首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C2 domains are conserved protein modules in many eukaryotic signaling proteins, including the protein kinase (PKCs). The C2 domains of classical PKCs bind to membranes in a Ca(2+)-dependent manner and thereby act as cellular Ca(2+) effectors. Recent findings suggest that the C2 domain of PKCalpha interacts specifically with phosphatidylinositols 4,5-bisphosphate (PtdIns(4,5)P(2)) through its lysine rich cluster, for which it shows higher affinity than for POPS. In this work, we compared the three C2 domains of classical PKCs. Isothermal titration calorimetry revealed that the C2 domains of PKCalpha and beta display a greater capacity to bind to PtdIns(4,5)P(2)-containing vesicles than the C2 domain of PKCgamma. Comparative studies using lipid vesicles containing both POPS and PtdIns(4,5)P(2) as ligands revealed that the domains behave as PtdIns(4,5)P(2)-binding modules rather than as POPS-binding modules, suggesting that the presence of the phosphoinositide in membranes increases the affinity of each domain. When the magnitude of PtdIns(4,5)P(2) binding was compared with that of other polyphosphate phosphatidylinositols, it was seen to be greater in both PKCbeta- and PKCgamma-C2 domains. The concentration of Ca(2+) required to bind to membranes was seen to be lower in the presence of PtdIns(4,5)P(2) for all C2 domains, especially PKCalpha. In vivo experiments using differentiated PC12 cells transfected with each C2 domain fused to ECFP and stimulated with ATP demonstrated that, at limiting intracellular concentration of Ca(2+), the three C2 domains translocate to the plasma membrane at very similar rates. However, the plasma membrane dissociation event differed in each case, PKCalpha persisting for the longest time in the plasma membrane, followed by PKCgamma and, finally, PKCbeta, which probably reflects the different levels of Ca(2+) needed by each domain and their different affinities for PtdIns(4,5)P(2).  相似文献   

2.
Rapamycin-triggered heterodimerization strategy is becoming an excellent tool for rapidly modifying phosphatidylinositol(4,5)-bisphosphate [PtdIns(4,5)P2] levels at the plasma membrane and for studying their influence in different processes. In this work, we studied the effect of modulation of the PtdIns(4,5)P2 concentration on protein kinase C (PKC) α membrane localization in intact living cells. We showed that an increase in the PtdIns(4,5)P2 concentration enlarges the permanence of PKCα in the plasma membrane when PC12 cells are stimulated with ATP, independently of the diacylglycerol generated. The depletion of this phosphoinositide decreases both the percentage of protein able to translocate to the plasma membrane and its permanence there. Our results demonstrate that the polybasic cluster located in the C2 domain of PKCα is responsible for this phosphoinositide-protein interaction. Furthermore, the C2 domain acts as a dominant interfering module in the neural differentiation process of PC12 cells, a fact that was also supported by the inhibitory effect obtained by knocking down PKCα with small interfering RNA duplexes. Taken together, these data demonstrate that PtdIns(4,5)P2 itself targets PKCα to the plasma membrane through the polybasic cluster located in the C2 domain, with this interaction being critical in the signaling network involved in neural differentiation.  相似文献   

3.
Many cytosolic proteins are recruited to the plasma membrane (PM) during cell signaling and other cellular processes. Recent reports have indicated that phosphatidylserine (PS), phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)), and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) that are present in the PM play important roles for their specific PM recruitment. To systematically analyze how these lipids mediate PM targeting of cellular proteins, we performed biophysical, computational, and cell studies of the Ca(2+)-dependent C2 domain of protein kinase Calpha (PKCalpha) that is known to bind PS and phosphoinositides. In vitro membrane binding measurements by surface plasmon resonance analysis show that PKCalpha-C2 nonspecifically binds phosphoinositides, including PtdIns(4,5)P(2) and PtdIns(3,4,5)P(3), but that PS and Ca(2+) binding is prerequisite for productive phosphoinositide binding. PtdIns(4,5)P(2) or PtdIns(3,4,5)P(3) augments the Ca(2+)- and PS-dependent membrane binding of PKCalpha-C2 by slowing its membrane dissociation. Molecular dynamics simulations also support that Ca(2+)-dependent PS binding is essential for membrane interactions of PKCalpha-C2. PtdIns(4,5)P(2) alone cannot drive the membrane attachment of the domain but further stabilizes the Ca(2+)- and PS-dependent membrane binding. When the fluorescence protein-tagged PKCalpha-C2 was expressed in NIH-3T3 cells, mutations of phosphoinositide-binding residues or depletion of PtdIns(4,5)P(2) and/or PtdIns(3,4,5)P(3) from PM did not significantly affect the PM association of the domain but accelerated its dissociation from PM. Also, local synthesis of PtdIns(4,5)P(2) or PtdIns(3,4,5)P(3) at the PM slowed membrane dissociation of PKCalpha-C2. Collectively, these studies show that PtdIns(4,5)P(2) and PtdIns(3,4,5)P(3) augment the Ca(2+)- and PS-dependent membrane binding of PKCalpha-C2 by elongating the membrane residence of the domain but cannot drive the PM recruitment of PKCalpha-C2. These studies also suggest that effective PM recruitment of many cellular proteins may require synergistic actions of PS and phosphoinositides.  相似文献   

