首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We found that both tetramethylammonium chloride (TMA-Cl) and tetra-ethylammonium chloride (TEA-Cl), which are used as monovalent cations for northern hybridization, drastically destabilized the tertiary structures of tRNAs and enhanced the formation of tRNA•oligoDNA hybrids. These effects are of great advantage for the hybridization-based method for purification of specific tRNAs from unfractionated tRNA mixtures through the use of an immobilized oligoDNA complementary to the target tRNA. Replacement of NaCl by TMA-Cl or TEA-Cl in the hybridization buffer greatly improved the recovery of a specific tRNA, even from unfractionated tRNAs derived from a thermophile. Since TEA-Cl destabilized tRNAs more strongly than TMA-Cl, it was necessary to lower the hybridization temperature at the sacrifice of the purity of the recovered tRNA when using TEA-Cl. Therefore, we propose two alternative protocols, depending on the desired properties of the tRNA to be purified. When the total recovery of the tRNA is important, hybridization should be carried out in the presence of TEA-Cl. However, if the purity of the recovered tRNA is important, TMA-Cl should be used for the hybridization. In principle, this procedure for tRNA purification should be applicable to any small-size RNA whose gene sequence is already known.  相似文献   

2.
For large scale preparation of mitochondrial tRNAs, a new hybridization assay method using synthetic oligodeoxyribonucleotide probes (16-17mer) complementary to individual tRNA sequences was developed and applied for the purification of two serine isoacceptor tRNAs (tRNASerAGY and tRNASerUCN) from bovine mitochondria. It is about 100 times more sensitive than the conventional aminoacylation assay method. 2-4 A260 units each of both tRNASer isoacceptors were purified from 17.5 kg of bovine liver, and they were characterized by means of nuclease digestion, melting profiles and aminoacylation activity. It is suggested that tRNASerUCN possesses the D loop/T loop interaction like usual L-shaped tRNAs, and that tRNASerAGY lacking almost an entire D arm is aminoacylated with an efficiency not very much lower than that of tRNASerUCN.  相似文献   

3.
4.
A new approach to isolation of individual tRNAs from eukaryotes based on affinity chromatography is suggested. At first, using a sorbent with oligonucleotide pTGGT attached, the total tRNA with native CCA-ends was obtained. Then by means of a sorbent with oligonucleotide pTTCAG immobilized, which is complementary to a part of the tRNA(Phe) anticodon loop, tRNA(Phe) with the acceptor activity greater than 1000 pmole/unit was isolated.  相似文献   

5.
The specificity of lead(II)-induced hydrolysis of yeast tRNA(Phe) was studied as a function of concentration of Pb2+ ions. The major cut was localized in the D-loop and minor cleavages were detected in the anticodon and T-loops at high metal ion concentration. The effects of pH, temperature, and urea were also analyzed, revealing a basically unchanged specificity of hydrolysis. In the isolated 5'-half-molecule of yeast tRNAPhe not cut was found in the D-loop, indicating its stringent dependence on T-D-loop interaction. Comparison of hydrolysis patterns and efficiencies observed in yeast tRNA(Phe) with those found in other tRNAs suggests that the presence of a U59-C60 sequence in the T-loop is responsible for the highly efficient and specific hydrolysis in the spatially close region of the D-loop. The efficiencies of D-loop cleavage in intact yeast tRNA(Phe) and in tRNA(Phe) deprived of the Y base next to the anticodon were also compared at various Pb2+ ion concentrations. Kinetics of the D-loop hydrolysis analyzed at 0, 25, and 37 degrees C showed a 6 times higher susceptibility of tRNA(Phe) minus Y base (tRNA(Phe)-Y) to lead(II)-induced hydrolysis than in tRNA(Phe). The observed effect is discussed in terms of a long-distance conformational transition in the region of the interacting D- and T-loops triggered by the Y-base excision.  相似文献   

6.
The translational efficiency of tRNA is a property of the anticodon arm   总被引:10,自引:0,他引:10  
We have reciprocally transplanted the anticodon arm sequences of a set of amber suppressor tRNA genes, using recombinant DNA techniques. By this means, a very efficient suppressor may be converted to a poor one, and the poorest tRNA to the efficiency of the best one. In tRNA molecules of normal 2 degrees and 3 degrees structure, the suppressor efficiencies of different composite tRNAs having the same anticodon arm sequence are approximately the same. Large numbers of simultaneous changes throughout the rest of the molecule do not affect the efficiency. Selective nucleotide modification as a result of varied anticodon arm sequences cannot explain these efficiencies. Efficiencies are also unlikely to differ because of selective aminoacylation. Measurement of in vivo tRNA shows, however, that tRNA levels do vary if the anticodon arm sequence is changed. If tRNA levels are normalized, the anticodon arm effect on the translational efficiency remains. Therefore, different anticodon arms, all of normal secondary structure, are not equivalent in translation. The most efficient sequences in this series resemble those found in natural tRNAs associated with similar anticodons, as is proposed in the extended anticodon theory (Yarus, M. (1982) Science 218, 646-652). These molecules also provide some information on the specificity of nucleotide modification enzymes and on determinants of the steady-state tRNA level.  相似文献   

