首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the field of stem cell research, SP (side population) phenotype is used to define the property that cells maintain a high efflux capability for some fluorescent dye, such as Hoechst 33342. Recently, many researches proposed that SP phenotype is a phenotype shared by some stem cells and some pro- genitor cells, and that SP phenotype is regarded as a candidate purification marker for stem cells. In this research, murine fertilized ova (including conjugate and single nucleus fertilized ova), 2-cell stage and 8-cell stage blastomeres, morulas and blastocysts were isolated and directly stained by Hoechst 33342 dye. The results show that fertilized ovum, blastomere and morula cells do not demonstrate any ability to efflux the dye. However, the inner cell mass (ICM) cells of blastocyst exhibit SP phenotype, which is consistent with the result of embryonic stem cells (ESCs) in vitro. These results indicate that the SP phenotype of ICM-derived ESCs is an intrinsic property and independent of the culture condition in vitro, and that SP phenotype is one of the characteristics of at least some pluripotent stem cells, but is not shared by totipotent stem cells. In addition, the result that the SP phenotype of ICM cells disap- peared when the inhibitor verapamil was added into medium implies that the SP phenotype is directly associated with ABCG2. These results suggest that not all the stem cells demonstrate SP phenotype, and that SP phenotype might act as a purification marker for partial stem cells such as some pluripo- tent embryonic stem cells and multipotent adult stem cells, but not for all stem cells exampled by the totipotent stem cells in the very early stage of mouse embryos.  相似文献   

2.
Embryonic stem (ES) cells are pluripotent cells with the capacity to generate any type of cell. Here we describe the isolation of ES-like cells from canine blastocysts. Canine embryos were collected from beagle bitches at day 11-16 of first estrus. A total of 80 normal embryos were obtained from 15 dogs. Of the embryos, 13 were at the morulae stage, 39 at the blastocyst stage, and 28 at the hatched blastocyst stage. The inside of morulae or inner cell masses (ICMs) of blastocysts were isolated mechanically, and cultured onto mouse embryonic fibroblasts (MEF) as feeder layers. Primary cell colonies were formed in 0% (0/13) of morulae, 25.6% (10/39) of blastocysts, and 67.9% (19/28) of hatched blastocysts. These colonies were separated either by enzymatic dissociation or by mechanical disaggregation. Dissociation with collagenase resulted in immediate differentiation, but with mechanical disaggregation these cells remained undifferentiated, and two ES-like cell lines (cES1, cES2) continued to grow in culture after eight passages. These cells had typical stem cell-like morphology and expressed specific markers such as alkaline phosphatase activity, stage specific embryonic antigen-1 and Oct-4. These cells formed embryoid bodies (EBs) in a suspension culture; extended culture of EBs resulted in the formation of cystic EBs. When the simple EBs were cultured on tissue culture plates, they differentiated into several types of cells including neuron-like, epithelium-like, fibroblast-like, melanocyte-like, and myocardium-like cells. These observations indicate that we successfully isolated and characterized canine ES-like cells.  相似文献   

3.
Human embryonic stem cells (hESC) not only hold great promise for the treatment of degenerative diseases but also provide a valuable tool for developmental studies. However, the clinical applications of hESC are at present limited by xeno-contamination during the in vitro derivation and propagation of these cells. In this review, we summarize the current methodologies for the derivation and the propagation of hESC in conditions that will eventually enable the generation of clinical-grade cells for future therapeutic applications.  相似文献   

4.
昆明白小鼠胚胎干细胞分离与体外培养   总被引:4,自引:0,他引:4  
为探索昆明白小鼠胚胎干细胞建系方法,将受孕4.5天的昆明白小鼠囊胚用免疫手术法去除滋胚层,然后将内细胞团(ICM)接种于胎鼠成纤维细胞饲养层上培养,形成的胚胎干细胞样集落用胰蛋白酶-EDTA消化法传代,培养后进行相差显微镜观察及碱性磷酸酶染色。结果饲养层上生长的ICM细胞呈典型的ES样细胞集落,传至第8代碱性磷酸酶染色呈强阳性。实验表明免疫手术法适用于昆明白小鼠ES细胞建系,获得的细胞集落具有ES细胞的主要生物学性状。  相似文献   

