首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Carbacylamidophosphates with the general formula RC(O)NHP(O)R1R2 constitute organophosphorus compounds that are used as insecticides, pesticides and ureas inhibitors. In this work, we studied the inhibition potency of CCl3C(O)NHP(O)Cl21, CHCl2C(O)NHP(O)Cl22, CH2ClC(O)NHP(O)Cl23 and CF3C(O)NHP(O)Cl24, which are the major intermediates for carbacylamidophosphates synthesis towards human erythrocyte acetylcholinesterase (hAChe) activity using Ellman's modified kinetic method. Unexpectedly, it was observed that they were not only hydrolytically unstable but also inhibited hAChE in a similar manner to that produced by organophosphorus insecticides. Enzymatic data, bimolecular inhibition rate constants (ki) and IC50 values for inhibition of hAChE demonstrated that they are irreversible inhibitors and the inhibition potency of compound 2 (IC50 = 88 μM) was the greatest in comparison with compounds 1, 3 and 4. Also the electropositivity of the phosphorus atom and the hydrophobicity of the compounds demonstrated that these two factors play an additional effect and different role in the inhibitory activity of these compounds. Hydrolytic stability of the compounds was determined by 31P NMR monitoring of the loss of the parent molecules with D2O as a function of time. This study considers antiacetylcholinesterase activity according to the structural and the electronic aspects of compounds 14, according to IR, 1H, 13C and 31P NMR spectral data.  相似文献   

2.
Cholinesterases are targets for organophosphorus compounds which are used as pesticides, insecticides, chemical warfare agents and drugs for the treatment of disease such as glaucoma or parasitic infections. Most organophosphorus compounds impart their toxic action via inhibition of cholinesterases by reacting at an essential serine hydroxyl group. The inhibition process depends on the leaving group, stereochemistry and reactivity of the organophosphorus compound. In this study, the inhibitory potency of two isoelectronic and isostructural diaza- and dioxophospholes A (CH3C6H3 O2P(O)Cl) and B (CH3C6H3(NH)2P(O)Cl) against human acetylcholinesterase (hAChE) was examined by spectrophotometric measurements based on Ellman's method. Results indicated that compounds A and B were irreversible inhibitors with IC50 values of 0.48 and 1.54mM, respectively and inactivation constants (k(i)) of 0.0363 and 0.0207min(-1), respectively. The differences in the inhibitory potency of two phosphole compounds is discussed with respect to their structures. In addition, the synthesis and characterization of compound A is discussed.  相似文献   

3.
Eight newly synthesized carbacylamidophosphates with the general formula RC(O)NHP(O)Cl2 with R = pCl-C6H4 1a, pBr-C6H4 2a, C6H5 3a, and pMe-C6H4 4a and RC(O)NHP(O)(NC4H8O)2 R = pCl-C6H4 1b, pBr-C6H4 2b, C6H5 3b, pMe-C6H4 4b, were selected to compare the inhibition kinetic parameters, IC50, Ki, kp and KD, on human erythrocyte acetylcholinesterase (hAChE) and bovine serum butyrylcholinesterase (BuChE), Also, the in vivo inhibition potency of compound 2a, 2b and 3a, were studied. The data demonstrates that compound 2a and compound 2b are the potent sensitive as AChE and BuChE inhibitors respectively, and the inhibition of hAChE is about 10-fold greater than that of BuChE.  相似文献   

4.
The differences in the inhibition activity of organophosphorus agents are a manifestation of different molecular properties of the inhibitors involved in the interaction with the active site of enzyme. We were interested in comparing the inhibition potency of four known synthesized carbacylamidophosphates with the general formula RC(O)NHP(O)Cl2, constituting organophosphorus compounds, where R = CCl3 (1), CHCl2 (2), CH2Cl (3) and CF3 (4), and four new ones with the general formula RC(O)NHP(O)(R')2, where R' = morpholine and R = CCl3 (5), CHCl2 (6), CH2Cl (7), CF3 (8), on AChE and BuChE activities. In addition, in vitro activities of all eight compounds on BuChE were determined. Besides, in vivo inhibition potency of compounds 2 and 6, which had the highest inhibition potency among the tested compounds, was studied. The data demonstrated that compound 2 from the compound series 1 to 4 and compound 6 from the compound series 5 to 8 are the most sensitive as AChE and BuChE inhibitors, respectively. Comparing the IC50 values of these compounds, it was clear that the inhibition potency of these compounds for AChE are 2- to 100-fold greater than for BuChE inhibition. Comparison of the kinetics (IC50, Ki, kp, KA and KD) of AChE and BuChE inactivation by these compounds resulted in no significant difference for the measured variables except for compounds 2 and 6, which appeared to be more sensitive to AChE and BuChE by significantly higher kp and Ki values and a lower IC50 value in comparison with the other compounds. The LD50 value of compounds 2 and 6, after oral administration, and the changes of erythrocyte AChE and plasma BuChE activities in albino mice were studied. The in vivo experiments, similar to the in vitro results, showed that compound 2 is a stronger AChE and BuChE inhibitor than the other synthesized carbacylamidophosphates. Furthermore, in this study, the importance of electropositivity of the phosphorus atom, steric hindrance and leaving group specificity were reinforced as important determinants of inhibition activity.  相似文献   

