首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 873 毫秒
1.
Steady-state ATPase activities of cardiac myosin from thyroxine-treated rabbit hearts have been determined before and after removal of the 18-kDa light-chain subunit (LC2) of myosin. LC2 was selectively removed from myosin by treatment with a myofibrillar protease according to the method of Kuo and Bhan (Biochem. Biophys. Res. Commun. 92, 570-576 (1980) ). The effects of removal of LC2 on the enzymatic properties of thyrotoxic myosin were compared with the results obtained for cardiac myosin from normal rabbits by parallel studies. It has been found that removal of LC2 does not affect the Ca2+- and K+ (EDTA)-ATPase activities of these myosins. The actin-activated myosin Mg2+-ATPase activities of intact and LC2-deficient thyrotoxic myosin were 0.18 +/- 0.03 and 0.36 +/- 0.03 mumol Pi/mg per min, respectively, whereas the actin-activated myosin Mg2+-ATPase activities of intact and LC2-deficient normal myosin were 0.12 +/- 0.02 and 0.18 +/- 0.03 mumol Pi/mg per min, respectively. Thus, removal of LC2 increases the actin-activated myosin Mg2+-ATPase activity of thyrotoxic myosin by 100%, and the same activity is increased about 50% for normal myosin, indicating that the degree of potentiation of actin-activated myosin Mg2+-ATPase activity as a result of LC2 removal is 2-fold greater in thyrotoxic myosin than that obtained for normal myosin. These results suggest that LC2 does not influence the increased actomyosin ATPase activity of thyrotoxic myosin and that potentiation of actomyosin ATPase following LC2 removal may depend on the variations of the heavy-chain domain where LC2 interacts.  相似文献   

2.
Isolation of F1-ATPase from Rhodospirillum rubrum by chloroform extraction of chromatophores, followed by purification on a glycerol gradient, results in a very pure enzyme preparation containing five subunits with high Ca2+-ATPase activity (15 mumol per min per mg protein). Furthermore, conditions are reported under which the purified F1 exhibits Mg2+-dependent ATPase activity of about 35 mumol per min per mg protein. NaHCO3 stimulates the Mg2+-activity from 1.5 mumol per min per mg protein to 5 mumol per min per mg protein giving a maximal activity at a concentration of about 60 mM NaHCO3. Lauryl dimethylamine oxide (LDAO), octyl glucoside and nonanoyl N-methylglucamide enhance the Mg2+-ATPase activity from 1.5 to 14, 22 and 35 mumol per min per mg protein, respectively, in the absence of NaHCO3, and from 5 to 34, 30 and 37 mumol per min per mg protein, respectively, in the presence of 50 mM NaHCO3. The Vmax is increased, but the Km for ATP remains the same, about 0.22 mM, both in the absence of activators and in the presence of NaHCO3, LDAO or NaHCO3 plus LDAO. Ca2+-dependent ATPase activity is slightly stimulated by NaHCO3 but strongly inhibited by octyl glucoside.  相似文献   

3.
Characterization of the membrane bound Mg2+-ATPase of rat skeletal muscle   总被引:2,自引:0,他引:2  
A procedure was developed to isolate a membrane fraction of rat skeletal muscle which contains a highly active Mg2+-ATPase (5-25 mumol Pi/mg min). The rate of ATP hydrolysis by the Mg2+-ATPase was nonlinear but decayed exponentially (first-order rate constant greater than or equal to 0.2 s-1 at 37 degrees C). The rapid decline in the ATPase activity depended on the presence of ATP or its nonhydrolyzable analog 5'-adenylyl imidodiphosphate (AdoPP[NH]P). Once inactivated, removal of ATP from the medium did not immediately restore the original activity. ATP- or AdoPP[NH]P-dependent inactivation could be blocked by concanavalin A, wheat germ agglutinin or rabbit antiserum against the membrane. Additions of these proteins after ATP addition prevented further inactivation but did not restore the original activity. Low concentrations of ionic and nonionic detergents increased the rate of ATP-dependent inactivation. Higher concentrations of detergents, which solubilize the membrane completely, inactivated the Mg2+-ATPase. Cross-linking the membrane components with glutaraldehyde prevented ATP-dependent inactivation and decreased the sensitivity of the Mg2+-ATPase to detergents. It is proposed that the regulation of the Mg2+-ATPase by ATP requires the mobility of proteins within the membrane. Cross-linking the membrane proteins with lectins, antiserum or glutaraldehyde prevents inactivation; increasing the mobility with detergents accelerates ATP-dependent inactivation.  相似文献   