4.
The metabolism of phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] in rat parotid acinar cells was investigated, particularly with regard to the effects of receptor-active agonists. Stimulation of cholinergic-muscarinic receptors with methacholine provoked a rapid disappearance of 40--50% of [32P]PtdIns(4,5)P2, but had no effect on PtdIns4P. Adrenaline, acting on alpha-adrenoceptors, and Substance P also stimulated net loss of PtdIns(4,5)P2. The beta-adrenoceptor agonist, isoprenaline, and the Ca2+ ionophore, ionomycin, failed to affect labelled PtdIns(4,5)P2 or PtdIns4P. By chelation of extracellular Ca2+ with excess EGTA, and by an experimental protocol that eliminates cellular Ca2+ release, it was demonstrated that the agonist-induced decrease in PtdIns(4,5)P2 is independent of both Ca2+ influx and Ca2+ release. These results may suggest that net PtdIns(4,5)P2 breakdown is an early event in the stimulus-response pathway of the parotid acinar cell and could be directly involved in the mechanism of agonist-induced Ca2+ release from the plasma membrane.  相似文献   

5.
Phosphatidylinositol (PtdIns) transfer proteins (PITPs) regulate signaling interfaces between lipid metabolism and membrane trafficking. Herein, we demonstrate that AtSfh1p, a member of a large and uncharacterized Arabidopsis thaliana Sec14p-nodulin domain family, is a PITP that regulates a specific stage in root hair development. AtSfh1p localizes along the root hair plasma membrane and is enriched in discrete plasma membrane domains and in the root hair tip cytoplasm. This localization pattern recapitulates that visualized for PtdIns(4,5)P2 in developing root hairs. Gene ablation experiments show AtSfh1p nullizygosity compromises polarized root hair expansion in a manner that coincides with loss of tip-directed PtdIns(4,5)P2, dispersal of secretory vesicles from the tip cytoplasm, loss of the tip f-actin network, and manifest disorganization of the root hair microtubule cytoskeleton. Derangement of tip-directed Ca2+ gradients is also apparent and results from isotropic influx of Ca2+ from the extracellular milieu. We propose AtSfh1p regulates intracellular and plasma membrane phosphoinositide polarity landmarks that focus membrane trafficking, Ca2+ signaling, and cytoskeleton functions to the growing root hair apex. We further suggest that Sec14p-nodulin domain proteins represent a family of regulators of polarized membrane growth in plants.  相似文献   

