首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Initiation of simian virus 40 (SV40) DNA replication is dependent upon the assembly of two T-antigen (T-ag) hexamers on the SV40 core origin. To further define the oligomerization mechanism, the pentanucleotide requirements for T-ag assembly were investigated. Here, we demonstrate that individual pentanucleotides support hexamer formation, while particular pairs of pentanucleotides suffice for the assembly of T-ag double hexamers. Related studies demonstrate that T-ag double hexamers formed on “active pairs” of pentanucleotides catalyze a set of previously described structural distortions within the core origin. For the four-pentanucleotide-containing wild-type SV40 core origin, footprinting experiments indicate that T-ag double hexamers prefer to bind to pentanucleotides 1 and 3. Collectively, these experiments demonstrate that only two of the four pentanucleotides in the core origin are necessary for T-ag assembly and the induction of structural changes in the core origin. Since all four pentanucleotides in the wild-type origin are necessary for extensive DNA unwinding, we concluded that the second pair of pentanucleotides is required at a step subsequent to the initial assembly process.  相似文献   

2.
The regions of the simian virus 40 (SV40) core origin that are required for stable assembly of virally encoded T antigen (T-ag) and the T-ag origin binding domain (T-ag-obd(131-260)) have been determined. Binding of the purified T-ag-obd(131-260) is mediated by interactions with the central region of the core origin, site II. In contrast, T-ag binding and hexamer assembly requires a larger region of the core origin that includes both site II and an additional fragment of DNA that may be positioned on either side of site II. These studies indicate that in the context of T-ag, the origin binding domain can engage the pentanucleotides in site II only if a second region of T-ag interacts with one of the flanking sequences. The requirements for T-ag double-hexamer assembly are complex; the nucleotide cofactor present in the reaction modulates the sequence requirements for oligomerization. Nevertheless, these experiments provide additional evidence that only a subset of the SV40 core origin is required for assembly of T-ag double hexamers.  相似文献   

3.
Cell cycle-dependent phosphorylation of simian virus 40 (SV40) large tumor antigen (T-ag) on threonine 124 is essential for the initiation of viral DNA replication. A T-ag molecule containing a Thr-->Ala substitution at this position (T124A) was previously shown to bind to the SV40 core origin but to be defective in DNA unwinding and initiation of DNA replication. However, exactly what step in the initiation process is defective as a result of the T124A mutation has not been established. Therefore, to better understand the control of SV40 replication, we have reinvestigated the assembly of T124A molecules on the SV40 origin. Herein it is demonstrated that hexamer formation is unaffected by the phosphorylation state of Thr 124. In contrast, T124A molecules are defective in double-hexamer assembly on subfragments of the core origin containing single assembly units. We also report that T124A molecules are inhibitors of T-ag double hexamer formation. These and related studies indicate that phosphorylation of T-ag on Thr 124 is a necessary step for completing the assembly of functional double hexamers on the SV40 origin. The implications of these studies for the cell cycle control of SV40 DNA replication are discussed.  相似文献   

4.
Large T antigen (LTag) from simian virus 40 (SV40) is an ATP-driven DNA helicase that specifically recognizes the core of the viral origin of replication (ori), where it oligomerizes as a double hexamer. During this process, binding of the first hexamer stimulates the assembly of a second one. Using electron microscopy, we show that the N-terminal part of LTag that includes the origin-binding domain does not present a stable quaternary structure in single hexamers. This disordered region, however, is well arranged within the LTag double hexamer after specific ori recognition, where it mediates the interactions between hexamers and constructs a separated structural module at their junction. We conclude that full assembly of LTag hexamers occurs only within the dodecamer, and requires the specific hexamer-hexamer interactions established upon binding to the origin of replication. This mechanism provides the structural basis for the cooperative assembly of LTag double hexamer on the cognate viral ori.  相似文献   

