首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shoot subapical cells in the parasitic angiospermCuscuta japonica seedlings were ultrastructurally studied. Seedlings were grown for 3 d in the dark and then for an additional 3 d in sunlight. Under either type of illumination, most cells in the primary meristem contained several vacuoles with or without electron-dense particles. These vacuoles were believed to be derived from degraded protein bodies with globoid crystals that were stored in the embryos. As growth progressed, the reserves were gradually depleted, while various cell organdies increased. This indicated that those storage reserves were utilized for seedling development and that, concurrently, cellular metabolism in the seedling cells converted from a quiescent to an active state. When seedlings were exposed to sunlight, etioplasts with prolamellar bodies developed into chloroplasts possessing thylakoids that were well-organized into grana. These observations suggest that C.japonica seedlings might exist autotrophically and photosynthesize during a free-living stage prior to parasitizing their hosts.  相似文献   

2.
In the parenchyma cells of 1-d-old dark-grown rye coleoptiles (Secale cereale) proplastids occurred which sometimes contained starch grains. During coleoptile growth in darkness starch-filled amyloplasts are formed from the preexisting proplastids. No prolamellar bodies were observed in the stroma of the plastids of the etiolated coleoptile. After irradiation of 3-d-old etiolated coleoptiles with continuous white light three different types of plastids occurred. In the epidermal cells proplastids were observed. The parenchyma cells below the stomata of the outer epidermis (above the two vascular bundles) contained mature, spindle-shaped chloroplasts with a well-developed thylakoid system. In the parenchyma cells that surround the vascular bundles amyloplasts with some thylakoid membranes (chloroamyloplasts) occurred. The mesophyll cells of the primary leaves of dark-grown seedlings contained etioplasts with large prolamellar bodies. In the primary leaves of irradiated plants chloroplasts similar to those of the parenchyma cells of the coleoptile were observed. Our results show that the rye coleoptile, which grows underground as a heterotrophic organ, is capable of developing mature chloroplasts upon reaching the light above the soil surface. The significance of this expression of photosynthetic capacity for the carbon economy of the developing seedling is discussed.  相似文献   

3.
Summary Amaranthus plants infected with a virus of rod-shaped particles showed under the light microscope intracytoplasmic amorphous and crystalline inclusions.The submicroscopic organization of mesophyll cells from infectedAmaranthus leaves by electron microscopy is described. Besides big crystalline inclusions, long dark inclusions correspondent to needle-like inclusions observed by light microscopy are definable in the cytoplasm. The amorphous inclusion bodies were formed by an overgrown protrusion of vacuolate cytoplasm containing virus particles, long very dark stained inclusions forming dense bands and rings, normal elements of the cytoplasm such as mitochondria, endoplasmic reticulum and ribosomes, and some spherosomes. Inclusions and virus particles were not found in chloroplasts, mitochondria or nuclei of infected cells.  相似文献   

4.
Plastids were observed in all stages of laticifer differentiation in Papaver somniferum L. Plastids in laticifer initials were present as proplastids that later developed electron-dense inclusions, but never possessed the thylakoids or starch grains that characterize chloroplasts in other cells. Electron-dense inclusions in laticifer plastids were membrane-bound and appeared to arise from the accumulation of material within an invagination of the inner plastid membrane. Cytochemical studies of these plastid inclusions indicated that their matrix was not composed of crystalline protein, α-amylose, amylopectin or polysaccharide. The results suggest that the electron-dense, membrane-bound inclusions in laticifer plastids may be composed of lipoprotein.  相似文献   