4.
1. Sea bass kidney microsomal preparations contain two Mg2+ dependent ATPase activities: the ouabain-sensitive (Na+ + K+)-ATPase and an ouabain-insensitive Na+-ATPase, requiring different assay conditions. The (Na+ + K+)-ATPase under the optimal conditions of pH 7.0, 100 mM Na+, 25 mM K+, 10 mM Mg2+, 5 mM ATP exhibits an average specific activity (S.A.) of 59 mumol Pi/mg protein per hr whereas the Na+-ATPase under the conditions of pH 6.0, 40 mM Na+, 1.5 mM MgATP, 1 mM ouabain has a maximal S.A. of 13.9 mumol Pi/mg protein per hr. 2. The (Na+ + K+)-ATPase is specifically inhibited by ouabain and vanadate; the Na+-ATPase specifically by ethacrynic acid and preferentially by frusemide; both activities are similarly inhibited by Ca2+. 3. The (Na+ + K+)-ATPase is specific for ATP and Na+, whereas the Na+-ATPase hydrolyzes other substrates in the efficiency order ATP greater than GTP greater than CTP greater than UTP and can be activated also by K+, NH4+ or Li+. 4. Minor differences between the two activities lie in the affinity for Na+, Mg2+, ATP and in the thermosensitivity. 5. The comparison between the two activities and with what has been reported in the literature only partly agree with our findings. It tentatively suggests that on the one hand two separate enzymes exist which are related to Na+ transport and, on the other, a distinct modulation in vivo in different tissues.  相似文献   

5.
Bovine cardiac myosin ATPase activity was rapidly inactivated by the purine disulfide analog of ATP,6,6'-dithiobis(inosinyl imidodiphosphate). Kinetic investigations showed that this analog acted as a site-specific reagent at 0 degrees with a Ki of 130 muM and a half-life of 8.2 min at saturating inhibitor concentrations. Concentrations (50 to 500 muM) of ATP, adenyl-5'-yl imidodiphosphate (AMP-PNP), or ADP that saturated the active site caused an enhancement in the rate of inactivation, indicating the purine disulfide analog was not reacting at the active site. Under these conditions saturation kinetic data were still observed with Ki values remaining unchanged (120 muM) but with the half-life of inactivation decreasing to 6.0 min (ATP) and 4.6 min (AMP-PNP) at saturating inhibitor concentrations. At concentrations greater than 0.5 mM ATP, AMP-PNP, or ADP there was a decrease in the rate of inactivation, implying protection by these nucleotides. However, saturation kinetics of inactivation could no longer be demonstrated, implying a change in the mechanism of inactivation. A comparison of the inactivation of the Mg2+, Ca2+, and EDTA-ATPase activities of cardiac myosin after modification by the purine disulfide analog showed that the Mg2+- and Ca2+ATPase activities plateaued at approximately 60% and 40%, respectively, while the EDTA-ATPase activity continued to decrease to below 10%. This evidence supports the suggestion that the purine disulfide analog was not reacting at the active site. Equilibrium dialysis experiments were used to measure the binding of [8-3H]AMP-PNP to native cardiac myosin, the thiopurine nucleotide-modified myosin, and the derivative formed by displacing the thiopurine nucleotide by cyanide (thiocyanato-myosin). Native myosin bound a total of 2.1 mol of AMP-PNP with a binding constant of 6.0 X 10(6) M-1. There was a 15 to 40% decrease in the number of AMP-PNP binding sites in the enzyme derivatives, but the active sites appeared not to be blocked since the association constants remained essentially unchanged (KA=3.9 X 10(6) M-1 for thiopurine nucleotide-myosin and 12.0 X 10(6) M-1 for thiocyanato-myosin). The kinetic studies and the binding experiments indicate that the purine disulfide analog reacts at a specific site other than the active site but do not offer support to earlier suggestions from skeletal myosin studies that this site is a possible ATP control site.  相似文献   