7.
The saturation hybridization between spinach chloroplast (ct) DNA and spinach 125I-labelled chloroplast tRNA has shown that about 1.1% of the spinach ctDNA codes for tRNAs. The observed hybridization is a result of specific base-pairing as shown by competition hybridization experiments and thermal stability of the ctDNA-tRNA hybrids. The amount of hybridization shows that spinach ctDNA contains about 40 tRNA genes. Similar hybridization studies have shown that corn ctDNA contains about 28 tRNA genes. The cross-hybridizations between ctDNA and tRNAs of corn, spinach and pea have shown that tRNAs in chloroplasts of higher plants have undergone significant divergence. The pea and spinach tRNAs have been found to have 50% of the base sequences in common. The corn tRNAs have been found to have only about 30% of the base sequences in common with pea and spinach. These data have been confirmed by extensive heterologous competition experiments and thermal stability of the heterologous DNA-tRNA hybrids. The experiments have also shown that the base sequences of tRNAs common in all three plants are the same.  相似文献   

8.
Reiterated transfer RNA genes of Xenopus laevis   总被引:15,自引:0,他引:15  
The proportion of the Xenopus laevis genome complementary to “7 S” RNA, unfractionated transfer RNA and some selected aminoacyl-tRNAs, and the sequence complexity of these RNA species, have been determined by following the kinetics of RNA-DNA hybridization on filters under conditions of RNA excess at optimum rate temperature. For hybridization of aminoacyl-labelled tRNAs, conditions for optimum aminoacylation were first determined and, where necessary, aminoacyl-tRNAs were treated with nitrous acid to prevent discharge during annealing. Neither the extent nor rate of hybridization was affected by this treatment.“7 S” RNA, coded for by 580 genes per haploid complement of chromosomes, reacts like a single family of nucleotide sequences, whereas about 43 basic tRNA sequences are coded for by at least 7800 genes. If hybrids are not treated with RNase A, the apparent tDNA redundancy is some 23% greater but no more nucleotide sequences are detectable. Taken together, the results suggest that each tRNA sequence is, on average, 200-fold reiterated.The reiteration varies, however, for different aminoacyl-tRNAs. Thus, hybridization resolves only one valyl-tRNA which is coded for by 240 genes, but at least four leucyl-tRNA sequences can be distinguished by hybridization, each of which is on average 90-fold reiterated. Reiteration also varies for the two methionyl-tRNAs detectable both by hybridization and by reversed phase chromatography: tRNA1Met and tRNA2Met are 310- and 170-fold reiterated, respectively, and each is kinetically homogeneous. These saturation values are almost exactly additive and are not influenced by the presence of other tRNA species. Thus the results suggest that Xenopus tRNAs are no more heterogeneous than would be predicted by the genetic code, despite the high but variable multiplicity of tRNA cistrons.  相似文献   

9.
10.
A comparative study of the solution structures of yeast tRNA(Asp) and tRNA(Phe) was undertaken with chemical reagents as structural probes. The reactivity of N-7 positions in guanine and adenine residues was assayed with dimethylsulphate and diethyl-pyrocarbonate, respectively, and that of the N-3 position in cytosine residues with dimethylsulphate. Experiments involved statistical modifications of end-labelled tRNAs, followed by splitting at modified positions. The resulting end-labelled oligonucleotides were resolved on polyacrylamide sequencing gels and analysed by autoradiography. Three different experimental conditions were used to follow the progressive denaturation of the two tRNAs. Experiments were done in parallel on tRNA(Asp) and tRNA(Phe) to enable comparison between the two solution structures and to correlate the results with the crystalline conformations of both molecules. Structural differences were detected for G4, G45, G71 and A21: G4 and A21 are reactive in tRNA(Asp) and protected in tRNA(Phe), while G45 and G71 are protected in tRNA(Asp) and reactive in tRNA(Phe). For the N-7 atom of A21, the different reactivity is correlated with the variable variable loop structures in the two tRNAs; in the case of G45 the results are explained by a different stacking of A9 between G45 and residue 46. For G4 and G71, the differential reactivities are linked to a different stacking in both tRNAs. This observation is of general significance for helical stems. If the previous results could be fully explained by the crystal structures, unexpected similarities in solution were found for N-3 alkylation of C56 in the T-loop, which according to crystallography should be reactive in tRNA(Asp). The apparent discrepancy is due to conformational differences between crystalline and solution tRNA(Asp) at the level of the D and T-loop contacts, linked to long-distance effects induced by the quasi-self-complementary anticodon GUC, which favour duplex formation within the crystal, contrarily to solution conditions where the tRNA is essentially in its free state.  相似文献   