5.
The ultrastructure of nonarticulated laticifers in the seedlings ofEuphorbia maculata was studied at various developmental stages. The apical regions of the seedling laticifers growing intrusively contained large nuclei with mainly euchromatin and dense cytoplasm possessing various and many organelles such as rich ribosomes, several small vacuoles, giant mitochondria with dense matrices, rough endoplasmic reticulum, dictyosomes, and proplastids. This result suggested that the apical regions of laticifers were metabolically very active. Laticifers in seedlings at the first-leaf developmental stage did not contain latex particle. In seedlings at second-leaf growth stage, the laticifer cells contained numerous and elongated small vacuoles. These vacuoles appeared to arise by dilation of the endoplasmic reticulum and frequently possessed osmiophilic or electron-dense latex particles. The small vacuoles fused with the large vacuole occupying the central portion of the subapical region of laticifers, and then the latex particles were released into the large central vacuole. The latex particles varied in size and were lightly or darkly stained. Proplastids with a dense matrix and a few osmiophilic plastoglobuli were filled with an elongated starch grain and thus were transformed into amyloplasts. Latex particles were initially produced in the laticifers after seedlings had developed their second young leaves. In seedlings at forth-leaf stage, latex particles with an alveolated rim were found in the laticifers.  相似文献   

6.
The vegetative shoot apical meristem of tomato (Lycopersicon esculentum Mill.) was examined at the ultrastructural level. The meristem consisted of a surface layer that was different from the rest of the meristem and was unique among the dicotyledonous species. The cells of the surface layer contained large distal vacuoles with relatively large electron-dense inclusions, proplastids with membrane-bound inclusions (MB), and differentiating chloroplasts. In addition, periclinal and oblique divisions were observed in the surface layer cells along with anticlinal divisions. The cells of the subsurface layers contained small vacuoles with fewer inclusions as well as proplastids of various shapes but without MB. Differentiating chloroplasts were not observed in these cells, but autophagic vacuoles at various stages of development were present. The normal complement of cell inclusions, e.g., the mitochondria, golgi bodies, endoplasmic reticulum (ER), ribosomes, and microtubules were observed in subsurface layers, and in many cells the ER was observed to be continuous with the outer membrane of the nuclear envelope and with the plasmalemma. Further below in the meristem, cells contained both the proplastids and differentiating chloroplasts with MB. In the latter, the outer membrane of the MB was found to be continuous with the developing lamellae, suggesting that MB probably serve as the storage centers for lamellae membranes. Near the base of the meristem, in the pith-rib meristem, enlarged cells containing large vacuoles and differentiated chloroplasts were present.  相似文献   

7.
Morphological and anatomical features of mature embryos and seedlings were observed at different growth stages in the parasitic angiospermCuscuta japonica Choisy. The spirally coiled embryos from scarified seeds had no cotyledons but possessed blunt radicles. Seeds germinated at 30°C in the dark. Although most embryo cells incubated for 16 h did not have starch grains, the shoot cells of three-day-old seedlings possessed numerous starch grains. After these seedlings were transferred to a lightened growth chamber, all the shoot apical regions of seedlings grown for 6,8, and 10 days became greenish and hooked. Most of the shoot cells, including the green apical parts, contained abundant starch grains. The hooks opened only when one seedling made contact with another seedling. This suggested that the green and hooked shoot apical regions played an important role in searching for and twining about their host plants. In some two-day-old seedlings, the massive roots were circular or semi-circular. This enabled the shoot axes to stand erect on some substratum. It would assist the shoots in making contact with the host plant. In eight-day-old seedlings, the green apical regions also were hooked and the roots were considerably degraded.  相似文献   

8.
The effect of streptomycin on morphogenic explants of Lycopersicon peruvianum Mill. was examined microscopically at both the light and ultrastructural level. Early stages in shoot regeneration from leaf explants were distinguished as meristematic tissue at both levels. Small starch grains were observed in the plastids in this tissue but not in plastids in regenerated shoots. In the presence of streptomycin, adventitious shoot regeneration from sensitive leaf strips was inhibited. Large layered bodies were observed within the plastids of sensitive leaf tissue, suggesting the disruption of thylakoid membrane formation. Streptomycin resistant L. peruvianum lines, as well as a chlorophyll-deficient line, were also examined microscopically. The chloroplasts of newly regenerated streptomycin resistant shoots contained well developed internal membranes and conspicuous starch grains. Cells containing a mixture of resistant and sensitive plastids were not observed. The plastids in chlorophyll-deficient tissue completely lacked thylakoid membranes, although small vesicles and intraplastid bodies were seen within the stroma.Abbreviations NMU N-methyl-N-nitrosourea  相似文献   