5.
Epithelial-mesenchymal transition (EMT) is associated with cancer malignancies such as invasion, metastasis, and drug resistance. In this study, HCT116 human colorectal cancer cells were transduced with SLUG or SNAIL retroviruses, and EMT cells with mesenchymal morphology were established. The EMT cells showed a high invasive activity and resistance to several anticancer agents such as methotrexate, SN-38, and cisplatin. Furthermore, they contained about 1–10% side population (SP) cells that were not stained by Hoechst 33342. This SP phenotype was not stable; the isolated SP cells generated both SP and non-SP cells, suggesting a potential for differentiation. Gene expression analysis of SP cells suggested the alteration of genes that are involved in epigenetic changes. Therefore, we examined the effect of 74 epigenetic inhibitors, and found that two inhibitors, namely I-BET151 and bromosporine, targeting the bromodomain and extra-terminal motif (BET) proteins, decreased the ratio of SP cells to <50% compared with the control, without affecting the immediate efflux of Hoechst 33342 by transporters. In addition, compared with the parental cells, the EMT cells showed a higher sensitivity to I-BET151 and bromosporine. This study suggests that EMT development and SP phenotype can be independent events but both are regulated by BET inhibitors in SLUG- or SNAIL-transducted HCT116 cells.  相似文献   

6.
Mouse embryonic stem cells (mESCs) have the capability to undergo unlimited cell division and differentiate into derivatives of all three embryonic germ layers. These fundamental features enable mESCs to potentially be appropriate, efficient models for biological and medical research. Therefore, it is essential to produce high-performance mESCs. In the current study, we have produced mESCs from blastocysts that developed from fertilized oocytes of 2 (2-C57)-, 4 (4-C57)-, and 6 (6-C57)-month-old C57BL/6 mice. A comparison of isolated stem cells was done from the viewpoint of the efficiency of mESC derivation, self-renewal, and their differentiation capacity. All generated mESCs showed a similar expression of the molecular markers protein of pluripotency and AP activity. In the 3i medium, there was a significant decrease in undifferentiated marker genes expression in the 2-C57 cells compared with the other two groups ( P < 0.05) but developmental genes significantly increased in the 4-C57 and 6-C57 cells compared with the 2-C57 cells ( P < 0.05). The differentiation capacity into three germ layers through the embryoid body formation and percentage of cell lines with normal numbers of chromosomes reduced with increased maternal age. The highest DT and highest percentage of cells in the S phase belonged to 2-C57 cells. These data demonstrated that blastocysts which developed from fertilized oocytes of 2-, 4-, and 6-month-old C57BL/6 mice can generate pluripotent stem cells, and suggested that both the efficiency of mESC isolation and the behavior of these isolated mESCs including pluripotency, self-renewal, cell cycle, and DT changed with increasing maternal age.  相似文献   

7.
8.
9.
10.
This study was carried out to isolate and characterize buffalo embryonic stem (ES) cell-like cells from in vitro-produced embryos. Inner cell mass (ICM) cells were isolated either mechanically or by enzymatic digestion from 120 blastocysts whereas 28 morulae were used for the isolation of blastomeres mechanically. The ICM cells/ blastomeres were cultured on mitomycin-C-treated feeder layer. Primary cell colony formation was higher (P < 0.05) for hatched blastocysts (73.1%, 30/41) than that for early/expanded blastocysts (25.3%, 20/79). However, no primary cell colonies were formed when blastomeres obtained from morulae were cultured. Primary colonies were formed in 14.1% (12/85) of intact blastocyst culture, which was significantly lower (P < 0.05) than that of 41.6% for ICM culture. These colonies were separated by enzymatic or mechanical disaggregation. Using mechanical disaggregation method, the cells remained undifferentiated and two buffalo ES cell-like cell lines (bES1, bES2) continued to grow in culture up to eight passages. However, disassociation through enzymatic method resulted in differentiation. Undifferentiated cells exhibited stem cell morphological features, normal chromosomal morphology, and expressed specific markers such as alkaline phosphatase (AP) and Oct-4. Cells formed embryoid bodies (EBs) in suspension culture; extended culture of EBs resulted in formation of cystic EBs. Following prolonged in vitro culture, these cells differentiated into several types of cells including neuron-like and epithelium-like cells. Furthermore, the vitrified-thawed ES cell-like cells also exhibited typical stem cell characteristics. In conclusion, buffalo ES cell-like cells could be isolated from in vitro-produced blastocysts and maintained in vitro for prolonged periods of time.  相似文献   

11.
人胚胎干细胞培养建系及其应用   总被引:1,自引:0,他引:1  
简要概述了自1998年首次建立hES细胞系以来近6-7年国内外的现况、分离培养建系、鉴定标准和冻存技术发展、定向诱导分化及其应用等方面的研究进展。  相似文献   