6.
The pleckstrin homology (PH) domains of phospholipase C (PLC)-delta1 and a related catalytically inactive protein, p130, both bind inositol phosphates and inositol lipids. The binding to phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] by PLC-delta1 is proposed to be the critical interaction required for membrane localization to where the substrate resides; it is also required for the Ca(2+)-dependent activation of PLC-delta1 observed in the permeabilized cells. In the proximity of the PH domain, both PLC-delta1 and p130 possess the EF-hand domain, containing classical motifs implicated in calcium binding. Therefore, in the present study we examined whether the binding of the PH domain to PtdIns(4,5)P2 is regulated by changes in free Ca2+ concentration within the physiological range. A Ca2+ dependent increase in the binding to PtdIns(4,5)P2 was observed with a full-length PLC-delta1, while the isolated PH domain did not show any Ca2+ dependence. However, the connection of the EF-hand motifs to the PH domain restored the Ca2+ dependent increase in binding, even in the absence of the C2 domain. The p130 protein showed similar properties to PLC-delta1, and the EF-hand motifs were again required for the PH domain to exhibit a Ca2+ dependent increase in the binding to PtdIns(4,5)P2. The isolated PH domains from several other proteins which have been demonstrated to bind PtdIns(4,5)P2 showed no Ca2+ dependent enhancement of binding. However, when present within a chimera also containing PLC-delta1 EF-hand motifs, the Ca2+ dependent binding was again observed. These results suggest that the binding of Ca2+ to the EF-hand motifs can modulate binding to PtdIns(4,5)P2 mediated by the PH domain.  相似文献   

7.
The C2 domain of PKCalpha is a Ca(2+)-dependent membrane-targeting module involved in the plasma membrane localization of the enzyme. Recent findings have shown an additional area located in the beta3-beta4 strands, named the lysine-rich cluster, which has been demonstrated to be involved in the PtdIns(4,5)P(2)-dependent activation of the enzyme. Nevertheless, whether other anionic phospholipids can bind to this region and contribute to the regulation of the enzyme's function is not clear. To study other possible roles for this cluster, we generated double and triple mutants that substituted the lysine by alanine residues, and studied their binding and activation properties in a Ca(2+)/phosphatidylserine-dependent manner and compared them with the wild-type protein. It was found that some of the mutants exerted a constitutive activation independently of membrane binding. Furthermore, the constructs were fused to green fluorescent protein and were expressed in fibroblast cells. It was shown that none of the mutants was able to translocate to the plasma membrane, even in saturating conditions of Ca(2+) and diacylglycerol, suggesting that the interactions performed by this lysine-rich cluster are a key event in the subcellular localization of PKCalpha. Taken together, the results obtained showed that these lysine residues might be involved in two functions: one to establish an intramolecular interaction that keeps the enzyme in an inactive conformation; and the second, once the enzyme has been partially activated, to establish further interactions with diacylglycerol and/or acidic phospholipids, leading to the full activation of PKCalpha.  相似文献   

8.
The C2 domain of protein kinase Calpha (PKCalpha) controls the translocation of this kinase from the cytoplasm to the plasma membrane during cytoplasmic Ca2+ signals. The present study uses intracellular coimaging of fluorescent fusion proteins and an in vitro FRET membrane-binding assay to further investigate the nature of this translocation. We find that Ca2+-activated PKCalpha and its isolated C2 domain localize exclusively to the plasma membrane in vivo and that a plasma membrane lipid, phosphatidylinositol-4,5-bisphosphate (PIP2), dramatically enhances the Ca2+-triggered binding of the C2 domain to membranes in vitro. Similarly, a hybrid construct substituting the PKCalpha Ca2+-binding loops (CBLs) and PIP2 binding site (beta-strands 3-4) into a different C2 domain exhibits native Ca2+-triggered targeting to plasma membrane and recognizes PIP2. Conversely, a hybrid containing the CBLs but lacking the PIP2 site translocates primarily to trans-Golgi network (TGN) and fails to recognize PIP2. Similarly, PKCalpha C2 domains possessing mutations in the PIP2 site target primarily to TGN and fail to recognize PIP2. Overall, these findings demonstrate that the CBLs are essential for Ca2+-triggered membrane binding but are not sufficient for specific plasma membrane targeting. Instead, targeting specificity is provided by basic residues on beta-strands 3-4, which bind to plasma membrane PIP2.  相似文献   

9.
A PC12 cell clone that responds to ATP with polyphosphoinositide hydrolysis and with a marked, biphasic intracellular free Ca2+ concentration ([Ca2+]i) response (composed by release from intracellular stores accompanied by stimulated influx from the medium), was pretreated with pertussis toxin. In the pretreated cells the responses induced by ATP were differently modified. Polyphosphoinositide hydrolysis and Ca2+ release were moderately inhibited whereas Ca2+ influx was enhanced. Pharmacological experiments revealed the influx enhancement to be sustained by neither voltage-gated nor second messenger-operated Ca2+ channels. Rather, a channel of the receptor-operated type activated by ATP (P2w receptor) appears to work under the negative control of a pertussis toxin-sensitive G protein, acting presumably by direct interaction with the channel in the plane of the plasma membrane.  相似文献   

