首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In utero hematopoietic stem cell transplantation (IUHCT) is a potential therapeutic alternative to postnatal hematopoietic stem cell transplantation (HSCT) for congenital hematologic disorders that can be diagnosed early in gestation and can be cured by HSCT. The rationale is to take advantage of normal events during hematopoietic and immunologic ontogeny to facilitate allogeneic hematopoietic engraftment. Although the rationale remains compelling, IUHCT has not yet achieved its clinical potential. This review will discuss recent experimental progress toward overcoming the barriers to allogeneic engraftment and new therapeutic strategies that may hasten clinical application.  相似文献   

2.
The sensitivity of myeloma cells to high dose chemotherapy has led to the use of allogeneic hematopoietic stem cell transplantation (HSCT) as a therapeutic modality in this disease. In addition to providing more effective chemotherapy, the transplantation of allogeneic stem cells also initiates the development of an allogeneic immune response directed against residual myeloma cells. Direct evidence for a graft vs. myeloma (GVM) effect is provided by the ability of donor lymphocyte infusion (DLI) to induce significant responses in 30-50% of patients with myeloma who have relapsed after allogeneic HSCT. Nevertheless, allogeneic stem cell transplantation is also associated with a high incidence of transplant related toxicities, including regimen-related toxicities, graft vs. host disease (GVHD) and opportunistic infections. DLI has been shown to enhance immune reconstitution after allogeneic HSCT in addition to inducing a GVM response. Current efforts are directed at reducing the toxicities associated with allogeneic HSCT, identification of the target antigens of GVM and the development of new strategies to selectively enhance the immune response to myeloma cells.  相似文献   

3.
Inositol phospholipid signaling pathways have begun to emerge as important players in stem cell biology and bone marrow transplantation [1-4]. The SH2-containing Inositol Phosphatase (SHIP) is among the enzymes that can modify endogenous mammalian phosphoinositides. SHIP encodes an isoform specific to pluripotent stem (PS) cells [5,6] plays a role in hematopoietic stem (HS) cell biology [7,8] and allogeneic bone marrow (BM) transplantation [1,2,9,10]. Here I discuss our current understanding of the cell and molecular pathways that SHIP regulates that influence PS/HS cell biology and BM transplantation. Genetic models of SHIP-deficiency indicate this enzyme is a potential molecular target to enhance both autologous and allogeneic BM transplantation. Thus, strategies to reversibly target SHIP expression and their potential application to stem cell therapies and allogeneic BMT are also discussed.  相似文献   

4.
A promising approach to treating type-1 diabetes mellitus is cell therapy. Nowadays, in laboratory experiments and clinical studies, allogeneic and xenogeneic cells of Langergance islets, bone marrow cells, hematopoietic stem cells, mesenchymal stem cells, and cord blood stem cells are used for transplantation. Any type of these cells correct the patient status to a certain extent; however, full recovery after cell therapy has not yet been achieved.  相似文献   

5.
Tse W  Laughlin M 《Cytotherapy》2005,7(3):228-242
Early clinical reports outlining outcomes for primarily pediatric patients undergoing UCB transplantation point to delayed time to hematopoietic recovery and favorable incidence and severity of GvHD. Recently, clinical reports in adult patients identified the feasibility of UCB transplantation for those patients lacking an available histocompatible-related or unrelated adult donor Intensive clinical and laboratory research is ongoing focused on strategies to foster UCB allogeneic donor engraftment thereby allowing wider application of this stem cell source for patients requiring allogeneic transplantation.  相似文献   

6.
The postulated almost unlimited potential of transplanted hematopoietic stem cells (HSCs) to transdifferentiate into cell types that do not belong to the hematopoietic system denotes a complete paradigm shift of the hierarchical hemopoietic tree. In several studies during the last few years, donor cells have been identified in almost all recipient tissues after allogeneic HSC transplantation (HSCT), supporting the theory that any failing organ could be accessible to regenerative cell therapy. However, the putative potential ability of the stem cells to cross beyond lineage barriers has been questioned by other studies which suggest that hematopoietic cells might fuse with non-hematopoietic cells and mimic the appearance of transdifferentiation. Proof that HSCs have preserved the capacity to transdifferentiate into other cell types remains to be demonstrated. In this review, we focus mainly on clinical studies addressing plasticity in humans who underwent allogeneic HSCT. We summarize the published data on non-hematopoietic chimerism, donor cell contribution to tissue repair, the controversies related to the methods used to detect donor-derived non-hematopoietic cells and the functional impact of this phenomenon in diverse specific target tissues and organs.  相似文献   