5.
6.
Large T-antigen (T-ag) is a viral helicase required for the initiation and elongation of simian virus 40 DNA replication. The unwinding activity of the helicase is powered by ATP hydrolysis and is critically dependent on the oligomeric state of the protein. We confirmed that the double hexamer is the active form of the helicase on synthetic replication forks. In contrast, the single hexamer cannot unwind synthetic forks and remains bound to the DNA as ATP is hydrolyzed. This inability of the T-ag single hexamer to release the DNA fork is the likely explanation for its poor helicase activity. We characterized the interactions of T-ag single and double hexamers with synthetic forks and single-stranded (ss) DNA. We demonstrated that DNA forks promote the formation of T-ag double hexamer. The lengths of the duplex region and the 3' tail of the synthetic forks are the critical factors in assembly of the double hexamer, which is bound to a single fork. We found that the cooperativity of T-ag binding to ss oligonucleotides increased with DNA length, suggesting that multiple consecutive subunits in the hexamer engage the ssDNA.  相似文献   

7.
Simian Virus 40 replication requires only one viral protein, the Large T antigen (T-ag), which acts as both an initiator of replication and as a replicative helicase (reviewed in ). We used electron microscopy to generate a three-dimensional reconstruction of the T-ag hexameric ring in the presence and absence of a synthetic replication fork to locate the T-ag domains, to examine structural changes in the T-ag hexamer associated with DNA binding, and to analyze the formation of double hexamers on and off DNA. We found that binding DNA to the T-ag hexamer induces large conformational changes in the N- and C-terminal domains of T-ag. Additionally, we observed a significant increase in density throughout the central channel of the hexameric ring upon DNA binding. We conclude that conformational changes in the T-ag hexamer are required to accommodate DNA and that the mode of DNA binding may be similar to that suggested for some other ring helicases. We also identified two conformations of T-ag double hexamers formed in the presence of forked DNA: with N-terminal hexamer-hexamer contacts, similar to those formed on origin DNA, or with C-terminal contacts, which are unlike any T-ag double hexamers reported previously.  相似文献   

8.
Simian virus 40 large tumor antigen (Tag) is a multi-functional viral protein that binds specifically to SV40 origin DNA, serves as the replicative DNA helicase, and orchestrates the assembly and operation of the viral replisome. Tag associated with Mg-ATP forms hexamers and, in the presence of SV40 origin DNA, double hexamers. Limited tryptic digestion of monomeric Tag revealed three major stable structural domains. The N-terminal domain spans amino acids 1-130, the central domain comprises amino acids 131-476, and the C-terminal domain extends from amino acid 513 to amino acid 698. Co-immunoprecipitation of digestion products of monomeric Tag suggests that the N-terminal domain associates stably with sequences located in the central region of the same Tag molecule. Hexamer formation protected the tryptic cleavage sites in the exposed region between the central and C-terminal domains. Upon hexamerization, this exposed region also became less accessible to a monoclonal antibody whose epitope maps in that region. The tryptic digestion products of the soluble hexamer and the DNA-bound double hexamer were indistinguishable. A low-resolution model of the intramolecular and intermolecular interactions among Tag domains in the double hexamer is proposed.  相似文献   

9.
The cofactor ATP stimulates the formation of T-antigen double hexamers on the simian virus 40 core origin of replication (I. A. Mastrangelo, P. V. C. Hough, J. S. Wall, M. Dodson, F. B. Dean, and J. Horwitz, Nature [London] 338:658-662, 1989). We report here the pathway for the assembly of hexamers and double hexamers on the core origin. ATP triggers the cooperative assembly of hexamers on the early and late halves of the origin even when they are completely isolated. Hexamer assembly nucleates at T-antigen recognition pentanucleotides in the early half of the origin. In intact origins, assembly of the first hexamer on the early half of the origin cooperatively stimulates the assembly of a second hexamer on the adjacent late half of the origin. Thus, monomer-monomer and hexamer-hexamer interactions of T antigen, allosterically activated by ATP, constitute two distinct types of cooperative interaction with the origin. Finally, we show that the assembly of T-antigen hexamers on isolated half origins leads to the same array of structural changes that T antigen induces in intact origins. We conclude that the origin is divided into complementary halves that each promote the assembly of functional T-antigen hexamers.  相似文献   