9.
Espinha LM  Gaspar JO 《Cytobios》1999,100(394):119-126
Electron microscopy and immunolabelling with antiserum specific to cucumber mosaic virus coat protein were used to examine tobacco leaf cells infected by cucumber mosaic virus isolated from Catharanthus roseus (CMV-Cr). Crystalline and amorphous inclusions in the vacuoles were the most obvious cytological modifications seen. Immunogold labelling indicated that the crystalline inclusion was made up of virus particles and amorphous inclusions contained coat protein. Rows of CMV-Cr particles were found between membranes of dictyosomes, but membranous bodies and tonoplast-associated vesicles were not evident. Virus particles and/or free coat protein were easily detected in the cytoplasm by immunolabelling. No gold labelling was found within nuclei, chloroplasts and mitochondria.  相似文献   

10.
The effect of various hormonal combinations on callus formation and regeneration of shoot and root from leaf derived callus of Acanthophyllum sordidum Bunge ex Boiss. has been studied. Proteins and activity of antioxidant enzymes were also evaluated during shoot and root organogenesis from callus. Calli were induced from leaf explants excised from 30-d-old seedlings grown on Murashige and Skoog medium containing 4.52 μM 2,4-dichlorophenoxyacetic acid + 4.65 μM kinetin. Maximum growth of calli and the most efficient regeneration of shoots and roots occurred with 2.69 μM 1-naphthalene acetic acid (NAA), 2.69 μM NAA + 4.54 μM thidiazuron and 2.46 μM indole-3-butyric acid. Protein content decreased in calli and increased significantly during regeneration of shoots from callus. Superoxide dismutase activity decreased in calli comparing to that of seedlings, then increased in regenerated shoots and roots. High catalase activity was detected in seedlings and regenerated shoots, whereas high peroxidase activity was observed in calli and regenerated roots.  相似文献   

11.
Abstract. The ultrastructure of chloroplasts from palisade and spongy tissue was studied in order to analyse the adaptation of chloroplasts to the light gradient within the bifacial leaves of pea. Chloroplasts of two nuclear gene mutants of Pisum sativum (chlorotica-29 and chlorophyll b-less 130A), grown under normal light conditions, were compared with the wild type (WT) garden-pea cv. ‘Dippes Gelbe Viktoria’. The differentiation of the thylakoid membrane system of plastids from normal pea leaves exhibited nearly the same degree of grana formation in palisade and in spongy tissue. Using morphometrical measurements, only a slight increase in grana stacking capacity was found in chloroplasts of spongy tissue. In contrast, chloroplasts of mutant leaves differed in grana development in palisade and spongy tissue, respectively. Their thylakoid systems appeared to be disorganized and not developed as much as in chloroplasts from normal pea leaves. Grana contained fewer lamellae per granum, the number of grana per chloroplast section was reduced and the length of appressed thylakoid regions was decreased. Nevertheless, chloroplasts of the mutants were always differentiated into grana and stroma thylakoids. The structural changes observed and the reduction of the total chlorophyll content correlated with alterations in the polypeptide composition of thylakoid membrane preparations from mutant chloroplasts. In sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), polypeptide bands with a relative molecular mass of 27 and 26 kilodalton (kD) were markedly reduced in mutant chloroplasts. These two polypeptides represented the major apoproteins of the light harvesting chlorophyll a/b complex from photosystem II (LHC-II) as inferred from a comparison with the electrophoretic mobility of polypeptides isolated from the LHC-II.  相似文献   

12.
Dilnawaz  F.  Mohapatra  P.  Misra  M.  Ramaswamy  N.K.  Misra  A.N. 《Photosynthetica》2001,39(4):557-563
Wheat (Triticum aestivum L. cv. Sonalika) seedlings were grown in Hoagland solution. Primary leaves were harvested at 8, 12, and 15 d and cut into five equal segments. Contents of photosynthetic pigments and proteins, and photosystem 2 (PS2) activity increased from base to apex of these leaves. Chlorophyll (Chl) content was maximum at 12 d in all the leaf segments, but PS2 activity showed a gradual decline from 8 to 15 d in all leaf segments. In sharp contrast, the CO2 fixation ability of chloroplasts increased from 8 to 15 d. CO2 fixation ability of chloroplasts started to decline from base to apex of 15-d-old seedlings, where the content of ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (RuBPCO-LSU) increased acropetally. RuBPCO-LSU content was maximum in all the leaf segments in 12-d-old seedlings. This shows a distinctive pattern of PS2, Chl, CO2 fixation ability of chloroplasts, and RuBPCO-LSU content along the axis of leaf lamina during development and senescence. RuBPCO-LSU (54 kDa) degraded to fragments of 45, 42, 37, 19, and 16 kDa products which accumulated along the leaf axis during ageing of chloroplasts. Thus the CO2 fixation ability of chloroplasts declines earlier than PS2 activity and photosynthetic pigment contents along the leaf lamina.  相似文献   