5.
The ability of phosphoramidates Me2NP(O)(Cl)(p-NHC6H4NO2) 1, Me2NP(O)(p-NHC6H4NO2)2 2, (CH3C6H4O-p)P(O)(p-NHC6H4NO2)2 3 and (CH3C6H40-p)2P(O)(p-NHC6H4NO2) 4 to inhibit human acetylcholinesterase (hAChE) has been evaluated by a modified Ellman's method and spectrophotometric measurements. Results showed that compounds 1 and 2 do not have any inhibitory potency, whereas compounds 3 and 4 were reversible mixed inhibitors. The IC50 values for inhibitors 3 and 4 were 0.143 and 0.581 mM, respectively. The previously unknown compounds 3 and 4 were synthesized and characterized by 1H, 13C, 31P NMR and IR spectroscopy and elemental analysis.  相似文献   

6.
Two novel structurally related phosphoramidate compounds, 1 and 2, with likely beta-diketone system were synthesized and characterized by 1H, 13C, 31P NMR, IR spectroscopy and elemental analysis. Compound 2 exhibited a 31P NMR signal which was significantly shielded (8 ppm) relative to compound 1. Determination of human erythrocyte acetylcholinesterase (hAChE) inhibitory activity was carried out according to Ellman's modified kinetic method and the IC50 values of compounds 1 and 2 were 1.567 and 2.986 mM, respectively. The k(i) values of 1 and 2 were 1.39 to 2.65 min(-1) respectively. A comparison of the bimolecular rate constant (k(i)) and IC50 values for the irreversible inhibitors 1 and 2 revealed that the oxono analogue has greater affinity for hAChE than the thiono compound. Furthermore effects of two conventional oximes paralidoxime (A) and obidoxime (B) on reactivation of the inhibited hAChE were studied but low reactivity was shown by both the oximes.  相似文献   

7.
The simultaneous use of the repellent DEET, pyridostigmine, and organophosphorus pesticides has been assumed as a potential cause for the Gulf War Illness and combinations have been tested in different animal models. However, human in vitro data on interactions of DEET with other compounds are scarce and provoked the present in vitro study scrutinizing the interactions of DEET, pyridostigmine and pesticides with human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBChE). DEET showed to be a weak and reversible inhibitor of hAChE and hBChE. The IC(50) of DEET was calculated to be 21.7mM DEET for hAChE and 3.2mM DEET for hBChE. The determination of the inhibition kinetics of pyridostigmine, malaoxon and chlorpyrifos oxon with hAChE in the presence of 5mM DEET resulted in a moderate reduction of the inhibition rate constant k(i). The decarbamoylation velocity of pyridostigmine-inhibited hAChE was not affected by DEET. In conclusion, the in vitro investigation of interactions between human cholinesterases, DEET, pyridostigmine, malaoxon and chlorpyrifos oxon showed a weak inhibition of hAChE and hBChE by DEET. The inhibitory potency of the tested cholinesterase inhibitors was not enhanced by DEET and it did not affect the regeneration velocity of pyridostigmine-inhibited AChE. Hence, this in vitro study does not give any evidence of a synergistic effect of the tested compounds on human cholinesterases.  相似文献   