10.
SV40 large T antigen (T-ag) is a multifunctional protein that successively binds to 5'-GAGGC-3' sequences in the viral origin of replication, melts the origin, unwinds DNA ahead of the replication fork, and interacts with host DNA replication factors to promote replication of the simian virus 40 genome. The transition of T-ag from a sequence-specific binding protein to a nonspecific helicase involves its assembly into a double hexamer whose formation is likely dictated by the propensity of T-ag to oligomerize and its relative affinities for the origin as well as for nonspecific double- and single-stranded DNA. In this study, we used a sensitive assay based on fluorescence anisotropy to measure the affinities of wild-type and mutant forms of the T-ag origin-binding domain (OBD), and of a larger fragment containing the N-terminal domain (N260), for different DNA substrates. We report that the N-terminal domain does not contribute to binding affinity but reduces the propensity of the OBD to self-associate. We found that the OBD binds with different affinities to its four sites in the origin and determined a consensus binding site by systematic mutagenesis of the 5'-GAGGC-3' sequence and of the residue downstream of it, which also contributes to affinity. Interestingly, the OBD also binds to single-stranded DNA with an approximately 10-fold higher affinity than to nonspecific duplex DNA and in a mutually exclusive manner. Finally, we provide evidence that the sequence specificity of full-length T-ag is lower than that of the OBD. These results provide a quantitative basis onto which to anchor our understanding of the interaction of T-ag with the origin and its assembly into a double hexamer.  相似文献   

11.
DNA replication is initiated upon binding of “initiators” to origins of replication. In simian virus 40 (SV40), the core origin contains four pentanucleotide binding sites organized as pairs of inverted repeats. Here we describe the crystal structures of the origin binding domain (obd) of the SV40 large T-antigen (T-ag) both with and without a subfragment of origin-containing DNA. In the co-structure, two T-ag obds are oriented in a head-to-head fashion on the same face of the DNA, and each T-ag obd engages the major groove. Although the obds are very close to each other when bound to this DNA target, they do not contact one another. These data provide a high-resolution structural model that explains site-specific binding to the origin and suggests how these interactions help direct the oligomerization events that culminate in assembly of the helicase-active dodecameric complex of T-ag.  相似文献   

12.
Two independent binding sites on simian virus 40 (SV40) T antigen for topoisomerase I (topo I) were identified. One was mapped to the N-terminal domain (residues 83 to 160) by a combination of enzyme-linked immunosorbent assays (ELISAs) and glutathione S-transferase (GST) pull-down assays performed with various T antigen deletion mutants. The second was mapped to the C-terminal domain (residues 602 to 708). The region in human topo I that binds to both sites in T antigen was identified by ELISAs, GST pull-down assays, and double-hexamer binding assays with topo I deletion mutants. This region corresponds to a distinct domain on topo I known as the cap region that maps from residues 175 to 433. By combining these data with information about the structure of T-antigen double hexamers associated with origin DNA, we propose that the cap region of topo I associates specifically with both ends of the double hexamer bound to the SV40 origin to initiate DNA replication.  相似文献   

13.
The initial step of simian virus 40 (SV40) DNA replication is the binding of the large tumor antigen (T-Ag) to the SV40 core origin. In the presence of Mg(2+) and ATP, T-Ag forms a double-hexamer complex covering the complete core origin. By using electron microscopy and negative staining, we visualized for the first time T-Ag double hexamers bound to the SV40 origin. Image processing of side views of these nucleoprotein complexes revealed bilobed particles 24 nm long and 8 to 12 nm wide, which indicates that the two T-Ag hexamers are oriented head to head. Taking into account all of the biochemical data known on the T-Ag-DNA interactions at the replication origin, we present a model in which the DNA passes through the inner channel of both hexamers. In addition, we describe a previously undetected structural domain of the T-Ag hexamer and thereby amend the previously published dimensions of the T-Ag hexamer. This domain we have determined to be the DNA-binding domain of T-Ag.  相似文献   