12.
对关中奶山羊配种后6~7天的桑椹胚和囊胚,分别采用全胚培养法、酶消化法和免疫外科法进行处理.将处理后的胚胎培养于小鼠胎儿成纤维细胞(MEF)饲养层上,分离培养山羊胚胎干细胞(Embryonic stem cell,ESC).对分离传代的山羊ESCs分别进行免疫组化染色,RT-PCR检测和体外诱导分化试验.结果表明.全胚培养法易于胚胎贴壁形成原代集落,采用全胚培养法获得的ESCs有一株目前已传至18代.山羊ESCs Nanong、Oct4、SSEA-3免疫组化染色呈阳性,SSEA-1免疫组化染色呈弱阳性,SSEA-4免疫组化染色呈阴性,RT-PCR检测显示其表达Nanog、Oct4、端粒酶、CD117.山羊ESCs经DMSO体外诱导可以向心肌细胞分化.这些试验均表明该细胞具有ESCs的生物学特性.  相似文献   

13.
探索高效的不同品系的小鼠胚胎干细胞的建系方法。B6D2F1(C57BL/6×DBA/2)、129/SV×DBA/2、C57BL/6、BALB/C等4个不同品系小鼠,孕马血清促性腺激素(pregnant mare serum gonadotrophin,PMSG) 人绒毛膜促性腺激素(human chorionic gonadotropin,HCG)促排,3.5天交配后(days post coitus,dpc)冲洗子宫取囊胚,或者2.5dpc冲洗输卵管,卵裂球体外培养获取囊胚。囊胚种植到小鼠成纤维细胞饲养层上干细胞培养液培养,4~5天内细胞团扩增后玻璃毛细管挑出,种植到新的饲养层上过夜再行胰蛋白酶消化,3~4天传代一次。对所建立的小鼠ES细胞系进行形态学、染色体核型、AKP染色、体内外分化能力,干细胞分子标记物荧光免疫染色等鉴定。获得10株小鼠胚胎干细胞,具有典型的胚胎干细胞生长特性,符合ES细胞的鉴定标准。结果表明成功的建立了来自B6D2F1(C57BL/6×DBA/2)、129/SV×DBA/2、C57BL/6、BALB/C等4个不同品系小鼠的10株ES细胞系。内细胞团挑出过夜增殖后消化的培养方法可能有助于提高ES细胞的建系率。  相似文献   

14.
Lin T  Islam O  Heese K 《Cell research》2006,16(11):857-871
Stem cells intrigue. They have the ability to divide exponentially, recreate the stem cell compartment, as well as create differentiated cells to generate tissues. Therefore, they should be natural candidates to provide a renewable source of cells for transplantation applied in regenerative medicine. Stem cells have the capacity to generate specific tissues or even whole organs like the blood, heart, or bones. A subgroup of stem cells, the neural stem cells (NSCs), is characterized as a self-renewing population that generates neurons and glia of the developing brain. They can be isolated, genetically manipulated and differentiated in vitro and reintroduced into a developing, adult or a pathologically altered central nervous system. NSCs have been considered for use in cell replacement therapies in various neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. Characterization of genes with tightly controlled expression patterns during differentiation represents an approach to understanding the regulation of stem cell commitment. The regulation of stem cell biology by the ATP-binding cassette (ABC) transporters has emerged as an important new field of investigation. As a major focus of stem cell research is in the manipulation of cells to enable differentiation into a targeted cell population; in this review, we discuss recent literatures on ABC transporters and stem cells, and propose an integrated view on the role of the ABC transporters, especially ABCA2, ABCA3, ABCB 1 and ABCG2, in NSCs' proliferation, differentiation and regulation, along with comparisons to that in hematopoietic and other stem cells.  相似文献   

15.
16.
Developmental potency of primitive and embryonic ectoderm cells from 4.50-day to 6.25-day post-coitum (p.c.)mouse embryos and primordial germ cells from 12.50-day p.c. male genital ridges of fetal mice were studied by direct introducing them into 3.50-day p.c. blastocysts. Sixteen (61.5%) overt chimaeras out of 26(50%) offsprings were obtained after transfer of 52 blastocysts injected with 4.50-day primitive ectoderm cells; four (16.0%) overt chimaeras were obtained out of 25 (51.0%) offsprings with 4.75-day primitive ectoderm cells from 49 transferred blastocysts. However, no overt chimaera was obtained with either 5.25-day or 6.25day embryonic ectoderm cells or 12.50-day male primordial germ cells. GPI analysis of mid-gestation conceptuses developed from injected blastocysts showed that 5.25-day embryonic ectoderm cells could only contributed to yolk sac of conceptus. Results suggested that implantation acts as a trigger for the determination of primitive ectoderm cells, and their developmental potency becomes limited within a short period of time in normal development.  相似文献   