6.
A Dictyostelium discoideum myosin heavy chain kinase has been purified 14,000-fold to near homogeneity. The enzyme has a Mr = 130,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and greater than 700,000 as determined by gel filtration on Bio-Gel A-1.5m. The enzyme has a specific activity of 1 mumol/min X mg when assayed at a Dictyostelium myosin concentration of 0.3 mg/ml. A maximum of 2 mol of phosphate/mol of myosin is incorporated by the kinase, and the phosphorylated amino acid is threonine. Phosphate is incorporated only into the myosin heavy chains, not into the light chains. The actin-activated Mg2+-ATPase of Dictyostelium myosin is inhibited 70-80% following maximal phosphorylation with the kinase. The myosin heavy chain kinase requires 1-2 mM Mg2+ for activity and is most active at pH 7.0-7.5. The activity of the enzyme is not significantly altered by the presence of Ca2+, Ca2+ and calmodulin, EGTA, cAMP, or cGMP. When incubated with Mg2+ and ATP, phosphate is incorporated into the myosin heavy chain kinase, perhaps by autophosphorylation.  相似文献   

7.
Membrane adenosine triphosphatase activities in rat pancreas   总被引:3,自引:0,他引:3  
The membrane ATPase activities present in rat pancreas were studied to investigate the possible role of ATPase enzymes in HCO3(-) secretion in the pancreas. It was found that all the HCO3(-)-sensitive (anion-sensitive) ATPase activity was accountable as pancreatic mitochondrial ATPase, thus supporting the view that a distinct plasma membrane 'bicarbonate-ATPase' is not involved in HCO3(-) secretion in pancreas. A remarkably high Mg+- and CA2+-requiring ATPase activity (30 mumol ATP hydrolysed/min per mg) was found in the plasma membrane fraction (rho = 1.10-1.13). This activity has been characterized in some detail. It is inhibited by p-fluorosulfonylbenzoyladenosine, an affinity label analogue of ATP and the analogue appears to label covalently a protein of Mr approximately 35 000. The (Ca2+ + Mg2+)-ATPase activity did not form a 'phosphorylated-intermediate' and was vanadate-insensitive. These and other tests have served to demonstrate that the (Ca2+ + Mg2+)-ATPase activity is different in properties from (Na+ + K+)-ATPase, Ca2+-ATPase, (H+ + K+)-ATPase or mitochondrial H+-ATPase. Apart from the (Ca2+ + Mg2+)-ATPase of plasma membrane and mitochondrial ATPase, the only other membrane ATPase activities noted were (Na+ + K+)-ATPase, which occurred in the same fractions as the (Ca2+ + Mg2+)-AtPase at rho = 1.10-1.13 and was of surprisingly low activity, and an ATPase activity in light membrane fractions (rho - 1.08-1.09) derived from zymogen granule membranes. At this time, therefore, there is no obvious candidate for an ATPase activity at the luminal surface of pancreatic cells which is directly involved in ion transport, but the results presented here direct attention to the high activity (Ca2+ + Mg2+)-ATPase in the plasma membrane fraction.  相似文献   

8.
Changes in microsomal Na+, K+-, Mg2+- and Ca2+-ATPase activities during cell proliferation were examined in Chinese hamster V-79 (V-79) cells (normal cells) and human HeLaS-3 (HeLaS-3) cells (malignant cells). For V-79 cells, the Mg2+-ATPase activity per cell (pmol Pi/h/cell) in the confluent phase was higher than that in the logarithmically growing (log) phase. The amount of microsomal protein per cell was also high in the confluent phase. Specific activities (mumol Pi/h/mg protein) of Na+, K+-, Mg2+- and Ca2+-ATPase were significantly lower in the confluent phase than in the log phase. For HeLaS-3 cells, an increase in Ca2+-ATPase activity per cell was observed. The amount of microsomal protein per cell did not change between the log and confluent phase. The specific activity of Ca2+-ATPase in the confluent phase was also markedly higher than in the log phase. The relation between changes in ATPase activities and cell proliferation is discussed.  相似文献   