8.
Alzheimer's disease is rapidly becoming one of the most prevalent human diseases. Inhibition of human acetylcholinestrase (hAChE) and butyrylcholinestrase (BChE) has been linked to amelioration of Alzheimer's symptoms and research into inhibitors is of critical importance. Purification of the methanol extract of Paulownia tomentosa fruits yielded potent hAChE and BChE inhibitory flavonoids (1-9). A comparative activity screen indicated that a geranyl group at C6 is crucial for both hAChE and BChE. For example, diplacone (8) showed 250-fold higher efficacy than its parent eriodictyol (12). IC(50)s of diplacone (8) were 7.2 μM for hAChE and 1.4 μM for BChE. Similar trends were also observed for 4'-O-methyldiplacone (4) (vs its parent, hesperetin 10) and mimulone (7) (vs its parent, naringenin 11). Representative inhibitors (1-8) showed mixed inhibition kinetics as well as time-dependent, reversible inhibition toward hAChE. The binding affinities of these compounds to hAChE were investigated by monitoring quenching of inherent enzyme fluorescence. The affinity constants (K(SA)) increased in proportion to inhibitory potencies.  相似文献   

9.
The structure-activity relationships of organophosphorus (OP) and organosulfur compounds were examined in vitro and in vivo as inhibitors of mouse brain monoacylglycerol lipase (MAGL) hydrolysis of 2-arachidonoylglycerol (2-AG) and agonist binding at the CB1 receptor. Several compounds showed exceptional potency toward MAGL activity with IC(50) values of 0.1-10 nM in vitro and high inhibition at 10mg/kg intraperitoneally in mice. We find for the first time that MAGL activity is a major in vivo determinant of 2-AG and arachidonic acid levels not only in brain but also in spleen, lung, and liver. Apparent direct OP inhibition of CB1 agonist binding may be due instead to metabolic stabilization of 2-AG in brain membranes as the actual inhibitor.  相似文献   

10.
Carbamate inhibitors (e.g. pyridostigmine bromide) are used as a pre-treatment for the prevention of organophosphorus poisoning. They work by blocking the native function of acetylcholinesterases (AChE) and thus protect AChE against irreversible inhibition by organophosphorus compounds. However, carbamate inhibitors are known for their many undesirable side effects related to the carbamylation of AChE. In this paper, we describe 17 novel bisquaternary compounds and have analysed their effect on AChE inhibition. The newly prepared compounds were evaluated in vitro using both human erythrocyte AChE and human plasmatic butyrylcholinesterase. Their inhibitory ability was expressed as the half maximal inhibitory concentration (IC??) and then compared to the standard carbamate drugs and two AChE reactivators. One of these novel compounds showed promising AChE inhibition in vitro (nM range) and was better than the currently used standards. Additionally, a kinetic assay confirmed the non-competitive inhibition of hAChE by this novel compound. Consequently, the docking results confirmed the apparent π-π or π-cationic interactions with the key amino acid residues of hAChE and the binding of the chosen compound at the enzyme catalytic site.  相似文献   

11.
Two novel structurally related phosphoramidate compounds, 1 and 2, with likely β-diketone system were synthesized and characterized by 1H, 13C, 31P NMR, IR spectroscopy and elemental analysis. Compound 2 exhibited a 31P NMR signal which was significantly shielded (8 ppm) relative to compound 1. Determination of human erythrocyte acetylcholinesterase (hAChE) inhibitory activity was carried out according to Ellman's modified kinetic method and the IC50 values of compounds 1 and 2 were 1.567 and 2.986 mM, respectively. The ki values of 1 and 2 were 1.39 to 2.65 min? 1 respectively. A comparison of the bimolecular rate constant (ki) and IC50 values for the irreversible inhibitors 1 and 2 revealed that the oxono analogue has greater affinity for hAChE than the thiono compound. Furthermore effects of two conventional oximes paralidoxime (A) and obidoxime (B) on reactivation of the inhibited hAChE were studied but low reactivity was shown by both the oximes.  相似文献   

12.
Carbamate inhibitors (e.g. pyridostigmine bromide) are used as a pre-treatment for the prevention of organophosphorus poisoning. They work by blocking the native function of acetylcholinesterases (AChE) and thus protect AChE against irreversible inhibition by organophosphorus compounds. However, carbamate inhibitors are known for their many undesirable side effects related to the carbamylation of AChE. In this paper, we describe 17 novel bisquaternary compounds and have analysed their effect on AChE inhibition. The newly prepared compounds were evaluated in vitro using both human erythrocyte AChE and human plasmatic butyrylcholinesterase. Their inhibitory ability was expressed as the half maximal inhibitory concentration (IC50) and then compared to the standard carbamate drugs and two AChE reactivators. One of these novel compounds showed promising AChE inhibition in vitro (nM range) and was better than the currently used standards. Additionally, a kinetic assay confirmed the non-competitive inhibition of hAChE by this novel compound. Consequently, the docking results confirmed the apparent π-π or π-cationic interactions with the key amino acid residues of hAChE and the binding of the chosen compound at the enzyme catalytic site.  相似文献   