17.
The morphology and number of cells in the trophectoderm (TE) and inner cell mass (ICM) of buffalo blastocysts derived from in vitro fertilization and cultured in the presence or absence of insulin-like growth factor-I (IGF-I) were analyzed by differential fluorochrome staining technique. The total cell number (TCN), TE number, and ICM cell number were significantly higher in blastocysts developed in vitro in the presence of IGF-I as compared to blastocysts developed without IGF-I (P < 0.01). It was observed that the buffalo blastocyst took 5–9 days postfertilization to develop in vitro. In order to correlate the time required for blastocyst development and the allocation of cells to TE and ICM, blastocysts were designated as fast (developing on or before day 7) or slow (developing after day 7). The TCN, TE, and ICM cells of fast-developing blastocysts cultured in the presence of IGF-I were significantly higher than slow-developing blastocysts (P < 0.01). The blastocysts developed on day 6 had a mean total cell number 118.6 ± 21.4, which significantly decreased to 85.6 ± 17.4, 62.0 ± 14.5, and 17.0 ± 4.0 on days 7, 8, and 9, respectively (P < 0.05). Normal development of buffalo embryo showed that, on average, embryos reached compact morula stage at the earliest between days 4.5–5.5. Blastocysts developed, at the earliest, between days 5.0–6.0, and it took them, on average, 6.5 days to hatch from the zona pellucida. TCN, TE, and ICM increased three times from morula to blastocyst; however, the proportion of ICM to TCN remained the same, in both embryonic stages. TE approximately doubled in hatched blastocysts, as compared to unhatched blastocysts (P < 0.05). However, ICM cells were decreased. The time required for development of parthenogenetic blastocysts was observed to be greater as compared to in vitro fertilized (IVF) blastocysts. The total cell number of parthenogenetic blastocysts was 100.8 ± 11.3, including 59.2 ± 8.4 cells of TE and 42.1 ± 6.9 cells of ICM. © 1996 Wiley-Liss, Inc.  相似文献   

18.
Poor quality embryos discarded from in vitro fertilization (IVF) laboratories are good sources for deriving human embryonic stem cell (hESC) lines. In this study, 166 poor quality embryos donated from IVF centers on day 3 were cultured in a blastocyst medium for 2 days, and 32 early blastocysts were further cultured in a blastocyst optimum culture medium for additional 2 days so that the inner cell masses (ICMs) could be identified and isolated easily. The ICMs of 17 blastocysts were isolated by a mechanical method, while those of the other 15 blastocysts were isolated by immunosurgery. All isolated ICMs were inoculated onto a feeder layer for subcultivation. The rates of ICM attachment, primary ICM colony formation and the efficiency of hESC derivation were similar between the ICMs isolated by the two methods (P〉0.05). As a result, four new hESC lines were established. Three cell lines had normal karyotypes and one had an unbalanced Robertsonian translocation. All cell lines showed normal hESC characteristics and had the differentiation ability. In conclusion, we established a stable and effective method for hESC isolation and culture, and it was confirmed that the mechanical isolation was an effective method to isolate ICMs from poor embryos. These results further indicate that hESC lines can be derived from poor quality embryos discarded by IVF laboratories.  相似文献   

19.
Human embryonic stem cell (hESC) lines are derived from the inner cell mass (ICM) of preimplantation human blastocysts obtained on days 5–6 following fertilization. Based on their derivation, they were once thought to be the equivalent of the ICM. Recently, however, studies in mice reported the derivation of mouse embryonic stem cell lines from the epiblast; these epiblast lines bear significant resemblance to human embryonic stem cell lines in terms of culture, differentiation potential and gene expression. In this study, we compared gene expression in human ICM cells isolated from the blastocyst and embryonic stem cells. We demonstrate that expression profiles of ICM clusters from single embryos and hESC populations were highly reproducible. Moreover, comparison of global gene expression between individual ICM clusters and human embryonic stem cells indicated that these two cell types are significantly different in regards to gene expression, with fewer than one half of all genes expressed in both cell types. Genes of the isolated human inner cell mass that are upregulated and downregulated are involved in numerous cellular pathways and processes; a subset of these genes may impart unique characteristics to hESCs such as proliferative and self-renewal properties.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号