7.
The South African population is highly diverse, both ethnically and genetically. This diversity is particularly true for the African ancestry and various mixed ancestry population groups. These groups are under-represented in national and international bone marrow and peripheral blood donor registries, making it challenging to identify HLA-matched and mismatched unrelated donors when patients from these groups require allogeneic hematopoietic stem and progenitor cell transplantation. In most high-income countries, banked cord blood (CB) units provide an attractive source of hematopoietic progenitor cells for genetically diverse populations. SA does not have a public CB inventory, leaving many patients without access to this important treatment modality. Haploidentical transplantation provides an alternative. In recent years, the use of post-transplant cyclophosphamide has significantly reduced the incidence of graft-versus-host disease after haploidentical transplantation and has improved transplantation outcomes. However, it is difficult to identify suitable haploidentical donors in SA because of family disruption and a high prevalence of HIV. Here the authors provide a brief historical overview of the ethnic and genetic diversity of the country and region. The authors provide a southern African perspective on HLA diversity, consider the allogeneic hematopoietic stem and progenitor cell transplantation landscape and explore the need to establish a public CB bank (CBB) in SA. The health policy and regulatory frameworks that will impact on a CBB in the country SA are also explored. Finally, the authors discuss several matters we believe require attention when considering the establishment of a sustainable public CBB in the South African context.  相似文献   

8.
In high-risk acute leukemia patients, a 10-fold increase in the dose of extensively T-cell-depleted hematopoietic stem cells ensures sustained full-donor engraftment of one-haplotype-mismatched transplants without graft-vs.-host disease. Since our first successful pilot study, which exploited the principle of a megadose stem cell transplant, our efforts have concentrated on developing new conditioning regimens, optimizing graft processing and improving the post-transplant immunologic recovery. The results so far achieved in more than 100 high-risk acute leukemia patients show that haploidentical transplantation is now a clinical reality. Because virtually all patients in need of a hematopoietic stem cell transplant have a full-haplotype-mismatched family donor, a T-cell-depleted mismatched transplant can be offered with curative intent, thus extending allogeneic transplantation procedures to virtually all candidates.  相似文献   

9.
Allogeneic hematopoietic stem cell transplantation represents the only curative approach for many hematological malignancies. During the last years the impact of the conditioning regimen has been re-assessed. With the advent of reduced-intensity conditioning the paradigm has changed from cytoreduction executed by high-dose radio-chemotherapy to immunological surveillance of leukemia by donor cells. Distinct subsets of T cells and NK cells contribute to graft-versus-leukemia reactions. So far, cytotoxic T lymphocytes are the mainstay of allogeneic immunotherapy. Here, we summarise the current knowledge of T cell-mediated graft-versus-leukemia reactions and present results from pre-clinical and clinical studies of T cell-based adoptive immunotherapy. We address the issues of feasibility and specificity of adoptive immunotransfer from a clinical point of view and discuss the prerequisites for successful clinical applications. Finally, the prospects for immunological research that have evolved with the increasing use of reduced-intensity conditioning and allogeneic stem cell transplantation are highlighted.  相似文献   

10.
The lack of understanding of the interplay between hematopoietic stem cells (HSCs) and the immune system has severely hampered the stem cell research and practice of transplantation. Major problems for allogeneic transplantation include low levels of donor engraftment and high risks of graft-versus-host disease (GVHD). Transplantation of purified allogeneic HSCs diminishes the risk of GVHD but results in decreased engraftment. Here we show that ex?vivo expanded mouse HSCs efficiently overcame the major histocompatibility complex barrier and repopulated allogeneic-recipient mice. An 8-day expansion culture led to a 40-fold increase of the allograft ability of HSCs. Both increased numbers of HSCs and culture-induced elevation of expression of the immune inhibitor CD274 (B7-H1 or PD-L1) on the surface of HSCs contributed to the enhancement. Our study indicates the great potential of utilizing ex?vivo expanded HSCs for allogeneic transplantation and suggests that the immune privilege of HSCs can be modulated.  相似文献   

11.
Tolerance-based stem cell transplantation using sublethal conditioning is being considered for the treatment of human disease, but safety and efficacy remain to be established. We have shown that mouse bone marrow recipients treated with sublethal irradiation plus transient blockade of the CD40-CD154 costimulatory pathway develop permanent hematopoietic chimerism across allogeneic barriers. We now report that infection with lymphocytic choriomeningitis virus at the time of transplantation prevented engraftment of allogeneic, but not syngeneic, bone marrow in similarly treated mice. Infected allograft recipients also failed to clear the virus and died. Postmortem study revealed hypoplastic bone marrow and spleens. The cause of death was virus-induced IFN-alphabeta. The rejection of allogeneic bone marrow was mediated by a radioresistant CD8(+)TCR-alphabeta(+)NK1.1(-) T cell population. We conclude that a noncytopathic viral infection at the time of transplantation can prevent engraftment of allogeneic bone marrow and result in the death of sublethally irradiated mice treated with costimulation blockade. Clinical application of stem cell transplantation protocols based on costimulation blockade and tolerance induction may require patient isolation to facilitate the procedure and to protect recipients.  相似文献   

