首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular chaperones mediate multiple aspects of steroid receptor function, but the physiological importance of most receptor-associated cochaperones has not been determined. To help fill this gap, we targeted for disruption the mouse gene for the 52-kDa FK506 binding protein, FKBP52, a 90-kDa heat shock protein (Hsp90)-binding immunophilin found in steroid receptor complexes. A mouse line lacking FKBP52 (52KO) was generated and characterized. Male 52KO mice have several defects in reproductive tissues consistent with androgen insensitivity; among these defects are ambiguous external genitalia and dysgenic prostate. FKBP52 and androgen receptor (AR) are coexpressed in prostate epithelial cells of wild-type mice. However, FKBP52 and AR are similarly coexpressed in testis even though testis morphology and spermatogenesis in 52KO males are usually normal. Molecular studies confirm that FKBP52 is a component of AR complexes, and cellular studies in yeast and human cell models demonstrate that FKBP52 can enhance AR-mediated transactivation. AR enhancement requires FKBP52 peptidylprolyl isomerase activity as well as Hsp90-binding ability, and enhancement probably relates to an affect of FKBP52 on AR-folding pathways. In the presence of FKBP52, but not other cochaperones, the function of a minimally active AR point mutant can be dramatically restored. We conclude that FKBP52 is an AR folding factor that has critically important physiological roles in some male reproductive tissues.  相似文献   

2.
Hypospadias is among the most common congenital malformations in male neonates. It results from abnormal penile and urethral development, but is a multifactorial disorder that is highly heterogeneous, with several genetic and environmental determinants. Monogenic and chromosomal abnormalities are present in approximately 30% of cases, although the genetic factors contributing to hypospadias remain unknown in 70% of cases. While defects in androgen synthesis can lead to this malformation, mutational analyses have shown several genes, such as sonic hedgehog, fibroblast growth factors, bone morphogenetic proteins, homeobox genes, and the Wnt family, are involved in the normal development of male external genitalia. Mutations in the genes of penile development (e.g., HOX, FGF, Shh) and testicular determination (e.g., WT1, SRY), luteinizing hormone receptor, and androgen receptor have also been proposed to be implicated in hypospadias. Here we review the recent advances in this field and discuss the potential genes that could determine the risk of hypospadias.  相似文献   

3.
Wang N  Geng L  Zhang S  He B  Wang J 《PloS one》2012,7(3):e34010

Background

To explore the molecular basis of the different ultrasonic patterns of the human endometrium, and the molecular marker basis of local injury.

Methodology/Principal Findings

The mRNA and protein expression of FKBP52, progesterone receptor A (PRA), progesterone receptor B (PRB), and HB-EGF were detected in different patterns of the endometrium by real-time RTPCR and immunohistochemistry. There were differences in the mRNA and protein expression of FKBP52, PRB, and HB-EGF in the triple line (Pattern A) and homogeneous (Pattern C) endometrium in the window of implantation. No difference was detected in PRA expression. After local injury, the mRNA expression of HB-EGF significantly increased. In contrast, there was no difference in the mRNA expression of FKBP52, PRB, or PRA. The protein expression of FKBP52, PRB, and HB-EGF increased after local injury. There was no difference in the PRA expression after local injury.

Conclusions

PRB, FKBP52, and HB-EGF may be the molecular basis for the classification of the ultrasonic patterns. HB-EGF may be the molecular basis of local injury. Ultrasonic evaluation on the day of ovulation can be effective in predicting the outcome of implantation.  相似文献   

4.
5.

Background

Androgens are critical in male external genital development. Alterations in the androgen sensitivity pathway have been identified in severely undermasculinized boys, and mutations of the androgen receptor gene (AR) are usually found in partial or complete androgen insensitivity syndrome (AIS).

Objective

The aim of this study was to determine whether even the most minor forms of isolated hypospadias are associated with AR mutations and thus whether all types of hypospadias warrant molecular analysis of the AR.

Materials and Methods

Two hundred and ninety-two Caucasian children presenting with isolated hypospadias without micropenis or cryptorchidism and 345 controls were included prospectively. Mutational analysis of the AR through direct sequencing (exons 1–8) was performed. In silico and luciferase functional assays were performed for unreported variants.