11.
A human glutamate tRNA has been shown to form stable hybrids with 28S ribosomal RNA. This tRNA was purified from HeLa cell cytoplasmic RNA by RNA-RNA solution hybridization followed by the isolation of tRNA-28S rRNA complexes by hybridization-selection with ribosomal DNA or by recovery of the 28S peak from formamide-sucrose gradients. The single hybridizing tRNA species was identified as tRNAGluCUC by sequencing: pU-C-C-C-U-G-G-U-G-m2G-U-C-phi-A-G-U-G-G-D-phi-A-G-G-A-U-U- C-G-G-C-G-C-U-C-U-C-A-C-C-G-C-G-G-C-m5C-m5C-G-G-G-Tm-phi-C-G-A- U-U-C-C-C-G-G-U-C-A-G-G-G-A-A-C-C-AOH. Computer analysis located a nucleotide sequence near the middle of human 28S rRNA which is complementary to 15-26 nucleotides between residues 20 and 50 of this tRNA. An interaction between this tRNA and 28S rRNA suggests that tRNAGluCUC may have functions in the cell in addition to translation.  相似文献   

12.
Based on computer modeling and with the use of energy minimisation procedure, we show that the bulged nucleotide 47 in the yeast tRNA(Phe) structure plays an important steric role, allowing the formation of canonical tertiary interactions 15-48 and 22-46 within the D-domain. The absence of nucleotide 47 can be compensated by the presence of a wobble pair U13-G22, whose unusual stereochemistry permits as well the formation of the canonical tertiary interactions. The tRNA database show that the vast majority of the cytosolic tRNAs have either a nucleotide at position 47 or a wobble pair U13-G22. On the contrary, many mitochondrial tRNAs, having a Watson-Crick pair 13-22, do not have nucleotide in position 47, which suggests that their tertiary interactions within the D-domain must differ from those in cytosolic tRNAs.  相似文献   

13.
Bovine mitochondrial (mt) phenylalanine tRNA (tRNA(Phe)), which lacks the 'conserved' GG and T psi YCG sequences, was efficiently purified by the selective hybridization method using a solid phase DNA probe. The entire nucleotide sequence of the tRNA, including modified nucleotides, was determined and its higher-order structure was investigated using RNaseT2 and chemical reagents as structural probes. The D and T loop regions as well as the anticodon loop region were accessible to RNaseT2, and the N-3 positions of cytidines present in the D and T loops were easily modified under the native conditions in the presence of 10mM Mg2+. On the other hand, the nucleotides present in the extra loop were protected from the chemical modification under the native conditions. From the results of these probing analyses and a comparison of the sequences of mitochondrial tRNA(Phe) genes from various organisms, it was inferred that bovine mt tRNA(Phe) lacks the D loop/T loop tertiary interactions, but does have the canonical extra loop/D stem interactions, which seem to be the main factor for bovine mt tRNA(Phe) to preserve its L-shaped higher-order structure.  相似文献   

14.
Total transfer RNAs were extracted from highly purified potato mitochondria. From quantitative measurements, the in vivo tRNA concentration in mitochondria was estimated to be in the range of 60 microM. Total potato mitochondrial tRNAs were fractionated by two-dimensional polyacrylamide gel electrophoresis. Thirty one individual tRNAs, which could read all sense codons, were identified by aminoacylation, sequencing or hybridization to specific oligonucleotides. The tRNA population that we have characterized comprises 15 typically mitochondrial, 5 'chloroplast-like' and 11 nuclear-encoded species. One tRNA(Ala), 2 tRNAs(Arg), 1 tRNA(Ile), 5 tRNAs(Leu) and 2 tRNAs(Thr) were shown to be coded for by nuclear DNA. A second, mitochondrial-encoded, tRNA(Ile) was also found. Five 'chloroplast-like' tRNAs, tRNA(Trp), tRNA(Asn), tRNA(His), tRNA(Ser)(GGA) and tRNA(Met)m, presumably transcribed from promiscuous chloroplast DNA sequences inserted in the mitochondrial genome, were identified, but, in contrast to wheat (1), potato mitochondria do not seem to contain 'chloroplast-like' tRNA(Cys) and tRNA(Phe). The two identified tRNAs(Val), as well as the tRNA(Gly), were found to be coded for by the mitochondrial genome, which again contrasts with the situation in wheat, where the mitochondrial genome apparently contains no tRNA(Val) or tRNA(Gly) gene (2).  相似文献   