9.
Myosin from the hearts of thyrotoxic animals (myosin-T) exhibits elevated Ca2+-ATPase activity. To clarify the physiological significance of this increased activity, we have investigated the steady state kinetics of the interaction of actin and MgATP with the double-headed heavy meromyosin subfragment of cardiac myosin from thyrotoxic rabbits (HMM-T). The enhanced Ca2+-ATPase activity of myosin-T was completely retained in HMM-T. The Vmax for actin-activated MgATP hydrolysis by HMM-T (1.08 +/- 0.10 mumol of Pi/mg/min). Under physiological ionic conditions, the Vmax was 0.14 +/- 0.02 mumol of Pi/mg/min as compared with the normal value of 0.08 +/- 0.01 mumol of Pi/mg/min. Furthermore, the salt dependence of Vmax and Kapp for the actin-activated ATPase of HMM-T differed markedly from normal and resembled that usually associated with the single-headed (S1) cleavage product of myosin. These results suggest that the changes in enzymatic properties of myosin-T are responsible for the increased speed of contraction observed in the hearts of thyrotoxic animals. Also, the alteration in the interaction of HMM-T with actin suggests that a loss of cooperativity between the myosin heads may occur.  相似文献   

10.
1. The specific activity of the membrane-bound ATPase of Streptococcus cremoris HA was 1.30 mumol Pi/mg protein/min. 2. Km for ATP as substrate was 0.8 mM. 3. The pH optimum was 8.0 at +37 degrees C. 4. The ATPase was maximally activated with Mg2+/ATP molar ratio of 1:2. 5. Cations activated the enzyme in order: Mg2+ greater than Co2+ greater than Mn2+ greater than Zn2+ greater than Ca2+ greater than K+ greater than Na+. 6. The enzyme was inhibited by oligomycin (27-77%), sodium azide (13-33%) and ouabain (15-22%). N,N'-dicyclohexylcarbodiimide had no effect on the enzyme activity.  相似文献   

11.
A 110-kDa protein present in chicken intestinal brush-border microvilli is believed to laterally link the actin filament bundle that forms the structural core of the microvilli with the microvillar plasma membrane. We have purified a 110-kDa protein to greater than 95% homogeneity by extraction of brush borders with solution containing 0.6 M KCl and 5 mM ATP, followed by gel filtration chromatography, sedimentation as a complex with exogenous actin, and hydroxylapatite chromatography. The 110-kDa protein-calmodulin complex bound F-actin in the absence but not the presence of ATP and had K+,EDTA-ATPase (0.2 mumol/min/mg) and Ca2+-ATPase (0.2 mumol/min/mg) activities and Mg2+-ATPase activity (0.03 mumol/min/mg) that was not activated by F-actin. The actin-binding and ATPase activities of the complex were similar to those of purified brush-border myosin. However, immunoblot analysis showed no reactivity between the 110-kDa protein and polyclonal antibody against purified chicken brush-border myosin. Also, peptide maps of 110-kDa protein and myosin obtained by limited proteolysis with chymotrypsin and Staphylococcus aureus V8 protease had few, if any, peptides in common. Immunoblot analysis also showed that myosin heavy chain was stable under the conditions of the preparation.  相似文献   

12.
Plasma membrane vesicles of Ehrlich ascites carcinoma cells have been isolated to a high degree of purity. In the presence of Mg2+, the plasma membrane preparation exhibits a Ca2+-dependent ATPase activity of 2 mumol Pi per h per mg protein. It is suggested that this (Ca2+ + Mg2+)-ATPase activity is related to the measured Ca2+ transport which was characterized by Km values for ATP and Ca2+ of 44 +/- 9 microM and 0.25 +/- 0.10 microM, respectively. Phosphorylation of plasma membranes with [gamma-32P]ATP and analysis of the radioactive species by polyacrylamide gel electrophoresis revealed a Ca2+-dependent hydroxylamine-sensitive phosphoprotein with a molecular mass of 135 kDa. Molecular mass and other data differentiate this phosphoprotein from the catalytic subunit of (Na+ + K+)-ATPase and from the catalytic subunit of (Ca2+ + Mg2+)-ATPase of endoplasmic reticulum. It is suggested that the 135 kDa phosphoprotein represents the phosphorylated catalytic subunit of the (Ca2+ + Mg2+)-ATPase of the plasma membrane of Ehrlich ascites carcinoma cells. This finding is discussed in relation to previous attempts to identify a Ca2+-pump in plasma membranes isolated from nucleated cells.  相似文献   