13.
The single, basal pyrenoids of Gonium quadratum Pringsheim ex Nozaki and G. pectorale Müller (Goniaceae, Chlorophyta) differed in appearance when vegetative colonies were cultured photoheterotrophically in medium containing sodium acetate. Chloroplasts of G. quadratum had distinct pyrenoids when grown in medium without major carbon compounds. However, the pyrenoids degenerated and were markedly reduced in size when such cells were inoculated into a medium containing 400 mg·L?1 of sodium acetate. No pyrenoids were visible under the light microscope; however, with electron microscopy small pyrenoids and electron-dense bodies were visible within the degenerating chloroplasts, which had only single layers of thylakoid lamellae at the periphery. The chloroplasts subsequently developed distinct pyrenoids and several layers of thylakoid lamellae as the culture aged. In contrast, vegetative cells of G. pectorale always showed distinct pyrenoids when cells were inoculated into medium containing sodium acetate, sodium pyruvic acid, sodium lactate, and/or yeast extract. Therefore, we propose two terms, “unstable pyrenoids” and “stable pyrenoids,” for pyrenoids of G. quadratum and G. pectorale, respectively. Chloroplasts of the colonial green flagellates should thus be examined under various culture conditions in order to determine whether their pyrenoids are unstable or stable when pyrenoids are used as taxonomic indicators. Immunogold electron microscopy showed that the ratios of gold particle density of ribulose-1,5-biphosphate carboxylase/oxygenase (RuBisCO) between pyrenoid matrix and chloroplast stroma in G. quadratum grown in medium with or without sodium acetate were lower than those of G. pectorale. Heavy labeling by anti-RuBisCO was observed in both the electron-dense bodies and pyrenoid matrix of G. quadratum. This is the first electron microscopic demonstration of degeneration and development of both pyrenoids and thylakoid lamellae in the chloroplast as a function of culture condition in green algae.  相似文献   

14.
The thylakoids of cryptomonads are unique in that their lumens are filled with an electron-dense substance postulated to be phycobiliprotein. In this study, we used an antiserum against phycoerythrin (PE) 545 of Rhodomonas lens (gift of R. MacColl, New York State Department of Health, Albany, NY) and protein A-gold immunoelectron microscopy to localize this light-harvesting protein in cryptomonad cells. In sections of whole cells of R. lens labeled with anti-PE 545, the gold particles were not uniformly distributed over the dense thylakoid lumens as expected, but instead were preferentially localized either over or adjacent to the thylakoid membranes. A similar pattern of labeling was observed in cell sections labeled with two different antisera against PE 566 from Cryptomonas ovata. To determine whether PE is localized on the outer or inner side of the membrane, chloroplast fragments were isolated from cells fixed in dilute glutaraldehyde and labeled in vitro with anti-PE 545 followed by protein A-small gold. These thylakoid preparations were then fixed in glutaraldehyde followed by osmium tetroxide, embedded in Spurr, and sections were labeled with anti-PE 545 followed by protein A-large gold. Small gold particles were found only at the broken edges of the thylakoids, associated with the dense material on the lumenal surface of the membrane, whereas large gold particles were distributed along the entire length of the thylakoid membrane. We conclude that PE is located inside the thylakoids of R. lens in close association with the lumenal surface of the thylakoid membrane.  相似文献   