Results

Five missense mutations of the AR were identified in 9 patients with glandular or penile anterior (n = 5), penile midshaft (n = 2) and penile posterior (n = 2) hypospadias, i.e., 3%: p.Q58L (c.173A>T), 4 cases of p.P392S (c.1174C>T), 2 cases of p.A475V (c.1424C>T), p.D551H (c.1651G>C) and p.Q799E (c.2395C>G). None of these mutations was present in the control group. One mutation has never been reported to date (p.D551H). It was predicted to be damaging based on 6 in silico models, and in vitro functional studies confirmed the lowered transactivation function of the mutated protein. Three mutations have never been reported in patients with genital malformation but only in isolated infertility: p.Q58L, p.P392S, and p.A475V. It is notable that micropenis, a cardinal sign of AIS, was not present in any patient.

Conclusion

AR mutations may play a role in the cause of isolated hypospadias, even in the most minor forms. Identification of this underlying genetic alteration may be important for proper diagnosis and longer follow-up is necessary to find out if the mutations cause differences in sexual function and fertility later in life.  相似文献   

6.
Androgens stimulate development and growth of the external male genitalia. Since hypospadias represents the most common congenital abnormality in the male newborn and the mechanism of action in this disorder is still unclear, androgen binding was assessed in cultured fibroblasts from biopsies from genital skin of 10 patients with idiopathic hypospadias. For comparison, binding was determined in corresponding samples from 8 males with normal penile development and from 9 patients with known androgen resistance syndromes (testicular feminization, Reifenstein syndrome, pseudovaginal perineoscrotal hypospadias). Finally, binding was measured in 10 samples of nongenital skin. Maximum specific binding (Bmax) in idiopathic hypospadias varied from 3.2 to 15.5 (median 6.6) fmol.mg protein-1. Bmax in samples of persons with normal genital development was between 12.2 and 17.9 fmol.mg protein-1 (median 13.2). Bmax in samples of patients with known androgen resistance syndromes was exactly in the range reported previously in the literature. It is evident that Bmax in samples of patients with idiopathic hypospadias differs significantly (P less than 0.01), (Mann Whitney U-test) from those with normal genital development. Thus it seems reasonable to conclude that in some patients with idiopathic hypospadias the genital defect is caused by receptor deficiency.  相似文献   

7.
8.

Background

Mutations of the NR5A1 gene encoding steroidogenic factor-1 have been reported in association with a wide spectrum of 46,XY DSD (Disorder of Sex Development) phenotypes including severe forms of hypospadias.

Methodology/Principal Findings

We evaluated the frequency of NR5A1 gene mutations in a large series of patients presenting with 46,XY DSD and hypospadias. Based on their clinical presentation 77 patients were classified either as complete or partial gonadal dysgenesis (uterus seen at genitography and/or surgery, n = 11), ambiguous external genitalia without uterus (n = 33) or hypospadias (n = 33). We identified heterozygous NR5A1 mutations in 4 cases of ambiguous external genitalia without uterus (12.1%; p.Trp279Arg, pArg39Pro, c.390delG, c140_141insCACG) and a de novo missense mutation in one case with distal hypospadias (3%; p.Arg313Cys). Mutant proteins showed reduced transactivation activity and mutants p.Arg39Pro and p.Arg313Cys did not synergize with the GATA4 cofactor to stimulate reporter gene activity, although they retained their ability to physically interact with the GATA4 protein.

Conclusions/Significance

Mutations in NR5A1 were observed in 5/77 (6.5%) cases of 46,XY DSD including hypospadias. Excluding the cases of 46,XY gonadal dysgenesis the incidence of NR5A1 mutations was 5/66 (7.6%). An individual with isolated distal hypopadias carried a de novo heterozygous missense mutation, thus extending the range of phenotypes associated with NR5A1 mutations and suggesting that this group of patients should be screened for NR5A1 mutations.  相似文献   

9.
10.
11.
12.

Background  

The prostate is a sexual gland that produces important substances for the potency of sperm to fertilize eggs within the female reproductive tract, and is under complex endocrine control. Taking advantage of the peculiar behavioral pattern of copulating male rats, we developed experimental paradigms to determine the influence of sexual behavior on the level of serum testosterone, prostate androgen receptors, and mRNA for androgen receptors in male rats displaying up to four consecutive ejaculations.  相似文献   