13.
Myosin was rapidly prepared from the slime mould, Physarum polycephalum to a high level of homogeneity (greater than 95%), in a high yield (about 10 mg/100 g tissue) and in a phosphorylated state (about 5 mol phosphate/mol of 500,000 Mr myosin). Actin activated the Mg-ATPase activity of this myosin in the absence of Ca2+ about 30-fold, and this actin-activated ATPase activity was reduced to about 20% of the original activity when Ca2+ concentration was increased to 50 microM, i.e., the actin-myosin-ATP interactions show Ca-inhibition. The Ca2+ concentration giving half-maximum inhibition was 1-3 microM. The Ca-inhibition was clearly observed at physiological concentrations of Mg2+ but was obscured at both lower and higher concentrations of Mg2+. The Ca-inhibitory effect on ATP hydrolysis by actomyosin reconstituted from skeletal actin and Physarum myosin was quick and reversible. Ca-binding measurement showed that myosin bound Ca2+ with half-maximal binding at 2 microM Ca2+ and maximum binding of 2 mol per mol myosin, indicating that Ca2+ may inhibit the ATPase activity by binding to myosin. The involvement of this myosin-linked regulatory system in the Ca2+ -control of cytoplasmic streaming is discussed.  相似文献   

14.
The interactions were analyzed between actin, myosin, and a recently discovered high molecular weight actin-binding protein (Hartwig, J. H., and Stossel, T. P. (1975) J. Biol Chem.250,5696-5705) of rabbit alveolar macrophages. Purified rabbit alveolar macrophage or rabbit skeletal muscle F-actins did not activate the Mg2+ATPase activity of purified rabbit alveolar macrophage myosin unless an additional cofactor, partially purified from macrophage extracts, was added. The Mg2+ATPase activity of cofactor-activated macrophage actomyosin was as high as 0.6 mumol of Pi/mg of myosin protein/min at 37 degrees. The macrophage cofactor increased the Mg2+ATPase activity of rabbit skeletal muscle actomyosin, and calcium regulated the Mg2+ATPase activity of cofactor-activited muscle actomyosin in the presence of muscle troponins and tropomyosin. However, the Mg2+ATPase activity of macrophage actomyosin in the presence of the cofactor was inhibited by muscle control proteins, both in the presence and absence of calcium. The Mg2+ATPase activity of the macrophage actomyosin plus cofactor, whether assembled from purified components or studied in a complex collected from crude macrophage extracts, was not influenced by the presence of absence of calcium ions. Therefore, as described for Acanthamoeba castellanii myosin (Pollard, T. D., and Korn, E. D. (1973) J. Biol. Chem. 248, 4691-4697), rabbit alveolar macrophage myosin requires a cofactor for activation of its Mg2+ATPase activity by F-actin; and no evidence was found for participation of calcium ions in the regulation of this activity.In macrophage extracts containing 0.34 M sucrose, 0.5 mM ATP, and 0.05 M KCl at pH 7.0,the actin-binding protein bound F-actin into bundles with interconnecting bridges. Purified macrophage actin-binding protein in 0.1 M KCl at pH 7.0 also bound purified macrophage F-actin into filament bundles. Macrophage myosin bound to F-actin in the absence but not the presence of Mg2+ATP, but the actin-binding protein did not bind to macrophage myosin in either the presence or absence of Mg2+ATP.  相似文献   