13.
Eight newly synthesized carbacylamidophosphates with the general formula RC(O)NHP(O)Cl2 with R = pCl–C6H4 1a, pBr–C6H4 2a, C6H5 3a, and pMe–C6H4 4a and RC(O)NHP(O)(NC4H8O)2 R = pCl–C6H4 1b, pBr–C6H4 2b, C6H5 3b, pMe–C6H4 4b, were selected to compare the inhibition kinetic parameters, IC50, Ki, kp and KD, on human erythrocyte acetylcholinesterase (hAChE) and bovine serum butyrylcholinesterase (BuChE), Also, the in vivo inhibition potency of compound 2a, 2b and 3a, were studied. The data demonstrates that compound 2a and compound 2b are the potent sensitive as AChE and BuChE inhibitors respectively, and the inhibition of hAChE is about 10-fold greater than that of BuChE.  相似文献   

14.
The anti-AChE activity of phosphoramidates has been noticed for many years. Because of the wide application of phosphoramidates in recent years, there has been a continuing research for synthesis, purification and identification of effective and safe derivatives. In this study some rodenticides with the general formula Me(2)NP(O)(p-OC(6)H(4)-X)(2), where X = H, CH(3), Cl, have been synthesized in water (without organic solvent) and characterized by (31)P, (31)P {(1)H}, (13)C and (1)H NMR spectroscopy. Since lipophilicity has been recognized for its importance in QSAR studies, efforts have been made to determine the logP values. The ability of these rodenticides to inhibit human acetylcholinesterase (hAChE) has been predicted with PASS (Prediction of Activity Spectra for Substances) software (version 1.917) and then has been evaluated by a modified Ellman's assay and spectrophotometric measurements.  相似文献   

15.
Human dipeptidyl peptidase I (hDPPI, cathepsin C, EC 3.4.14.1) is a novel putative drug target for the treatment of inflammatory diseases. Using 1 as a starting point (IC50>10 microM), we have improved potency by more than 500-fold and successfully identified novel inhibitors of DPPI via screening of a one-bead-two-compounds library of semicarbazide derivatives. Selected compounds were shown to inhibit intracellular DPPI in RBL-2H3 cells. These compounds were further characterized for adverse effects on HepG2 cells (cytotoxicity and viability) and their metabolic stability in rat liver microsomes was estimated. One of the most potent inhibitors, 8 (IC50=31+/-3 nM; Ki=45+/-2 nM, competitive inhibition), is selective for DPPI over other cysteine and serine proteases, has a half-life of 24 min in rat liver microsomes, shows approximately 50% inhibition of intracellular DPPI at 20 microM and is noncytotoxic.  相似文献   

16.
Luo L  He XP  Shen Q  Li JY  Shi XX  Xie J  Li J  Chen GR 《化学与生物多样性》2011,8(11):2035-2044
Development of novel purine derivatives has attracted considerable interest, since both purine and purine-based nucleosides display a wide range of crucial biological activities in nature. We report here a novel expansion of these studies by introducing gluco- or galactopyranosyl scaffold to the N- or 9-position (or both) of 6-Cl purine moiety via Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition. By such an efficient reaction, a series of glycosyl-triazolyl-purines were successfully synthesized in good yields. Biological evaluation showed that the majority of these glycoconjugates were good PTP1B inhibitors with IC(50) values in low micromolar range (1.5-11.1 μM). The benzylated sugar derivatives displayed better inhibitory potency than that of the acetylated ones. Replacement of Cl by MeO at C(6) of the purine moiety decreased the inhibition in the case of benzylated (glycosyl-mono-triazolyl)-purines 11 and 12 (IC(50) >80 μM), whereas MeO-substituted benzylated bis[galactosyl-triazolyl]-purine 16 possessed the best inhibitory activity with an IC(50) value of 1.5 μM. Additionally, these compounds exhibited 2- to 57-fold selectivity over other PTPs (TCPTP, SHP1, SHP2, and LAR).  相似文献   