12.
Walshe J  Bishop MR 《Cytotherapy》2004,6(6):589-582
Several factors influence the engraftment of allogeneic hematopoietic stem cells (HSC). Recently, there has been increased utilization of transplant-conditioning regimens that use reduced doses of chemotherapy and radiation that are considered to be non-myeloablative. These non-myeloablative (or reduced-intensity) allogeneic HSC transplants (RIST) decrease early post-transplant complications, but they are associated with higher incidences of mixed chimerism and graft rejection compared with transplantation after myeloablative condition-ing. RIST provides a unique opportunity to study allogeneic HSC engraftment. In particular, host immune status and stem cell graft composition have emerged as important factors affecting engraftment after RIST Based on these observations, it has been hypothesized that conditioning regimens and allograft composition can be tailored to an individual patients immune and disease status prior to transplant.  相似文献   

13.
无关供者脐带血干细胞移植概况   总被引:1,自引:0,他引:1  
脐带血作为造血干细胞的一大来源,已逐渐获得医学界的认可,随着临床实践的不断展开,对脐带血的使用也趋于标准化。我们通过移植物抗宿主病和治愈情况对骨髓移植与脐带血移植进行了比较,提供了移植用脐带血的择优选取办法及移植的最低细胞剂量,对双份脐带血的选择给出建议,同时对非亲缘脐血与骨髓共输注临床使用情况和嵌合体检测做了介绍与评价。可以看出,在治疗恶性血液病时,脐带血移植是一个可靠的方法。  相似文献   

14.
In the last 30 years, allogeneic bone marrow transplantation has become the treatment of choice for many hematologic malignancies or inherited disorders and a number of changes have been registered in terms of long-term survival rate of transplanted patients as well as of available sources of hematopoietic stem cell (HSC). In parallel to the publication of better results in HSC transplantation, several recent discoveries have opened a scientific and ethical debate on the therapeutical potential of stem cells isolated from adult or embryonic tissues. One of the major discoveries in this field is the capacity of bone marrow-derived stem cells to treat a genetic liver disease in a mouse model, thus justifying the concept of transdifferentiation of adult stem cell and raising hopes on its possible therapeutical applications. We have tried here to summarise the advances in this field and to discuss the limits of these biological data.  相似文献   

15.
Regulatory CD4(+) CD25(+) FoxP3(+) T cells (T(regs) ) suppress immunological reactions. However, the effect of adding T(regs) to hematopoietic stem cell grafts on recovery and graft versus host disease (GvHD) is unknown. T(regs) from splenocytes of C57Bl/6 and Balb/c wild-type mice were isolated by MACS separation and analyzed by flow cytometry. Using a murine syngeneic transplantation model that clearly distinguishes between donor and host hematopoiesis, we showed that co-transplantation of bone marrow cells (BMCs) with high levels of T(regs) leads to a 100% survival of the mice and accelerates the hematopoietic recovery significantly (full donor chimerism). In allogeneic transplantation, bone marrow and T(regs) co-transplantation were compared to allogeneic bone marrow transplantation with or without the addition of splenocytes. Survival, leukocyte recovery, chimerism at days -2, 19, 33, and 61 for murine CD4, human CD4, HLA-DR3, murine CD3, murine CD8, murine Balb/c-H2K(d) , murine C57Bl/6-H2K(b) , and GvHD appearance were analyzed. Allogeneic bone marrow transplantation requires the addition of splenocytes to reach engraftment. Mice receiving grafts with bone marrow, splenocytes and high levels of allogeneic T(regs) died within 28 days (hematopoietic failure). Here, we show also detailed flow cytometric data reagarding analysis of chimerism after transplantation in unique murine hematopoietic stem cell transplantation models. Our findings showed that the syngeneic co-transplantation of CD4(+) , CD25(+) , FoxP3(+) T-cells and BMCs induced a stimulating effect on reconstitution of hematopoiesis after irradiation. However, in the allogeneic setting the co-transplantation of T(regs) aggravates the engraftment of transplanted cells.  相似文献   

16.
E D Zanjani  F R Mackintosh  M R Harrison 《Blood cells》1991,17(2):349-63; discussion 364-6
Bone marrow transplantation to reconstitute defective hematopoietic cell lines in children with congenital defects is limited by donor availability, graft rejection, and graft-versus-host disease (GVHD). These problems can be eliminated by transplanting normal preimmune fetal hematopoietic stem cells (HSC) into an unrelated preimmune fetal recipient. We show here that injections of allogeneic fetal stem cells into preimmune fetal lambs and monkeys result in long-term stable hematopoietic chimerism. HSCs harvested from the livers of preimmune fetal sheep and monkeys when injected into the peritoneal cavity of young unrelated fetal sheep and monkey recipients results in stable, long-term postnatal hematopoietic chimerism involving lymphoid, erythroid, and myeloid cells of donor origin. Donor cell engraftment was achieved without the use of cytoablative procedures and without the development of GVHD.  相似文献   