10.
The function of protein kinase C (PKC) is closely regulated by its subcellular localization. We expressed PKCalpha fused to green fluorescent protein (PKCalpha-GFP) and examined its translocation in living and permeabilized cells of the human parotid cell line, HSY-EB. ATP induced an oscillatory translocation of PKCalpha-GFP to and from the plasma membrane that paralleled the appearance of repetitive Ca2+ spikes. Staurosporine attenuated the relocation of PKCalpha-GFP to the cytosol and caused a stepwise accumulation of PKCalpha-GFP at the plasma membrane during ATP stimulation. Diacylglycerol enhanced the amplitude and duration of the ATP-induced oscillatory translocation of PKCalpha-GFP. Ionomycin induced a transient translocation of PKCalpha-GFP to the plasma membrane despite the continuous elevation of cytosolic Ca2+. The ionomycin-induced transient translocation of PKCalpha-GFP was prolonged by staurosporine, diacylglycerol, and phorbol myristate acetate. Experiments using permeabilized cells showed that staurosporine or the elimination of ATP and Mg2+ decreases the rate of dissociation of PKCalpha-GFP from the membrane. Diacylglycerol slowed the dissociation of PKCalpha-GFP from the membrane regardless of the Ca2+ concentration. The effect of diacylglycerol was attenuated by ATP plus Mg2+ at low concentrations of Ca2+ (<500 nm) but not at high concentrations of Ca2+ (>1000 nm). These data suggest a complex interplay between Ca2+, diacylglycerol, and phosphorylation in the regulation of the membrane binding of PKCalpha.  相似文献   

11.
1. A Hepes-based medium has been devised which allows rapid Pi exchange across the plasma membrane of the human erythrocyte. This allows the metabolically labile phosphate pools of human erythrocytes to come to equilibrium with [32P]Pi in the medium after only 5 h in vitro. 2. After 5-7 h incubation with [32P]Pi in this medium, only three phospholipids, phosphatidic acid (PtdOH), phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate (PtdIns4,5P2) are radioactively labelled. The concentrations of PtdIns4P and PtdIns4,5P2 remain constant throughout the incubation, so this labelling process is a reflection of the steady-state turnover of their monoester phosphate groups. 3. During such incubations, the specific radioactivities of the monoesterified phosphates of PtdIns4, PtdIns4,5P2 and PtdOH come to a steady value after 5 h that is only 25-30% of the specific radioactivity of the gamma-phosphate of ATP at that time. We suggest that this is a consequence of metabolic heterogeneity. This heterogeneity is not a result of the heterogeneous age distribution of the erythrocytes in human blood. Thus it appears that there is metabolic compartmentation of these lipids within cells, such that within a time-scale of a few hours only 25-30% of these three lipids are actively metabolized. 4. The phosphoinositidase C of intact human erythrocytes, when activated by Ca2+-ionophore treatment, only hydrolyses 50% of the total PtdIns4,5P2 and 50% of 32P-labelled PtdIns4,5P2 present in the cells: this enzyme does not discriminate between the metabolically active and inactive compartments of lipids in the erythrocyte membrane. Hence at least four metabolic pools of PtdIns4P and PtdIns4,5P2 are distinguishable in the human erythrocyte plasma membrane. 5. The mechanisms by which multiple non-mixing metabolic pools of PtdOH, PtdIns4P and PtdIns4,5P2 are sustained over many hours in the plasma membranes of intact erythrocytes are unknown, although some possible explanations are considered.  相似文献   