15.
In-vivo synthesis of the white-clover lectin, trifoliin A, was examined by the incorporation of labeled amino acids into protein during heterotrophic growth of intact Trifolium repens L. seedlings. Lectin synthesis was quantified by measuring the level of labeled protein immunoprecipitated from root exudate, from the hapten (2-deoxyglucose) eluate of the roots, and from root and shoot homogenates. The presence of labeled trifoliin A was confirmed by non-denaturing and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, followed by fluorography and comparison with trifoliin A standards. In-vivo-labeled trifoliin A was detected in seedling root homogenate 2 h after the addition of labeled amino acids and on the root surface by 8 h. Incorporation of labeled amino acids into protein and trifoliin A was greatest with 2-d-old seedlings and was greater when the plants were grown continuously in the dark than when they were exposed to 14 h light daily. Significantly more labeled lectin accumulated on the root surface of seedlings grown with 1.5 mM KNO3 than of seedlings grown either without N or with 15.0 mM KNO3. The labeled lectin from the root surface in all nitrate treatments and from the rootexudate samples of seedlings grown N-free and with 1.5 mM KNO3 was fully able to bind to Rhizobium trifolii. In contrast, only 2% of the immunoprecipitable protein found in the root exudate of seedlings grown with 15.0 mM KNO3 was able to bind to the bacteria. Thus, excess nitrate does not repress the synthesis of trifoliin A in the root, but does affect the distribution and activity of this newly synthesized lectin in a way which reduces its ability to interact with R. trifolii. By using Western blot analysis, much more total trifoliin A is detected in the homogenates of shoots than roots. However, greater than 80% of the total labeled protein and 85–90% of the total labeled lectin were found in the root homogenates of 2-d-old dark-grown seedlings incubated for 5 h with labeled amino acids. In addition, Western blot analysis indicated that the shoot homogenate contained smaller-molecular-weight peptides which reacted with the specific anti-trifoliin A antibody. These studies indicate that stored trifoliin A in the seed is degraded in the shoots during seedling development, while newly synthesized trifoliin A in the roots is excreted to the root surface and external environment.Abbreviations IgG immunoglobulin G - LPS lipopolysaccharide - PBS 10 mM potassium-phosphate buffer, pH 7.0, containing 0.8% NaCl - PBS-T 20 mM phosphate-buffered saline, pH 7.4, containing 0.05% Tween 20 - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

16.
Intra- and extracellular gametocytes of Haemogregarina sp. from Rana berlandieri were studied by light and electron microscopy. Locomotion in free gametocytes appears to be related to series of horizontal “peristaltic” waves of constriction, passing from anterior to posterior along the body. Intracellular gametocytes lie within a vacuole in the erythrocyte cytoplasm. The pellicle of the parasite consists of a trilaminar plasmalemma and an inner electron dense layer, beneath which lies a ring of 80 microtubules. The inner dense layer becomes thickened and modified in the apical region, to form a cap-like structure. The gametocytes contain a prominent nucleus, several mitochondria, and many granular inclusions. One type of inclusion consists of elliptical, electron-dense, profeinaceous bodies scattered throughout the cytoplasm, while other inclusions are larger and electron-opaque, polysaccharide in nature, and occur predominantly in the pre- and post-nuclear regions. In the electron microscope, pronounced pellicular folds were observed in longitudinally sectioned extracellular gametocytes. These folds are thought to represent the waves of constriction seen in motile specimens by light microscopy. The mechanism of movement of the parasite is discussed and compared with that in haemosporidian ookinetes, as well as in gregarines.  相似文献   

17.
The accumulation of steviol glycosides (SGs) in cells of Stevia rebaudiana Bertoni both in vivo and in vitro was related to the extent of the development of the membrane system of chloroplasts and the content of photosynthetic pigments. Chloroplasts of the in vitro plants, unlike those of the intact plants, had poorly developed membrane system. The callus cells grown in the light contained proplastids of almost round shape and their thylakoid system was represented by short thylakoids sometimes forming a little number of grana consisting of 2–3 thylakoids. In cells of the etiolated in vitro regenerants and the callus culture grown in the dark, only proplastids practically lacking the membrane system were observed. All the chloroplasts having developed thylakoids and forming at least a little number of grana were equipped with photochemically active reaction centers of photosystems 1 and 2. Leaves of in vivo plants accumulated greater amount of the pigments than leaves of the in vitro plants. In both the callus culture grown in the light and the etiolated in vitro regenerants, the content of the pigments was one order of magnitude lower than that in leaves of the intact plants. The callus tissue grown in the dark contained merely trace amounts of the pigments. Leaves of the intact and the in vitro plants did not exhibit any significant differences in photosynthetic O2 evolution rate. However, photosynthetic O2 evolution rate in the callus cells was much lower than that in the differentiated plant cells. The in vitro cell cultures containing merely proplastids did not practically produce SGs. However, after transferring these cultures in the light, both the formation of chloroplasts and the production of SGs in them were detected.  相似文献   