17.
Flavonoids are polyphenolic compounds that widely exist in plant kingdom, and the structure-activity relationship (SAR) of 25 flavonoids was studied on neuraminidase (NA) activity of influenza virus. Three typical influenza virus strains A/PR/8/34 (H1N1), A/Jinan/15/90 (H3N2), and B/Jiangshu/10/2003 were used as the source of NAs, the average of IC(50)s of these compounds on these NAs was used in the SAR analysis. The order of potency for NA inhibition was as follows: aurones>flavon(ol)es>isoflavones>flavanon(ol)es and flavan(ol)es. The SAR analysis of flavonoids on influenza virus NAs revealed that for good inhibitory effect, the 4'-OH, 7-OH, C4O, and C2C3 functionalities were essential, and the presence of a glycosylation group greatly reduced NA inhibition. The in vitro anti-viral activities of eight flavonoids were evaluated using a cytopathic effect (CPE) reduction method, the assay results confirmed the SAR as influenza virus neuraminidase inhibitors. The findings of this study provide important information for the exploitation and utilization of flavonoids as NA inhibitors for influenza treatment.  相似文献   

18.
The dependence of antiesteratic activity on the structure of insecticides (RO)2P(O)SCH(COOEt)SP(O)(OR)2 (I) and (RO)2P(O)SCH(COOEt)OP(S)(OR)2 (II) was examined. Nonlinear regression equations (parabolic and bilinear) "hydrophobicity-antiesteratic activity" were derived. Basing on the studies of the relationships between hydrophobicity and individual constants, the detailed mechanisms were proposed for the interaction of type (I) and (II) compounds with the esterase active centers. The mechanisms implicate different kinds of sorbtion for compounds of type I and II. Applicability of bilinear models, similar to that of Kubinyi type, for analyzing the structure-antienzyme activity dependences was demonstrated. Thus, several equations were obtained starting from the literature data on inhibition of esterases with diverse organophosphorus compounds.  相似文献   

19.
The Pt(II) and Pd(II) complexes of the types cis-[Pt(L(1))(2)Cl(2)].H(2)O (1), cis-[Pt(L(2))(2)Cl(2)].3H(2)O (2), trans-[Pd(L(1))(2)Cl(2)].H(2)O (3), trans-[Pd(L(2))(2)Cl(2)].H(2)O (4), trans-[Pd(L(3))(2)Cl(2)].2DMF (5) and trans-[Pd(L(4))(2)Cl(2)].2DMF (6) (L(1)-L(4)=cyclin-dependent kinase inhibitors derived from 6-benzylamino-9-isopropylpurine) have been prepared and characterized. The complexes have been studied by elemental analyses, conductivity measurements, ES+ MS, FT-IR, (1)H, (13)C and (195)Pt NMR spectra, differential scanning calorimetry and thermogravimetric analysis. The molecular structures of L(1), trans-[Pd(L(3))(2)Cl(2)].2DMF (5) and trans-[Pd(L(4))(2)Cl(2)].2DMF (6) have been determined by single crystal X-ray analysis. The complexes have been tested in vitro due to their presumable anticancer activity against the following human cancer cell lines: K-562, MCF7, G-361 and HOS. Satisfying results were obtained for the complex 1 with IC(50) values of 6 microM acquired against G-361 as well as against HOS cell lines. The lowest values of IC(50) were achieved for the complexes 3 and 4 against MCF 7 cell line with IC(50) 3 microM(for 3) and also 3 microM (for 4).  相似文献   

20.
Phosphoramido acid esters (CH(3))(2)NP(O)X(p-OC(6)H(4)-CH(3)) (containing P-Cl (1), P-O (2), P-F (3), P-CN (5), and P-N (4,6) bonds, X for 2, 4 and 6 is OCH(3), (C(2)H(5))(2)N and morpholin) have been synthesized to investigate the structure-activity study of AChE enzyme inhibition, through the parameters logP, delta(31)P and IC(50). After their characterization by (31)P, (31)P{(1)H}, (13)C, (1)H NMR, IR and mass spectroscopy, the parameters logP and delta(31)P ((31)P chemical shift in NMR) were used to evaluated the lipophilicity and electronical properties. The ability of compounds to inhibit human AChE was predicted by PASS software (version 1.193), and experimentally evaluated by a modified Ellman's assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号