12.
13.
Phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) synthesis is required for calcium-dependent exocytosis in neurosecretory cells. We developed a PtdIns(4,5)P2 bead pulldown strategy combined with subcellular fractionation to identify endogenous chromaffin granule proteins that interact with PtdIns(4,5)P2. We identified two synaptotagmin isoforms, synaptotagmins 1 and 7; spectrin; alpha-adaptin; and synaptotagmin-like protein 4 (granuphilin) by mass spectrometry and Western blotting. The interaction between synaptotagmin 7 and PtdIns(4,5)P2 and its functional relevance was investigated. The 45-kDa isoform of synaptotagmin 7 was found to be highly expressed in adrenal chromaffin cells compared with PC12 cells and to mainly localize to secretory granules by subcellular fractionation, immunoisolation, and immunocytochemistry. We demonstrated that synaptotagmin 7 binds PtdIns(4,5)P2 via the C2B domain in the absence of calcium and via both the C2A and C2B domains in the presence of calcium. We mutated the polylysine stretch in synaptotagmin 7 C2B and demonstrated that this mutant domain lacks the calcium-independent PtdIns(4,5)P2 binding. Synaptotagmin 7 C2B domain inhibited catecholamine release from digitonin-permeabilized chromaffin cells, and this inhibition was abrogated with the C2B polylysine mutant. These data indicate that synaptotagmin 7 C2B-effector interactions, which occur via the polylysine stretch, including calcium-independent PtdIns(4,5)P2 binding, are important for chromaffin granule exocytosis.  相似文献   

14.
Corbin JA  Evans JH  Landgraf KE  Falke JJ 《Biochemistry》2007,46(14):4322-4336
The C2 domain is a ubiquitous, conserved protein signaling motif widely found in eukaryotic signaling proteins. Although considerable functional diversity exists, most C2 domains are activated by Ca2+ binding and then dock to a specific cellular membrane. The C2 domains of protein kinase Calpha (PKCalpha) and cytosolic phospholipase A2alpha (cPLA2alpha), for example, are known to dock to different membrane surfaces during an intracellular Ca2+ signal. Ca2+ activation targets the PKCalpha C2 domain to the plasma membrane and the cPLA2alpha C2 domain to the internal membranes, with no detectable spatial overlap. It is crucial to determine how such targeting specificity is achieved at physiological bulk Ca2+ concentrations that during a typical signaling event rarely exceed 1 muM. For the isolated PKCalpha C2 domain in the presence of physiological Ca2+ levels, the target lipids phosphatidylserine (PS) and phosphatidylinositol-4,5-bisphosphate (PIP2) are together sufficient to recruit the PKCalpha C2 domain to a lipid mixture mimicking the plasma membrane inner leaflet. For the cPLA2alpha C2 domain, the target lipid phosphatidylcholine (PC) appears to be sufficient to drive membrane targeting to an internal membrane mimic at physiological Ca2+ levels, although the results do not rule out a second, unknown target molecule. Stopped-flow kinetic studies provide additional information about the fundamental molecular events that occur during Ca2+-activated membrane docking. In principle, C2 domain-directed intracellular targeting, which requires coincidence detection of multiple signals (Ca2+ and one or more target lipids), can exhibit two different mechanisms: messenger-activated target affinity (MATA) and target-activated messenger affinity (TAMA). The C2 domains studied here both utilize the TAMA mechanism, in which the C2 domain Ca2+ affinity is too low to be activated by physiological Ca2+ signals in most regions of the cell. Only when the C2 domain nears its target membrane, which provides a high local concentration of target lipid, is the effective Ca2+ affinity increased by the coupled binding equilibrium to a level that enables substantial Ca2+ activation and target docking. Overall, the findings emphasize the importance of using physiological ligand concentrations in targeting studies because super-physiological concentrations can drive docking interactions even when an important targeting molecule is missing.  相似文献   

15.
Rapamycin (rapa)-induced heterodimerization of the FRB domain of the mammalian target of rapa and FKBP12 was used to translocate a phosphoinositide 5-phosphatase (5-ptase) enzyme to the plasma membrane (PM) to evoke rapid changes in phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) levels. Rapa-induced PM recruitment of a truncated type IV 5-ptase containing only the 5-ptase domain fused to FKBP12 rapidly decreased PM PtdIns(4,5)P(2) as monitored by the PLCdelta1PH-GFP fusion construct. This decrease was paralleled by rapid termination of the ATP-induced Ca(2+) signal and the prompt inactivation of menthol-activated transient receptor potential melastatin 8 (TRPM8) channels. Depletion of PM PtdIns(4,5)P(2) was associated with a complete blockade of transferrin uptake and inhibition of epidermal growth factor internalization. None of these changes were observed upon rapa-induced translocation of an mRFP-FKBP12 fusion protein that was used as a control. These data demonstrate that rapid inducible depletion of PM PtdIns(4,5)P(2) is a powerful tool to study the multiple regulatory roles of this phospholipid and to study differential sensitivities of various processes to PtdIns(4,5)P(2) depletion.  相似文献   