14.
The Simian virus 40 (SV40) large tumor antigen (LTag) functions as the replicative helicase and initiator for viral DNA replication. For SV40 replication, the first essential step is the assembly of an LTag double hexamer at the origin DNA that will subsequently melt the origin DNA to initiate fork unwinding. In this study, we used three-dimensional cryo-electron microscopy to visualize early events in the activation of DNA replication in the SV40 model system. We obtained structures of wild-type double-hexamer complexes of LTag bound to SV40 origin DNA, to which atomic structures have been fitted. Wild-type LTag was observed in two distinct conformations: In one conformation, the central module containing the J-domains and the origin binding domains of both hexamers is a compact closed ring. In the other conformation, the central module is an open ring with a gap formed by rearrangement of the N-terminal regions of the two hexamers, potentially allowing for the passage of single-stranded DNA generated from the melted origin DNA. Double-hexamer complexes containing mutant LTag that lacks the N-terminal J-domain show the central module predominantly in the closed-ring state. Analyses of the LTag C-terminal regions reveal that the LTag hexamers bound to the A/T-rich tract origin of replication and early palindrome origin of replication elements are structurally distinct. Lastly, visualization of DNA density protruding from the LTag C-terminal domains suggests that oligomerization of the LTag complex takes place on double-stranded DNA.  相似文献   

15.
D McVey  B Woelker    P Tegtmeyer 《Journal of virology》1996,70(6):3887-3893
Previous studies have shown that phosphorylation of simian virus 40 (SV40) T antigen at threonine 124 enhances the binding of T antigen to the SV40 core origin of replication and the unwinding of the core origin DNA via hexamer-hexamer interactions. Here, we report that threonine 124 phosphorylation enhances the interaction of T-antigen amino acids 1 to 259 and 89 to 259 with the core origin of replication. Phosphorylation, therefore, activates the minimal DNA binding domain of T antigen even in the absence of domains required for hexamer formation. Activation is mediated by only one of three DNA binding elements in the minimal DNA binding domain of T antigen. This element, including amino acids 167, 215, and 219, enhances binding to the unique arrangement of four pentanucleotides in the core origin but not to other pentanucleotide arrangements found in ancillary regions of the SV40 origin of replication. Interestingly, the same four pentanucleotides in the core origin are necessary and sufficient for phosphorylation-enhanced DNA binding. Further, we show that phosphorylation of threonine 124 promotes the assembly of high-order complexes of the minimal DNA binding domain of T antigen with core origin DNA. We propose that phosphorylation induces conformational shifts in the minimal DNA binding domain of T antigen and thereby enhances interactions among T-antigen subunits oriented by core origin pentanucleotides. Similar subunit interactions would enhance both assembly of full-length T antigen into binary hexamer complexes and origin unwinding.  相似文献   

16.
The interaction of simian virus 40 (SV40) T antigen (T-ag) with the viral origin has served as a model for studies of site-specific recognition of a eukaryotic replication origin and the mechanism of DNA unwinding. These studies have revealed that a motif termed the "beta-hairpin" is necessary for assembly of T-ag on the SV40 origin. Herein it is demonstrated that residues at the tip of the "beta-hairpin" are needed to melt the origin-flanking regions and that the T-ag helicase domain selectively assembles around one of the newly generated single strands in a manner that accounts for its 3'-to-5' helicase activity. Furthermore, T-ags mutated at the tip of the "beta-hairpin" are defective for oligomerization on duplex DNA; however, they can assemble on hybrid duplex DNA or single-stranded DNA (ssDNA) substrates provided the strand containing the 3' extension is present. Collectively, these experiments indicate that residues at the tip of the beta-hairpin generate ssDNA in the core origin and that the ssDNA is essential for subsequent oligomerization events.  相似文献   

17.
An initial step in the replication of simian virus (SV40) DNA is the ATP-dependent formation of a double hexamer of the SV40 large tumor (T) antigen at the SV40 DNA replication origin. In the absence of DNA, T antigen assembled into hexamers in the presence of magnesium and ATP. Hexameric T antigen was stable and could be isolated by glycerol gradient centrifugation. The ATPase activities of hexameric and monomeric T antigen isolated from parallel glycerol gradients were identical. However, while monomeric T antigen was active in the ATP-dependent binding, untwisting, unwinding, and replication of SV40 origin-containing DNA, hexameric T antigen was inactive in these reactions. Isolated hexamers incubated at 37 degrees C in the presence of ATP remained intact, but dissociated into monomers when incubated at 37 degrees C in the absence of ATP. This dissociation restored the activity of these preparations in the DNA replication reaction, indicating that hexameric T antigen is not permanently inactivated but merely assembled into a nonproductive structure. We propose that the two hexamers of T antigen at the SV40 origin assemble around the DNA from monomer T antigen in solution. This complex untwists the DNA at the origin, melting specific DNA sequences. The resulting single-stranded regions may be utilized by the T antigen helicase activity to initiate DNA unwinding bidirectionally from the origin.  相似文献   

