy to prevent graft-vs-host disease and allograft rejection or to treat autoimmune disorders.  相似文献   

9.
Transplantation tolerance can be induced in mice by grafting under the cover of nondepleting CD4 plus CD8 or CD154 mAbs. This tolerance is donor Ag specific and depends on a population of CD4(+) regulatory T cells that, as yet, remain poorly defined in terms of their specificity, origin, and phenotype. Blocking of the Ag-specific response in vitro with an anti-CD4 mAb allowed T cells from monospecific female TCR-transgenic mice against the male Ag Dby, presented by H-2E(k), to express high levels of foxP3 mRNA. foxP3 induction was dependent on TGF-beta. The nondepleting anti-CD4 mAb was also able to induce tolerance in vivo in such monospecific TCR-transgenic mice, and this too was dependent on TGF-beta. As in conventional mice, acquired tolerance was dominant, such that naive monospecific T cells were not able to override tolerance. Splenic T cells from tolerant mice proliferated normally in response to Ag, and secreted IFN-gamma and some IL-4, similar to control mice undergoing primary or secondary graft rejection. High levels of foxP3 mRNA, and glucocorticoid-induced TNFR superfamily member 18 (GITR)(+) CD25(+) T cells were found within the tolerated skin grafts of long-term tolerant recipients. These data suggest that regulatory T cells maintaining transplantation tolerance after CD4 Ab blockade can be induced de novo through a TGF-beta-dependent mechanism, and come to accumulate in tolerated grafts.  相似文献   

10.
Alloantibodies can play a key role in acute and chronic allograft rejection. However, relatively little is known of factors that control B cell responses following allograft tolerance induction. Using 3-83 Igi mice expressing an alloreactive BCR, we recently reported that allograft tolerance was associated with the sustained deletion of the alloreactive B cells at the mature, but not the immature, stage. We have now investigated the basis for the long-term control of alloreactive B cell responses in a non-BCR-transgenic model of C57BL/6 cardiac transplantation into BALB/c recipients treated with anti-CD154 and transfusion of donor-specific spleen cells. We demonstrate that the long-term production of alloreactive Abs by alloreactive B cells is actively regulated in tolerant BALB/c mice through the dominant suppression of T cell help. Deletion of CD25(+) cells resulted in a loss of tolerance and an acquisition of the ability to acutely reject allografts. In contrast, the restoration of alloantibody responses required both the deletion of CD25(+) cells and the reconstitution of alloreactive B cells. Collectively, these data suggest that alloreactive B cell responses in this model of tolerance are controlled by dominant suppression of T cell help as well as the deletion of alloreactive B cells in the periphery.  相似文献   

11.
CD8(+) T cells recognize immunogenic peptides presented at the cell surface bound to MHCI molecules. Ag recognition involves the binding of both TCR and CD8 coreceptor to the same peptide-MHCI (pMHCI) ligand. Specificity is determined by the TCR, whereas CD8 mediates effects on Ag sensitivity. Anti-CD8 Abs have been used extensively to examine the role of CD8 in CD8(+) T cell activation. However, as previous studies have yielded conflicting results, it is unclear from the literature whether anti-CD8 Abs per se are capable of inducing effector function. In this article, we report on the ability of seven monoclonal anti-human CD8 Abs to activate six human CD8(+) T cell clones with a total of five different specificities. Six of seven anti-human CD8 Abs tested did not activate CD8(+) T cells. In contrast, one anti-human CD8 Ab, OKT8, induced effector function in all CD8(+) T cells examined. Moreover, OKT8 was found to enhance TCR/pMHCI on-rates and, as a consequence, could be used to improve pMHCI tetramer staining and the visualization of Ag-specific CD8(+) T cells. The anti-mouse CD8 Abs, CT-CD8a and CT-CD8b, also activated CD8(+) T cells despite opposing effects on pMHCI tetramer staining. The observed heterogeneity in the ability of anti-CD8 Abs to trigger T cell effector function provides an explanation for the apparent incongruity observed in previous studies and should be taken into consideration when interpreting results generated with these reagents. Furthermore, the ability of Ab-mediated CD8 engagement to deliver an activation signal underscores the importance of CD8 in CD8(+) T cell signaling.  相似文献   

12.
Selection in vivo of potent mAbs to human CD4 useful for immunotherapy, e.g., for the induction of immunological tolerance, is restricted for ethical reasons. We therefore used multiple transgenic mice that lack murine CD4, but express human CD4 specifically on Th cells, and HLA-DR3 as its natural counterligand (CD4/DR3 mice). The injection of CD4/DR3 mice with anti-human CD4 (mAb Max.16H5) before immunization with tetanus toxoid (TT, day 0) totally blocked the formation of specific Abs. This state of unresponsiveness persisted a subsequent boost again performed in the presence of anti-human CD4. When these mice were left untreated for at least 40 days, and were then re-exposed with TT, but in the absence of anti-human CD4, they consistently failed to induce specific Abs (long-term unresponsiveness). Exposure to second party Ags (hen egg lysozyme, human acetylcholine receptor) induced specific Abs comparable with control mice, demonstrating that the anti-CD4-induced unresponsiveness was Ag specific (immunological tolerance). Importantly, the concurrent injection of TT and anti-human CD4 at day 0, followed by another two anti-CD4 treatments, also led to tolerant animals, indicating that tolerance was inducible at the same day as the Ag exposure is provided. We finally demonstrate a limited ability of spleen cells to respond to TT in vitro, indicating that T cells are essentially involved in the maintenance of TT-specific tolerance. These data show for the first time that the human CD4 coreceptor mediates tolerance-inducing signals when triggered by an appropriate ligand in vivo.  相似文献   