16.
Phosphoinositides direct membrane trafficking, facilitating the recruitment of effectors to specific membranes. In yeast phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) isproposed to regulate vacuolar fusion; however, in intact cells this phosphoinositide can only be detected at the plasma membrane. In Saccharomyces cerevisiae the 5-phosphatase, Inp54p, dephosphorylates PtdIns(4,5)P2 forming PtdIns(4)P, a substrate for the phosphatase Sac1p, which hydrolyzes (PtdIns(4)P). We investigated the role these phosphatases in regulating PtdIns(4,5)P2 subcellular distribution. PtdIns(4,5)P2 bioprobes exhibited loss of plasma membrane localization and instead labeled a subset of fragmented vacuoles in Deltasac1 Deltainp54 and sac1ts Deltainp54 mutants. Furthermore, sac1ts Deltainp54 mutants exhibited vacuolar fusion defects, which were rescued by latrunculin A treatment, or by inactivation of Mss4p, a PtdIns(4)P 5-kinase that synthesizes plasma membrane PtdIns(4,5)P2. Under these conditions PtdIns(4,5)P2 was not detected on vacuole membranes, and vacuole morphology was normal, indicating vacuolar PtdIns(4,5)P2 derives from Mss4p-generated plasma membrane PtdIns(4,5)P2. Deltasac1 Deltainp54 mutants exhibited delayed carboxypeptidase Y sorting, cargo-selective secretion defects, and defects in vacuole function. These studies reveal PtdIns(4,5)P2 hydrolysis by lipid phosphatases governs its spatial distribution, and loss of phosphatase activity may result in PtdIns(4,5)P2 accumulation on vacuole membranes leading to vacuolar fragmentation/fusion defects.  相似文献   

17.
The C2 domain is a targeting domain that responds to intracellular Ca2+ signals in classical protein kinases (PKCs) and mediates the translocation of its host protein to membranes. Recent studies have revealed a new motif in the C2 domain, named the lysine-rich cluster, that interacts with acidic phospholipids. The purpose of this work was to characterize the molecular mechanism by which PtdIns(4,5)P2 specifically interacts with this motif. Using a combination of isothermal titration calorimetry, fluorescence resonance energy transfer and time-lapse confocal microscopy, we show here that Ca2+ specifically binds to the Ca2+-binding region, facilitating PtdIns(4,5)P2 access to the lysine-rich cluster. The magnitude of PtdIns(4,5)P2 binding is greater than in the case of other polyphosphate phosphatidylinositols. Very importantly, the residues involved in PtdIns(4,5)P2 binding are essential for the plasma membrane localization of PKCα when RBL-2H3 cells are stimulated through their IgE receptors. Additionally, CFP-PH and CFP-C1 domains were used as bioprobes to demonstrate the co-existence of PtdIns(4,5)P2 and diacylglycerol in the plasma membrane, and it was shown that although a fraction of PtdIns(4,5)P2 is hydrolyzed to generate diacylglycerol and IP3, an important amount still remains in the membrane where it is available to activate PKCα. These findings entail revision of the currently accepted model of PKCα recruitment to the membrane and its activation.  相似文献   