18.
Preformed hexamers of simian virus 40 (SV40) large tumor antigen (T antigen) constitute the bulk of T antigen in infected cells and are stable under physiological conditions. In spite of this they could not be assigned a function in virus replication or transformation. We report that preformed hexamers represent the active T antigen RNA helicase. Monomers and smaller oligomeric forms of T antigen were inactive due to the lack of hexamer formation under RNA unwinding conditions. In contrast to the immunologically related cellular DEAD-box protein p68, the T antigen RNA helicase is found to act in a much more processive way and it does not catalyze rearrangements of structured RNAs. Thereby, it rather seems to resemble other virus-encoded RNA helicases, like vaccinia virus NPH-II. Surprisingly, in our hands preformed hexamers also strikingly bound to and unwound the SV40 replication origin, pointing to a possible role of preformed hexamers in the initiation step of viral DNA replication. Furthermore, we have detected an extra hexamer-specific, high-affinity T antigen ATP binding site with a very slow exchange rate constant, the function of which is discussed.  相似文献   

19.
Simian virus 40 (SV40) was isolated from the brains of three rhesus monkeys and the kidneys of two other rhesus monkeys with simian immunodeficiency virus-induced immunodeficiency. A striking feature of these five cases was the tissue specificity of the SV40 replication. SV40 was also isolated from the kidney of a Taiwanese rock macaque with immunodeficiency probably caused by type D retrovirus infection. Multiple full-length clones were derived from all six fresh SV40 isolates, and two separate regions of their genomes were sequenced: the origin (ori)-enhancer region and the coding region for the carboxy terminus of T antigen (T-ag). None of the 23 clones analyzed had two 72-bp enhancer elements as are present in the commonly used laboratory strain 776 of SV40; 22 of these 23 clones were identical in their ori-enhancer sequences, and these had only a single 72-bp enhancer element. We found no evidence for differences in ori-enhancer sequences associated with tissue-specific SV40 replication. The T-ag coding sequence that was analyzed was identical in all clones from kidney. However, significant variation was observed in the carboxy-terminal region of T-ag in SV40 isolated from brain tissues. This sequence variation was located in a region previously reported to be responsible for SV40 host range in cultured cell lines. Thus, SV40 appears to be an opportunistic pathogen in the setting of simian immunodeficiency virus-induced immunodeficiency, similarly to JC virus in human immunodeficiency virus-infected humans, the enhancer sequence organization generally attributed to SV40 is not representative of natural SV40 isolates, and sequence variation near the carboxy terminus of T-ag may play a role in tissue-specific replication of SV40.  相似文献   

20.
Gai D  Roy R  Wu C  Simmons DT 《Journal of virology》2000,74(11):5224-5232
Topoisomerase I (topo I) is required for releasing torsional stress during simian virus 40 (SV40) DNA replication. Recently, it has been demonstrated that topo I participates in initiation of replication as well as in elongation. Although T antigen and topo I can bind to one another in vitro, there is no direct evidence that topo I is a component of the replication initiation complex. We demonstrate in this report that topo I associates with T-antigen double hexamers bound to SV40 origin DNA (T(DH)) but not to single hexamers. This association has the same nucleotide and DNA requirements as those for the formation of double hexamers on DNA. Interestingly, topo I prefers to bind to fully formed T(DH) complexes over other oligomerized forms of T antigen associated with the origin. High ratios of topo I to origin DNA destabilize T(DH). The partial unwinding of a small-circular-DNA substrate is dependent on the presence of both T antigen and topo I but is inhibited at high topo I concentrations. Competition experiments with a topo I-binding fragment of T antigen indicate that an interaction between T antigen and topo I occurs during the unwinding reaction. We propose that topo I is recruited to the initiation complex after the assembly of T(DH) and before unwinding to facilitate DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号