13.
Human skin may be considered as a target organ for androgens, as are male sex accessory organs, since all events involved in testosterone action have been observed in this tissue. As a corollary, the mechanism of androgen action can be studiedin vitro in cultured skin fibroblasts. The advantages of this system are that studies can be performed with intact human cells under carefully controlled conditions, differentiated genetic and biochemical characteristics of the cells are faithfully preserved and the biological material is renewable from a single biopsy specimen. The metabolism of androgens, in particular the 5α-reduction of testosterone to the active metabolite, dihydrotestosterone, the intracellular binding of androgen to its specific receptor protein and its subsequent translocation to the nucleus have been studied in skin fibroblasts. The intracellular androgen receptor content of genital skin fibroblasts is higher than that from nongenital skin sites. In addition, the androgen receptor has been characterized as a specific macromolecule with properties of high affinity and low capacity similar to that of other steroid hormone receptors. The pathophysiology of three genetic mutations which alter normal male sexual development and differentiation has been identified in the human skin fibroblast system. In 5α-reductase deficiency, an autosomal recessive disorder in which dihydrotestosterone formation is impaired, virilization of the Wolffian ducts is normal but the external genitalia and urogenital sinus derivatives are female in character. At least two types of X-linked disorders of the androgen receptor exist such that the actions of both testosterone and dihydrotestosterone are impaired and developmental abnormalities may involve both Wolffian derivatives and the external genitalia as well. These two forms of androgen insensitivity result from either the absence of androgen receptor binding activity (receptor(−)form) or apparently normal androgen receptor binding with absence of an appropriate biological response (receptor (+) form). In addition, studies with human skin fibroblasts may also be of value in defining the cellular mechanisms underlying the broad spectrum of partial defects in virilization. In summary, we have correlated our studies of the molecular mechanism of androgen action in human genital skin fibroblasts with those of other investigators as these studies contribute to our understanding of male sexual development and differentiation.  相似文献   

14.
Functional maturation of steroid hormone receptors requires ordered assembly into a large multichaperone complex consisting of receptor monomer, an Hsp90 dimer, the p23 cochaperone, and an FK506-binding protein (FKBP) family member or alternate peptidylprolyl isomerase-related cochaperone. Previous cellular studies demonstrated that FKBP52 can potentiate receptor function. These results have been confirmed in fkbp4 gene knockout mice in which males are partially androgen insensitive and females display characteristics of progesterone insensitivity. Conversely, FKBP51, which has a high degree of similarity to FKBP52, antagonizes FKBP52-mediated potentiation. Both proteins consist of three domains: two FKBP12-like domains termed FK1 and FK2 and a tetratricopeptide repeat domain that targets binding to Hsp90. To help understand why the two FKBPs behave differently and to gain insight into FKBP52 potentiation activity, we have analyzed the loop structure that links FK1 and FK2. Within the FK linker of FKBP52 is the sequence TEEED, which forms a consensus casein kinase II phosphorylation site; the corresponding sequence in FKBP51 is FED. We demonstrate that the distinct FK linker sequences per se do not account for lack of potentiation activity by FKBP51. However, phosphorylation of the FK linker appears to be an important regulatory determinant of FKBP52-mediated potentiation of steroid receptor activity.  相似文献   

15.

Background  

Androgens bind to the androgen receptor (AR) in prostate cells and are essential survival factors for healthy prostate epithelium. Most untreated prostate cancers retain some dependence upon the AR and respond, at least transiently, to androgen ablation therapy. However, the relationship between endogenous androgen levels and cancer etiology is unclear. High levels of androgens have traditionally been viewed as driving abnormal proliferation leading to cancer, but it has also been suggested that low levels of androgen could induce selective pressure for abnormal cells. We formulate a mathematical model of androgen regulated prostate growth to study the effects of abnormal androgen levels on selection for pre-malignant phenotypes in early prostate cancer development.  相似文献   

16.

Background  

Prostate cancer is a leading cause of male cancer specific mortality. When cure by radical prostatectomy is not possible the next line of prostate cancer treatment is androgen deprivation. However prolonged androgen deprivation often results in relapse and androgen-independent prostate cancer that is inevitably fatal despite optimal chemotherapy. The Hedgehog signalling pathway has recently been implicated in prostate cancer development and metastasis. EGFR or ErbB2 expression has been also correlated with androgen independence, shorter survival and metastasis.  相似文献   

17.

Background  

Androgen insensitivity syndrome (AIS) comprises a range of phenotypes from male infertility to complete feminization. Most individuals with AIS carry germline mutations of the androgen receptor (AR) that interfere with or ablate its function. As genital fibroblasts retain expression of the AR in vitro, we used genital skin fibroblasts from normal males and 46,XY females with complete AIS due to known AR mutations to gain insights into the role of the AR in human genital differentiation.  相似文献   