18.
Protein kinase C (PKC) isoforms exert specific intracellular functions, but the different isoforms display little substrate specificity in vitro. Selective PKC isoform targeting may be a mechanism to achieve specificity. We used a green fluorescent fusion protein (GFP) to test the hypothesis that local changes in [Ca(2+)](i) regulate translocation of PKCalpha and that different modes of Ca(2+) and Ca(2+) release play a role in PKCalpha targeting. We constructed deletion mutants of PKCalpha to analyze the Ca(2+)-sensitive domains and their role in targeting. Confocal microscopy was used and [Ca(2+)](i) was measured by fluo-3. The fusion protein PKCalpha-GFP was expressed in vascular smooth muscle cells and showed a cytosolic distribution similar to the wild-type PKCalpha protein. The Ca(2+) ionophore ionomycin induced a speckled cytosolic PKCalpha-GFP distribution, followed by membrane translocation, while depolarization by KCl induced primarily membrane translocation. Selective voltage-operated Ca(2+) channel opening led to a localized accumulation of PKCalpha-GFP near the plasma membrane. Opening Ca(2+) stores with InsP(3), thapsigargin, or ryanodine induced a specific PKCalpha-GFP targeting to distinct intracellular areas. The G-protein-coupled receptor agonist thrombin induced a rapid translocation of the fusion protein to focal domains. The tyrosine kinase receptor agonist PDGF induced Ca(2+) influx and led to a linear PKCalpha-GFP membrane association. PKCalpha-GFP deletion mutants demonstrated that the C2 domain, but not the catalytic subunit, is necessary for Ca(2+)-induced PKCalpha targeting. Targeting was also abolished when the ATP binding site was deleted. We conclude that PKCalpha can rapidly be translocated to distinct intracellular or membrane domains by local increases in [Ca(2+)](i). The targeting mechanism is dependent on the C2 and ATP binding site of the enzyme. Localized [Ca(2+)](i) changes determine the spatial and temporal targeting of PKCalpha.  相似文献   

19.
Sprouty (Spry) proteins have been revealed as inhibitors of the Ras/mitogen-activated protein kinase (MAPK) cascade, a pathway crucial for developmental processes initiated by activation of various receptor tyrosine kinases. In COS-1 and Swiss 3T3 cells, all Spry isoforms translocate to the plasma membrane, notably ruffles, following activation. Here we show that microinjection of active Rac induced the translocation of Spry isoforms, indicating that the target of the Spry translocation domain (SpryTD) is downstream of active Rac. Targeted disruption of actin polymerization revealed that the SpryTD target appeared upstream of cytoskeletal rearrangements. Accumulated evidence indicated that phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] is the likely SpryTD target. Human Spry2TD (hSpry2TD) binds to PtdIns(4,5)P(2) in vesicle-binding assays. hSpry2TD colocalizes with the pleckstrin homology domain of phospholipase Cdelta, which binds PtdIns(4,5)P(2). The plasma membrane localization of hSpry2TD was abolished in ionomycin-treated MDCK cells or when PtdIns(4,5)P(2) was specifically dephosphorylated by overexpression of an engineered, green fluorescent protein-tagged inositol 5-phosphatase. Similarly, Spred, a novel Ras/MAPK inhibitor recently found to contain the conserved cysteine-rich SpryTD, also translocated to peripheral membranes and bound to PtdIns(4,5)P(2). Alignment of the Spry and Spred proteins led us to identify a translocation-defective point mutant, hSpry2 D252. Targeting of hSpry2 to PtdIns(4,5)P(2) was shown to be essential for the down-regulation of Ras/MAPK signaling.  相似文献   

20.
In electrically excitable cells, membrane depolarization opens voltage-dependent Ca(2+) channels eliciting Ca(2+) influx, which plays an important role for the activation of protein kinase C (PKC). However, we do not know whether Ca(2+) influx alone can activate PKC. The present study was conducted to investigate the Ca(2+) influx-induced activation mechanisms for two classes of PKC, conventional PKC (cPKC; PKCalpha) and novel PKC (nPKC; PKCtheta), in insulin-secreting cells. We have demonstrated simultaneous translocation of both DsRed-tagged PKCalpha to the plasma membrane and green fluorescent protein (GFP)-tagged myristoylated alanine-rich C kinase substrate to the cytosol as a dual marker of PKC activity in response to depolarization-evoked Ca(2+) influx in the DsRed-tagged PKCalpha and GFP-tagged myristoylated alanine-rich C kinase substrate co-expressing cells. The result indicates that Ca(2+) influx can generate diacylglycerol (DAG), because cPKC is activated by Ca(2+) and DAG. We showed this in three different ways by demonstrating: 1) Ca(2+) influx-induced translocation of GFP-tagged C1 domain of PKCgamma, 2) Ca(2+) influx-induced translocation of GFP-tagged pleckstrin homology domain, and 3) Ca(2+) influx-induced translocation of GFP-tagged PKCtheta, as a marker of DAG production and/or nPKC activity. Thus, Ca(2+) influx alone via voltage-dependent Ca(2+) channels can generate DAG, thereby activating cPKC and nPKC, whose activation is structurally independent of Ca(2+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号