15.
The specificity of cleavages in yeast and lupin initiator and elongator methionine tRNAs induced by magnesium, europium and lead has been analysed and compared with known patterns of yeast tRNA(Phe) hydrolysis. The strong D-loop cleavages occur in methionine elongator tRNAs at similar positions and with comparable efficiency to those found in tRNA(Phe), while the sites of weak anticodon loop cuts, identical in methionine elongator tRNAs, differ from those found in tRNA(Phe). Methionine initiator tRNAs differ from their elongator counterparts: (a) they are cleaved in the D-loop with much lower efficiency; (b) they are cleaved in the variable loop which is completely resistant to hydrolysis in elongator tRNAs; (c) cleavages in the anticodon loop are stronger in initiator tRNAs and they are located mostly at the 5' side of the loop whereas in elongator tRNAs they occur mostly at the opposite, 3' side of the loop. The distinct pattern of the anticodon loop cleavages is considered to be related to different conformations of the anticodon loop in the two types of methionine tRNAs.  相似文献   

16.
The solution structure of Escherichia coli tRNA(3Thr) (anticodon GGU) and the residues of this tRNA in contact with the alpha 2 dimeric threonyl-tRNA synthetase were studied by chemical and enzymatic footprinting experiments. Alkylation of phosphodiester bonds by ethylnitrosourea and of N-7 positions in guanosines and N-3 positions in cytidines by dimethyl sulphate as well as carbethoxylation of N-7 positions in adenosines by diethyl pyrocarbonate were conducted on different conformers of tRNA(3Thr). The enzymatic structural probes were nuclease S1 and the cobra venom ribonuclease. Results will be compared to those of three other tRNAs, tRNA(Asp), tRNA(Phe) and tRNA(Trp), already mapped with these probes. The reactivity of phosphates towards ethylnitrosourea of the unfolded tRNA was compared to that of the native molecule. The alkylation pattern of tRNA(3Thr) shows some similarities to that of yeast tRNA(Phe) and mammalian tRNA(Trp), especially in the D-arm (positions 19 and 24) and with tRNA(Trp), at position 50, the junction between the variable region and the T-stem. In the T-loop, tRNA(3Thr), similarly to the three other tRNAs, shows protections against alkylation at phosphates 59 and 60. However, tRNA(3Thr) is unique as far as very strong protections are also found for phosphates 55 to 58 in the T-loop. Compared with yeast tRNA(Asp), the main differences in reactivity concern phosphates 19, 24 and 50. Mapping of bases with dimethyl sulphate and diethyl pyrocarbonate reveal conformational similarities with yeast tRNA(Phe). A striking conformational feature of tRNA(3Thr) is found in the 3'-side of its anticodon stem, where G40, surrounded by two G residues, is alkylated under native conditions, in contrast to other G residues in stem regions of tRNAs which are unreactive when sandwiched between two purines. This data is indicative of a perturbed helical conformation in the anticodon stem at the level of the 30-40 base pairs. Footprinting experiments, with chemical and enzymatic probes, on the tRNA complexed with its cognate threonyl-tRNA synthetase indicate significant protections in the anticodon stem and loop region, in the extra-loop, and in the amino acid accepting region. The involvement of the anticodon of tRNA(3Thr) in the recognition process with threonyl-tRNA synthetase was demonstrated by nuclease S1 mapping and by the protection of G34 and G35 against alkylation by dimethyl sulphate. These data are discussed in the light of the tRNA/synthetase recognition problem and of the structural and functional properties of the tRNA-like structure present in the operator region of the thrS mRNA.  相似文献   