15.
We studied the effects of caldesmon, a major actin- and calmodulin-binding protein found in a variety of muscle and non-muscle tissues, on the various ATPase activities of skeletal-muscle myosin. Caldesmon inhibited the actin-activated myosin Mg2+-ATPase, and this inhibition was enhanced by tropomyosin. In the presence of the troponin complex and tropomyosin, caldesmon inhibited the Ca2+-dependent actomyosin Mg2+-ATPase; this inhibition could be partly overcome by Ca2+/calmodulin. Caldesmon, phosphorylated to the extent of approximately 4 mol of Pi/mol of caldesmon, inhibited the actin-activated myosin Mg2+-ATPase to the same extent as did non-phosphorylated caldesmon. Both inhibitions could be overcome by Ca2+/calmodulin. Caldesmon also inhibited the Mg2+-ATPase activity of skeletal-muscle myosin in the absence of actin; this inhibition also could be overcome by Ca2+/calmodulin. Caldesmon inhibited the Ca2+-ATPase activity of skeletal-muscle myosin in the presence or absence of actin, at both low (0.1 M-KCl) and high (0.3 M-KCl) ionic strength. Finally, caldesmon inhibited the skeletal-muscle myosin K+/EDTA-ATPase at 0.1 M-KCl, but not at 0.3 M-KCl. Addition of actin resulted in no inhibition of this ATPase by caldesmon at either 0.1 M- or 0.3 M-KCl. These observations suggest that caldesmon may function in the regulation of actin-myosin interactions in striated muscle and thereby modulate the contractile state of the muscle. The demonstration that caldesmon inhibits a variety of myosin ATPase activities in the absence of actin indicates a direct effect of caldesmon on myosin. The inhibition of the actin-activated Mg2+-ATPase activity of myosin (the physiological activity) may not be due therefore simply to the binding of caldesmon to the actin filament causing blockage of myosin-cross-bridge-actin interaction.  相似文献   

16.
A contractile protein closely resembling natural actomyosin (myosin B) of rabbit skeletal muscle was extracted from plasmodia of the slime mold, Physarum polycephalum, by protecting the SH-groups with beta-mercaptoethanol or dithiothreitol. Superprecipitation of the protein induced by Mg2+-ATP at low ionic strength was observed only in the presence of very low concentrations of free Ca2+ ions, and the Mg2+-ATPase [EC 3.6.1.3] reaction was activated 2- to 6-fold by 1 muM of free Ca2+ ions. Crude myosin and actin fractions were separated by centrifuging plasmodium myosin B in the presence of Mg2+-PPi at high ionic strength. The crude myosin showed both EDTA- and Ca2+-activated ATPase activities. The Mg2+-ATPase activity of crude myosin from plasmodia was markedly activated by the addition of pure F-actin from rabbit skeletal muscle. Addition of the F-action-regulatory protein complex prepared from rabbit skeletal muscle as well as the actin fraction of plasmodium caused the same degree of activation as the addition of pure F-actin only in the presence of very low concentrations of Ca2+ ion  相似文献   

17.
To define the mechanism responsible for the slow rate of calcium transport by cardiac sarcoplasmic reticulum, the kinetic properties of the Ca2+-dependent ATPase of canine cardiac microsomes were characterized and compared with those of a comparable preparation from rabbit fast skeletal muscle. A phosphoprotein intermediate (E approximately P), which has the stability characteristics of an acyl phosphate, is formed during ATP hydrolysis by cardiac microsomes. Ca2+ is required for the E approximately P formation, and Mg2+ accelerates its decomposition. The Ca2+ concentration required for half-maximal activation of the ATPase is 4.7 +/- 0.2 muM for cardiac microsomes and 1.3 +/- 0.1 muM for skeletal microsomes at pH 6.8 and 0 degrees. The ATPase activities at saturating concentrations of ionized Ca2+ and pH 6.8, expressed as ATP hydrolysis per mg of protein, are 3 to 6 times lower for cardiac microsomes than for skeletal microsomes under a variety of conditions tested. The apparent Km value for MgATP at high concentrations in the presence of saturating concentrations of ionized Ca2+ is 0.18 +/- 0.03 ms at pH 6.8 and 25 degrees. The maximum velocity of ATPase activity under these conditions is 0.45 +/- 0.05 mumol per mg per min for cardiac microsomes and 1.60 +/- 0.05 mumol per mg per min for skeletal microsomes. The maximum steady state level of E approximately P for cardiac microsomes, 1.3 +/- 0.1 nmol per mg, is significantly less than the value of 4.9 +/- 0.2 nmol per mg for skeletal microsomes, so that the turnover number of the Ca2+-dependent ATPase of cardiac microsomes, calculated as the ratio of ATPase activity to the E approximately P level is similar to that of the skeletal ATPase. These findings indicate that the relatively slow rate of calcium transport by cardiac microsomes, whem compared to that of skeletal microsomes, reflects a lower density of calcium pumping sites and lower Ca2+ affinity for these sites, rather than a lower turnover rate.  相似文献   