18.
The goal of this study was to understand the basis for high androgen levels in squirrel monkeys (Saimiri spp.). Mass spectrometry was used to analyze serum testosterone, androstenedione, and dihydrotestosterone of male squirrel monkeys during the nonbreeding (n = 7) and breeding (n = 10) seasons. All hormone levels were elevated compared with those of humans, even during the nonbreeding season; the highest levels occurred during the breeding season. The ratio of testosterone to dihydrotestosterone in squirrel monkeys is high during the breeding season compared to man. Squirrel monkeys may have high testosterone to compensate for inefficient metabolism to dihydrotestosterone. We also investigated whether squirrel monkeys have high androgens to compensate for low-activity androgen receptors (AR). The response to dihydrotestosterone in squirrel monkey cells transfected with AR and AR-responsive reporter plasmids was 4-fold, compared with 28-fold in human cells. This result was not due to overexpression of cellular FKBP51, which causes glucocorticoid and progestin resistance in squirrel monkeys, because overexpression of FKBP51 had no effect on dihydrotestosterone-stimulated reporter activity in a human fibroblast cell line. To test whether the inherently low levels of FKBP52 in squirrel monkeys contribute to androgen insensitivity, squirrel monkey cells were transfected with an AR expression plasmid, an AR-responsive reporter plasmid, and a plasmid expressing FKBP52. Expression of FKBP52 decreased the EC50 or increased the maximal response to dihydrotestosterone. Therefore, the high androgen levels in squirrel monkeys likely compensate for their relatively low 5 alpha-reductase activity during the breeding season and AR insensitivity resulting from low cellular levels of FKBP52.  相似文献   

19.

Background

Men are at an increased risk of dying from heart failure caused by inflammatory heart diseases such as atherosclerosis, myocarditis and dilated cardiomyopathy (DCM). We previously showed that macrophages in the spleen are phenotypically distinct in male compared to female mice at 12 h after infection. This innate immune profile mirrors and predicts the cardiac immune response during acute myocarditis.

Methods

In order to study sex differences in the innate immune response, five male and female BALB/c mice were infected intraperitoneally with coxsackievirus B3 (CVB3) or phosphate buffered saline and their spleens were harvested 12 h later for microarray analysis. Gene expression was determined using an Affymetrix Mouse Gene 1.0 ST Array. Significant gene changes were verified by quantitative real-time polymerase chain reaction or ELISA.

Results

During the innate immune response to CVB3 infection, infected males had higher splenic expression of genes which are important in regulating the influx of cholesterol into macrophages, such as phospholipase A2 (PLA2) and the macrophage scavenger receptor compared to the infected females. We also observed a higher expression in infected males compared to infected females of squalene synthase, an enzyme used to generate cholesterol within cells, and Cyp2e1, an enzyme important in metabolizing cholesterol and steroids. Infected males also had decreased levels of the translocator protein 18 kDa (TSPO), which binds PLA2 and is the rate-limiting step for steroidogenesis, as well as decreased expression of the androgen receptor (AR), which indicates receptor activation. Gene differences were not due to increased viral replication, which was unaltered between sexes.

Conclusions

We found that, compared to females, male mice had a greater splenic expression of genes which are important for cholesterol metabolism and activation of the AR at 12 h after infection. Activation of the AR has been linked to increased cardiac hypertrophy, atherosclerosis, myocarditis/DCM and heart failure in male mice and humans.  相似文献   

20.

Background

Low endogenous testosterone levels have been shown to be a risk factor for the development of cardiovascular disease and cardiovascular benefits associated with testosterone replacement therapy are being advocated; however, the effects of endogenous testosterone levels on acute coronary vasomotor responses to androgen administration are not clear. The objective of this study was to compare the effects of acute androgen administration on in vivo coronary conductance and in vitro coronary microvascular diameter in intact and castrated male swine.

Methods

Pigs received intracoronary infusions of physiologic levels (1?C100 nM) of testosterone, the metabolite 5??-dihydrotestosterone, and the epimer epitestosterone while left anterior descending coronary blood flow and mean arterial pressure were continuously monitored. Following sacrifice, coronary arterioles were isolated, cannulated, and exposed to physiologic concentrations (1?C100 nM) of testosterone, 5??-dihydrotestosterone, and epitestosterone. To evaluate effects of the androgen receptor on acute androgen dilation responses, real-time PCR and immunohistochemistry for androgen receptor were performed on conduit and resistance coronary vessels.

Results

In vivo, testosterone and 5??-dihydrotestosterone produced greater increases in coronary conductance in the intact compared to the castrated males. In vitro, percent maximal dilation of microvessels was similar between intact and castrated males for testosterone and 5??-dihydrotestosterone. In both studies epitestosterone produced significant increases in conductance and microvessel diameter from baseline in the intact males. Androgen receptor mRNA expression and immunohistochemical staining were similar in intact and castrated males.

Conclusions

Acute coronary vascular responses to exogenous androgen administration are increased by endogenous testosterone, an effect unrelated to changes in androgen receptor expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号