18.
Summary Vacuoles of differentiating mesophyll cells of Tamarix aphylla contain an amorphous electron-dense material in which stacks of parallel aligned striations are embedded. Cross-sections of the striations disclosed that they represent profiles of longitudinally sectioned bundles of tubules (tubule outer diameter 9.0 nm, tubule wall thickness 1.8 nm). In advanced mesophyll cell development, the amorphous vacuolar material disappears, whereas the bundles of tubules turn into bundles of double helices (double helix diameter 14.5 nm). Cytochemical treatment of mesophyll cells with the enzymes pepsin and trypsin has revealed that both the bundles of tubules/double helices and the embedding material are constituted of protein. The possible functional role of the vacuolar inclusions is discussed.  相似文献   

19.
Nagata N  Min YK  Nakano T  Asami T  Yoshida S 《Planta》2000,211(6):781-790
When a brassinosteroid biosynthesis inhibitor, brassinazole (Brz), was applied at concentrations ranging from 0.1 to 2 μM, Arabidopsis thaliana (L.) Heynh seedlings grown in the dark exhibited morphological features of light-grown plants, i.e. short hypocotyls, expanded cotyledons, and true leaves, in a dose-dependent manner. Control (non Brz-treated) seedlings grown in the dark for 40 d did not develop leaf primordia. However, treatment with the lowest concentration of Brz induced the development of leaf buds, although it hardly induced any short hypocotyls, and treatment with the highest concentration of Brz induced both short hypocotyls and leaves. Labeling experiments with the thymidine analogue 5-bromo-2′-deoxyuridine revealed that amplification of cell nuclei and organellar nucleoids is activated in the shoot apical meristems of dark-grown Brz-treated seedlings. These results suggest that Brz-treatment induces development of true leaves. Furthermore, condensation and scattering of plastid nucleoids, which is known to occur during the differentiation of etioplasts into chloroplasts, was observed in the plastids of dark-grown Brz-treated cotyledons. In addition, high levels of ribulose-1,5-bisphosphate carboxylase-oxygenase proteins accumulated in the plastids of the cotyledons. Electron microscopy showed that the plastids were etioplasts with a prolamellar body and few thylakoid membranes. These results suggest that Brz treatment in the dark induces the initial steps of plastid differentiation, which occur prior to the development of thylakoid membranes. This is a novel presumed function of brassinosteroids. These cytological changes seen in Brz-treated Arabidopsis were exactly the same as those seen in a brassinosteroid-biosynthesis-deficient mutant, det2, supporting the hypothesis that Brz has no side-effects except inhibiting brassinosteroid biosynthesis, and should prove a useful tool in clarifying the role of brassinosteroids. Received: 10 February 2000 / Accepted: 11 April 2000  相似文献   

20.
André Perrin 《Planta》1970,93(1):71-81
Summary In Taraxacum officinale and Saxifraga aizoon particular aggregations found in plastids of epithem are considered to be phytoferritin. The diversity of plant ferritin arrangement within the plastids is studied. High magnification study of these inclusions indicates that they can be classified morphologically into three distinct groups: dense and amorphous aggregate (F1), crystalline inclusion (F2) and diffuse paracrystalline arrangement (F3). The crystalline (F2) and amorphous (F1) structures are both present in the plastids of Saxifraga aizoon; similarly, paracrystalline (F3) and amorphous inclusions (F1) are both present in the plastids of Taraxacum officinale. Because of their location and the nature of their organization, we think that the phytoferritin complexes under discussion may be important in phytoferritin synthesis or phytoferritin utilization within the living plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号