13.
Previous work has shown that stimulation of APCs via CD40 strongly influences the outcome of a CD8 T cell response. In this study, we examined the effect of CD40 ligation on peripheral tolerance induction of self-reactive CD8 T cells in an adoptive transfer model. Naive CD8 T cells from TCR-transgenic (tg) mice specific for the gp33 epitope of lymphocytic choriomeningitis virus were tolerized when transferred into H8-tg mice expressing the gp33 epitope under the control of a MHC class I promoter. However, if the H8 recipient mice were treated with agonistic anti-CD40 Abs, TCR-tg cells vigorously proliferated, and induced destruction of lymphoid organs and hepatitis. Break of peripheral tolerance induction was B cell independent and did not require CD28/B7 interactions. These findings provide further in vivo evidence for the crucial role of the activation state of the APC in peripheral tolerance induction and suggest the need for caution in systemically activating APC via CD40 ligation in the presence of self-reactive T cells.  相似文献   

14.
Although it has been shown that CD4(+)CD25(+) regulatory T cells (T(reg)) contribute to long-term graft acceptance, their impact on the effector compartment and the mechanism by which they exert suppression in vivo remain unresolved. Using a CD4(+) TCR transgenic model for graft tolerance, we have unveiled the independent contributions of anergy and active suppression to the fate of immune and tolerant alloreactive T cells in vivo. First, it is shown that anti-CD154-induced tolerance resulted in the abortive expansion of the alloreactive, effector T cell pool. Second, commensurate with reduced expansion, there was a loss of cytokine production, activation marker expression, and absence of memory T cell markers. All these parameters defined the tolerant alloreactive T cells and correlated with the inability to mediate graft rejection. Third, the tolerant alloreactive T cell phenotype that is induced by CD154 was reversed by the in vivo depletion of T(reg). Reversal of the tolerant phenotype was followed by rapid rejection of the allograft. Fourth, in addition to T(reg) depletion, costimulation of the tolerant alloreactive T cells or activation of the APC compartment also reverted alloreactive T cell tolerance and restored an activated phenotype. Finally, it is shown that the suppression is long-lived, and in the absence of anti-CD154 and donor-specific transfusion, these T(reg) can chronically suppress effector cell responses, allowing long-lived graft acceptance.  相似文献   

15.
16.
Anergic T cells inhibit the antigen-presenting function of dendritic cells   总被引:19,自引:0,他引:19  
The phenomena of infectious tolerance and linked-suppression are well established, but the mechanisms involved are incompletely defined. Anergic T cells can inhibit responsive T cells in vitro and prolong skin allograft survival in vivo. In this study the mechanisms underlying these events were explored. Allospecific mouse T cell clones rendered unresponsive in vitro inhibited proliferation by responsive T cells specific for the same alloantigens. The inhibition required the presence of APC, in that the response to coimmobilized anti-CD3 and anti-CD28 Abs was not inhibited. Coculture of anergic T cells with bone marrow-derived dendritic cells (DC) led to profound inhibition of the ability of the DC to stimulate T cells with the same or a different specificity. After coculture with anergic T cells expression of MHC class II, CD80 and CD86 by DC were down-regulated. These effects did not appear to be due to a soluble factor in that inhibition was not seen in Transwell experiments, and was not reversed by addition of neutralizing anti-IL-4, anti-IL-10, and anti-TGF-beta Abs. Taken together, these data suggest that anergic T cells function as suppressor cells by inhibiting Ag presentation by DC via a cell contact-dependent mechanism.  相似文献   