18.
1. The myosin molecule from Ehrlich ascites tumour cells consists of heavy chains of about 200 kDa and three species of light chains of 20, 19 and 15 kDa. 2. The heavy chain can be phosphorylated in vitro either by endogenous Ca2+-independent kinase or by casein kinase II. 3. The 20 and 19 kDa light chains can be phosphorylated either by an endogenous kinase or by myosin light chain kinase from chicken gizzard. 4. The Ca2+-ATPase activity of the purified myosin was 0.3 mumol/min mg protein. The Mg2+-ATPase activity was activated 14-fold by actin upon the light chain phosphorylation.  相似文献   

19.
Two distinctly different ATPases have been reported to be endogenous to the mitotic apparatus: a Mg2+-ATPase resembling axonemal dynein, and a Ca2+-ATPase postulated to be bound in membranes. To examine the nature of the Mg2+-ATPase, we isolated membrane-free mitotic spindles from Stronglylocentrotus droebachiensis embryos by rapidly lysing these in a calcium-chelating, low-ionic-strength buffer (5 mM EGTA, 0.5 mM MgCl2, 10 mM PIPES, pH 6.8) that contained 1% Nonidet P-40. The fibrous isolated mitotic spindles closely resembled spindles in living cells, both in general morphology and in birefringence. In electron micrographs, the spindles were composed primarily of microtubules, free from membranes and highly extracted of intermicrotubular cytoplasmic ground substance. As analyzed by SDS-polyacrylamide gel electrophoresis (SDS-PAGE), the pelleted spindles contain 18% tubulin, variable amounts of actin (2-8%), and an unidentified protein of 55 kdaltons in a constant weight ratio to tubulin (1:2.5). The isolated spindles also contained two polypeptides, larger than 300 kdaltons, that comigrated with egg dynein polypeptides, and ATPase activity (0.02 mumol Pi/mg . min) that closely resembled both flagellar and egg dynein. The spindle Mg2+-ATPase showed a ratio of Ca2+-/Mg2+-ATPase = 0.85, had minimal activity in KCl and EDTA, and cleaved GTP at 35% of the rate of ATP. The Mg2+-ATPase was insensitive to ouabain or oligomycin. The spindle Mg2+-ATPase was inhibited by sodium vanadate but, like egg dynein, was less sensitive to vanadate than flagellar dynein. The spindle Mg2+- ATPase does not resemble the mitotic Ca2+-ATPase described by others. We propose that the spindle Mg2+-ATPase is egg dynein. Bound carbohydrate on the two high-molecular-weight polypeptides of both egg dynein and the spindle enzyme suggest that these proteins may normally associate with membranes in the living cell.  相似文献   

20.
Electrophorus electroplax microsomes were examined for Ca2+- and Mg2+-dependent ATPase activity. In addition to the previously reported low-affinity ATPase, a high-affinity (Ca2+,Mg2+)-ATPase was found. At low ATP and Mg2+ concentrations (200 microM or less), the high-affinity (Ca2+,Mg2+)-ATPase exhibits an activity of 18 nmol Pi mg-1 min-1 with 0.58 microM Ca2+. At higher ATP concentrations (3 mM), the low-affinity Ca2+-ATPase predominates, with an activity of 28 nmol Pi mg-1 min-1 with 1 mM Ca2+. In addition, Mg2+ can also activate the low-affinity ATPase (18 nmol Pi mg-1 min-1). The high-affinity ATPase hydrolyzes ATP at a greater rate than it does GTP, ITP, or UTP and is insensitive to ouabain, oligomycin, or dicyclohexylcarbodiimide inhibition. The high-affinity enzyme is inhibited by vanadate, trifluoperazine, and N-ethylmaleimide. Added calmodulin does not significantly stimulate enzyme activity; rinsing the microsomes with EGTA does not confer calmodulin sensitivity. Thus the high-affinity ATPase from electroplax microsomes is similar to the (Ca2+,Mg2+)-ATPase reported to be associated with Ca2+ transport, based on its affinity for calcium and its response to inhibitors. The low-affinity enzyme hydrolyzes all tested nucleoside triphosphates, as well as diphosphates, but not AMP. Vanadate and N-ethylmaleimide do not inhibit the low-affinity enzymes. The low-affinity enzyme reflects a nonspecific nucleoside triphosphatase, probably an ectoenzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号