17.
Cytometric analysis has become an important aspect in the quality control of cells in all phases of hematopoietic cell transplantation. In the stage of donor conditioning the counting of stem and progenitor cells is important and several reliable single platform tests for CD34+ cells have become available recently. It has been shown, that the count of certain subsets of CD34 may predict best time for harvesting stem cells better than just CD34. In many cases manipulation of the cell sample after collection from the donor is necessary before the cells are adequate for transplantation. Characterization of the resulting cell preparations requires reliable quantitative analysis of a variety of cell types like the enumeration of T-cells at the level of one in ten thousand for some allogeneic transplantations. It is discussed how these clinical requirements will need a refinement of cytometric procedures to achieve adequate clinical decisions.  相似文献   

18.
《Cytotherapy》2023,25(2):162-173
Background aimsBone marrow-derived hematopoietic stem cell transplantation/hematopoietic progenitor cell transplantation (HSCT/HPCT) is widely used and one of the most useful treatments in clinical practice. However, the homing rate of hematopoietic stem cells/hematopoietic progenitor cells (HSCs/HPCs) by routine cell transfusion is quite low, influencing hematopoietic reconstitution after HSCT/HPCT.MethodsThe authors developed a micro-living motor (MLM) strategy to increase the number of magnetically empowered bone marrow cells (ME-BMCs) homing to the bone marrow of recipient mice.ResultsIn the in vitro study, migration and retention of ME-BMCs were greatly improved in comparison with non-magnetized bone marrow cells, and the biological characteristics of ME-BMCs were well maintained. Differentially expressed gene analysis indicated that ME-BMCs might function through gene regulation. In the in vivo study, faster hematopoietic reconstitution was observed in ME-BMC mice, which demonstrated a better survival rate and milder symptoms of acute graft-versus-host disease after transplantation of allogeneic ME-BMCs.ConclusionsThis study demonstrated that ME-BMCs serving as MLMs facilitated the homing of HSCs/HPCs and eventually contributed to earlier hematopoietic reconstitution in recipients. These data might provide useful information for other kinds of cell therapies.  相似文献   

19.
Over the past few decades, great strides have been made to advance the field of allogeneic hematopoietic stem cell transplantation. The donor immune mediated graft-vs-tumor effect that follows the procedure is now widely accepted as the most effective form cancer immunotherapy available for patients with a variety of advanced hematological malignancies. Recognition that a transplanted immune system could cure patients with treatment refractory leukemia led to the development of `low-intensity' conditioning regimens, which have improved the safety of the procedure and broadened the application of allogeneic immunotherapy to a growing list of neoplastic diseases. Here we discuss the investigational use of allogeneic transplantation as immunotherapy for patients with metastatic, treatment-refractory solid tumors. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Persistent complete donor chimerism is an important clinical indicator for remissions of hematological malignancies after HLA-matched allogeneic stem cell transplantation (SCT). However, the mechanisms mediating the persistence of complete donor chimerism are poorly understood. The frequent coincidence of complete donor chimerism with graft-versus-leukemia effects and graft-versus-host disease suggests that immune responses against minor histocompatibility antigens (mHags) are playing an important role in suppressing the host hematopoiesis after allogeneic SCT. Here, we investigated a possible relationship between donor immune responses against the hematopoiesis-restricted mHag HA-1 and the long-term kinetics of host hematopoietic chimerism in a cohort of 10 patients after allogeneic HLA-matched, HA-1 mismatched SCT. Functional HA-1 specific CTLs (HA-1 CTLs) were detectable in 6/10 patients lysing host-type hematopoietic cells in vitro. Presence of HA-1 CTLs in the peripheral blood coincided with low host hematopoiesis levels quantified by highly sensitive mHag specific PCR. Additionally, co-incubation of host type CD34+ cells with HA-1 CTLs isolated after allogeneic SCT prevented progenitor and cobblestone area forming cell growth in vitro and human hematopoietic engraftment in immunodeficient mice. Conversely, absence or loss of HA-1 CTLs mostly coincided with high host hematopoiesis levels and/or relapse. In summary, in this first study, presence of HA-1 CTLs paralleled low host hematopoiesis levels. This coincidence might be supported by the capacity of HA-1 CTLs isolated after allogeneic SCT to specifically eliminate host type hematopoietic stem/progenitor cells. Additional studies involving multiple mismatched mHags in more patients are required to confirm this novel characteristic of mHag CTLs as factor for the persistence of complete donor chimerism and leukemia remission after allogeneic SCT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号