17.
The primary effector cells of contact hypersensitivity (CHS) responses to dintrofluorobenzene (DNFB) are IFN-gamma-producing CD8(+) T cells, whereas CD4(+) T cells regulate the magnitude and duration of the response. The requirement for CD40-CD154 engagement during CD8(+) and CD4(+) T cell priming by hapten-presenting Langerhans cells (hpLC) is undefined and was tested in the current study. Similar CHS responses to DNFB were elicited in wild-type and CD154(-/-) animals. DNFB sensitization of CD154(-/-) mice primed IFN-gamma-producing CD8(+) T cells and IL-4-producing CD4(+) T cells. However, anti-CD154 mAb MR1 given during hapten sensitization inhibited hapten-specific CD8(+), but not CD4(+), T cell development and the CHS response to challenge. F(ab')(2) of MR1 failed to inhibit CD8(+) T cell development and the CHS response suggesting that the mechanism of inhibition is distinct from that of CD40-CD154 blockade. Furthermore, anti-CD154 mAb did not inhibit CD8(+) T cell development and CHS responses in mice depleted of CD4(+) T cells or in CD4(-/-) mice. During in vitro proliferation assays, hpLC from mice treated with anti-CD154 mAb during DNFB sensitization were less stimulatory for hapten-primed T cells than hpLC from either control mice or mice depleted of CD4(+) T cells before anti-CD154 mAb administration. These results demonstrate that development of IFN-gamma-producing CD8(+) T cells and the CHS response are not dependent on CD40-CD154 interactions. This study proposes a novel mechanism of anti-CD154 mAb-mediated inhibition of CD8(+) T cell development where anti-CD154 mAb acts indirectly through CD4(+) T cells to impair the ability of hpLC to prime CD8(+) T cells.  相似文献   

18.
Sensitization to donor Ags is an enormous problem in clinical transplantation. In an islet allograft model, presensitization of recipients through donor-specific transfusion (DST) 4 wk before transplantation results in accelerated rejection. We demonstrate that combined DST with anti-CD154 (CD40L) therapy not only prevents the deleterious presensitization produced by pretransplant DST in the islet allograft model, it also induces broad alloantigen-specific tolerance and permits subsequent engraftment of donor islet or cardiac grafts without further treatment. In addition, our data strongly indicate that CTLA4-negative T cell signals are required to achieve prolonged engraftment of skin allograft or tolerance to islet allograft in recipients treated with a combination of pretransplant DST and anti-CD154 mAb. We provide direct evidence that a CD28-independent CTLA4 signal delivers a strong negative signal to CD4+ T cells that can block alloimmune MLR responses. In this study immune deviation into a Th2 (IL-4) response was associated with, but did not insure, graft tolerance, as the inopportune timing of B7 blockade with CTLA4/Ig therapy prevented uniform tolerance but did not prevent Th2-type immune deviation. While CTLA4-negative signals are necessary for tolerance induction, Th1 to Th2 immune deviation cannot be sufficient for tolerance induction. Combined pretransplant DST with anti-CD154 mAb treatment may be attractive for clinical deployment, and strategies aimed to selectively block CD28 without interrupting CTLA4/B7 interaction might prove highly effective in the induction of tolerance.  相似文献   

19.
Activated B cells and T cells express CD154/CD40 ligand in vitro. The in vivo expression and function of B cell CD154 remain unclear and therefore were examined. Tonsillar B and T cells expressed CD154 at a similar density both in situ and immediately ex vivo, whereas a significantly higher percentage of the former expressed CD154. CD154-expressing B cells were most frequent in the CD38positiveIgD+ pre-germinal center (GC)/GC founder, CD38positive GC and CD38-IgD- memory populations, and were also found in the CD38-IgD+ naive and CD38brightIgD+ plasmablast subsets, but not in the CD38brightIgD- plasma cell subset. B cell expression of CD154 was induced by engaging surface Ig or CD40 by signals that predominantly involved activation of AP-1/NF-AT and NF-kappaB, respectively. The functional importance of CD154-mediated homotypic B cell interactions in vivo was indicated by the finding that mAb to CD154 inhibited differentiation of CD38positiveIgD- GC B cells to CD38-IgD- memory cells. In addition, mAb to CD154 inhibited proliferation induced by engaging sIg or CD40, indicating the role of up-regulation of this molecule in facilitating B cell responsiveness. Of note, CD154 itself not only functioned as a ligand but also as a direct signaling molecule as anti-CD154-conjugated Sepharose beads costimulated B cell responses induced by engaging surface Ig. These results indicate that CD154 is expressed by human B cells in vivo and plays an important role in mediating B cell responses.  相似文献   

20.
There is an increased risk of failure of engraftment following nonmyeloablative conditioning. Sensitization resulting from failed bone marrow transplantation (BMT) remains a major challenge for secondary BMT. Approaches to allow successful retransplantation would have significant benefits for BMT candidates living with chronic diseases. We used a mouse model to investigate the effect of preparative regimens at primary BMT on outcome for secondary BMT. We found that conditioning with TBI or recipient T cell lymphodepletion at primary BMT did not promote successful secondary BMT. In striking contrast, successful secondary BMT could be achieved in mice conditioned with anti-CD154 costimulatory molecule blockade at first BMT. Blockade of CD154 alone or combined with T cell depletion inhibits generation of the humoral immune response after primary BMT, as evidenced by abrogation of production of anti-donor Abs. The humoral barrier is dominant in sensitization resulting from failed BMT, because almost all CFSE-labeled donor cells were killed at 0.5 and 3 h in sensitized recipients in in vivo cytotoxicity assay, reflecting Ab-mediated cytotoxicity. CD154:CD40 costimulatory blockade used at primary BMT promotes allogeneic engraftment in secondary BMT after engraftment failure at first BMT. The prevention of generation of anti-donor Abs at primary BMT is critical for successful secondary BMT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号