17.
All eukaryotic tRNA(His) molecules are unique among tRNA species because they require addition of a guanine nucleotide at the -1 position by tRNA(His) guanylyltransferase, encoded in yeast by THG1. This G(-1) residue is both necessary and sufficient for aminoacylation of tRNA by histidyl-tRNA synthetase in vitro and is required for aminoacylation in vivo. Although Thg1 is presumed to be highly specific for tRNA(His) to prevent misacylation of tRNAs, the source of this specificity is unknown. We show here that Thg1 is >10,000-fold more selective for its cognate substrate tRNA(His) than for the noncognate substrate tRNA(Phe). We also demonstrate that the GUG anticodon of tRNA(His) is a crucial Thg1 identity element, since alteration of this anticodon in tRNA(His) completely abrogates Thg1 activity, and the simple introduction of this GUG anticodon to any of three noncognate tRNAs results in significant Thg1 activity. For tRNA(Phe), k(cat)/K(M) is improved by at least 200-fold. Thg1 is the only protein other than aminoacyl-tRNA synthetases that is known to use the anticodon as an identity element to discriminate among tRNA species while acting at a remote site on the tRNA, an unexpected link given the lack of any identifiable sequence similarity between these two families of proteins. Moreover, Thg1 and tRNA synthetases share two other features: They act in close proximity to one another at the top of the tRNA aminoacyl-acceptor stem, and the chemistry of their respective reactions is strikingly similar.  相似文献   

18.
The extent of tRNA recognition at the level of binding by Thermus thermophilus phenylalanyl-tRNA synthetase (PheRS), one of the most complex class II synthetases, has been studied by independent measurements of the enzyme association with wild-type and mutant tRNA(Phe)s as well as with non-cognate tRNAs. The data obtained, combined with kinetic data on aminoacylation, clearly show that PheRS exhibits more tRNA selectivity at the level of binding than at the level of catalysis. The anticodon nucleotides involved in base-specific interactions with the enzyme prevail both in the initial binding recognition and in favouring aminoacylation catalysis. Tertiary nucleotides of base pair G19-C56 and base triple U45-G10-C25 contribute primarily to stabilization of the correctly folded tRNA(Phe) structure, which is important for binding. Other nucleotides of the central core (U20, U16 and of the A26-G44 tertiary base pair) are involved in conformational adjustment of the tRNA upon its interaction with the enzyme. The specificity of nucleotide A73, mutation of which slightly reduces the catalytic rate of aminoacylation, is not displayed at the binding step. A few backbone-mediated contacts of PheRS with the acceptor and anticodon stems revealed in the crystal structure do not contribute to tRNA(Phe) discrimination, their role being limited to stabilization of the complex. The highest affinity of T. thermophilus PheRS for cognate tRNA, observed for synthetase-tRNA complexes, results in 100-3000-fold binding discrimination against non-cognate tRNAs.  相似文献   

19.
R T Marconi  W E Hill 《Biochemistry》1989,28(2):893-899
A nine-base oligodeoxyribonucleotide complementary to bases 2497-2505 of 23S rRNA was hybridized to both 50S subunits and 70S ribosomes. The binding of the probe to the ribosome or ribosomal subunits was assayed by nitrocellulose filtration and by sucrose gradient centrifugation techniques. The location of the hybridization site was determined by digestion of the rRNA/cDNA heteroduplex with ribonuclease H and gel electrophoresis of the digestion products, followed by the isolation and sequencing of the smaller digestion fragment. The cDNA probe was found to interact specifically with its rRNA target site. The effects on probe hybridization to both 50S and 70S ribosomes as a result of binding deacylated tRNA(Phe) were investigated. The binding of deacylated tRNA(Phe), either with or without the addition of poly(uridylic acid), caused attenuation of probe binding to both 50S and 70S ribosomes. Probe hybridization to 23S rRNA was decreased by about 75% in both 50S subunits and 70S ribosomes. These results suggest that bases within the 2497-2505 site may participate in a deacylated tRNA/rRNA interaction.  相似文献   

20.
The nucleotide sequence of cytoplasmic phenylalanine tRNA from Euglena gracilis has been elucidated using procedures described previously for the corresponding chloroplastic tRNA [Cell, 9, 717 (1976)]. The sequence is: pG-C-C-G-A-C-U-U-A-m(2)G-C-U-Cm-A-G-D-D-G-G-G-A-G-A-G-C-m(2)2G-psi-psi-A-G-A-Cm -U-Gm-A-A-Y-A-psi-C-U-A-A-A-G-m(7)G-U-C-*C-C-U-G-G-T-psi-C-G-m(1)A-U-C-C-C-G-G- G-A-G-psi-C-G-G-C-A-C-C-A. Like other tRNA Phes thus far sequenced, this tRNA has a chain length of 76 nucleotides. The sequence of E. gracilis cytoplasmic tRNA Phe is quite different (27 nucleotides out of 76 different) from that of the corresponding chloroplastic tRNA but is surprisingly similar (72 out of 76 nucleotides identical) to that of tRNA Phe from mammalian cytoplasm. This extent of sequence homology even exceeds that found between E. gracilis and wheat germ cytoplasmic tRNA Phe. These findings raise interesting questions on the evolution of tRNAs and the taxonomy of Euglena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号