首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we evaluated the in vitro activity of echinocandins, azoles, and amphotericin B alone and in combination against echinocandin/azole-sensitive and echinocandin/azole-resistant Candida glabrata isolates. Susceptibility tests were performed using the broth microdilution method in accordance with the Clinical and Laboratory Standards Institute document M27-A3. The checkerboard method was used to evaluate the fractional inhibitory concentration index of the interactions. Cross-resistance was observed among echinocandins; 15% of the isolates resistant to caspofungin were also resistant to anidulafungin and micafungin. Synergistic activity was observed in 70% of resistant C. glabrata when anidulafungin was combined with voriconazole or posaconazole. Higher (85%) synergism was found in the combination of caspofungin and voriconazole. The combinations of caspofungin with fluconazole, posaconazole and amphotericin B, micafungin with fluconazole, posaconazole and voriconazole, and anidulafungin with amphotericin B showed indifferent activities for the majority of the isolates. Anidulafungin combined with fluconazole showed the same percentage of synergism and indifference (45%). Antagonism was detected in 50% of isolates when micafungin was combined with amphotericin B. Combinations of echinocandins and antifungal azoles have great potential for in vivo assays which are required to evaluate the efficacy of these combinations against multidrug-resistant C. glabrata strains.  相似文献   

2.
This article reviews appropriate dosing for antifungals and emphasizes factors specific to the critically ill patient, along with drug pharmacokinetics and pharmacodynamics. The rationale for doses of the echinocandins (caspofungin, micafungin, anidulafungin), triazoles (fluconazole, voriconazole, itraconazole, posaconazole), amphotericin B (including lipid formulations), and flucytosine are discussed.  相似文献   

3.
Voriconazole (Vfend™) is a new triazole that currently is undergoing phase III clinical trials. This review summarizes the published data obtained by NCCLS methods on the in vitro antifungal activity of voriconazole in comparison to itraconazole, amphotericin B, fluconazole, ketoconazole and flucytosine. Voriconazole had fungistatic activity against most yeasts and yeastlike species (minimum inhibitory concentrations [MICs] <2 μg/ml) that was similar or superior to those of fluconazole, amphotericin B, and itraconazole. Against Candida glabrata and C. krusei, voriconazole MIC ranges were 0.03 to 8 and 0.01 to >4 μg/ml, respectively. For four of the six Aspergillus spp. evaluated, voriconazole MICs (< 0.03 to 2 μg/ml) were lower than amphotericin B (0.25 to 4 μg/ml) and similar to itraconazole MICs. Voriconazole fungistatic activity against Fusarium spp. has been variable. Against F. oxysporum and solani, most studies showed MICs ranging from 0.25 to 8 μg/ml. Voriconazole had excellent fungistatic activity against five of the six species of dimorphic fungi evaluated (MIC90s < 1.0 μg/ml). The exception was Sporothrix schenckii (MIC90s and geometric mean MICs ≥ 8 μg/ml). Only amphotericin B had good fungistatic activity against the Zygomycetes species (voriconazole MICs ranged from 2 to >32 μg/ml). Voriconazole showed excellent in vitro activity (MICs < 0.03 to 1.0 μg/ml) against most of the 50 species of dematiaceous fungi tested, but the activity of all the agents was poor against most isolates of Scedosporium prolificans and Phaeoacremonium parasiticum (Phialophora parasitica). Voriconazole had fungicidal activity against most Aspergillus spp., B. dermatitidis, and some dematiaceous fungi. In vitro/in vivo correlations should aid in the interpretation of these results. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
The first echinocandin-type antimycotic (echinocandin B) was discovered in the 1970s. It was followed by the isolation of more than 20 natural echinocandins. These cyclic lipo-hexapeptides are biosynthesized on non-ribosomal peptide synthase complexes by different ascomycota fungi. They have a unique mechanism of action; as non-competitive inhibitors of β-1,3-glucan synthase complex they target the fungal cell wall. Results of the structure–activity relationship experiments let us develop semisynthetic derivatives with improved properties. Three cyclic lipohiexapeptides (caspofungin, micafungin and anidulafungin) are currently approved for use in clinics. As they show good fungicidal (Candida spp.) or fungistatic (Aspergillus spp.) activity against the most important human pathogenic fungi including azole-resistant strains, they are an important addition to the antifungal armamentarium. Some evidence of acquired resistance against echinocandins has been detected among Candida glabrata strains in recent years, which enhanced the importance of data collected on the mechanism of acquired resistance developing against the echinocandins. In this review, we show the structural diversity of natural echinocandins, and we summarize the emerging data on their mode of action, biosynthesis and industrial production. Their clinical significance as well as the mechanism of natural and acquired resistance is also discussed.  相似文献   

5.
临床相关毛孢子菌的鉴定及体外药物敏感性研究   总被引:1,自引:1,他引:0  
目的探讨临床相关毛孢子菌的鉴定方法及对常见抗真菌药物的体外敏感性。方法对48株临床分离的毛孢子菌分别通过形态学、API20C AUX、Vitek 2 Compact及核糖体rDNA ITS序列分析等方法鉴定到种;采用浓度梯度法(E-test)测定氟康唑、伏立康唑、伊曲康唑、两性霉素B及卡泊芬净对48株毛孢子菌的最低抑菌浓度。结果形态学和API20C AUX、Vitek 2 Compact不能准确区分不同种的毛孢子菌,以核糖体rDNA ITS序列分析将48株毛孢子菌鉴定为8个种:阿萨希毛孢子菌,星型毛孢子菌,皮瘤毛孢子菌,真皮毛孢子菌,皮肤毛孢子菌,赖巴克毛孢子菌,T.domesticum,T.jirovecii。体外药敏结果显示:卡泊芬净对毛孢子菌无体外活性,MIC〉32μg/mL;氟康唑和两性霉素B对毛孢子菌活性差,体外活性最好的药物是伏立康唑和伊曲康唑。结论常规方法不易将毛孢子菌准确鉴定到种的水平,ITS序列分析准确快速,可以辅助临床区分难鉴定毛孢子菌。毛孢子菌药敏谱不同于临床常见其他酵母菌,氟康唑和两性霉素B对其活性差,伏立康唑具有良好的体外抗菌活性。  相似文献   

6.
Failure to respond to antifungal therapy could be due to in vitro resistance (intrinsic or developed during therapy) or clinical resistance. In vitro resistance is mostly due to genetic mutations (resistance mechanisms), and it is associated with high minimal inhibitory concentrations (MICs), minimal effective concentrations (MECs), and/or clinical failure. Clinical breakpoints (CBPs) and/or epidemiologic cutoff values (ECVs) are useful to detect the in vitro antifungal resistance when isolates are tested by standardized methods. ECVs are available from the Clinical and Laboratory Standards Institute (CLSI) for Candida spp. versus echinocandins (anidulafungin, caspofungin, and micafungin) and triazoles (fluconazole, posaconazole, and voriconazole). Lately, the CLSI has adjusted to species-specific CBPs for Candida spp. versus fluconazole, similar to those of the European Committee on Antimicrobial Susceptibility Testing (EUCAST), and versus echinocandins. However, the available voriconazole EUCAST and CLSI CBPs differ. In the absence of CBPs, EUCAST and CLSI assigned ECVs for various Aspergillus spp. and triazoles. This article reviews emerging resistance, laboratory detection, and clinical relevance as reported in the literature in the past 3 to 4 years.  相似文献   

7.
Failure to respond to antifungal therapy could be due to in vitro resistance (intrinsic or developed during therapy) or clinical resistance; the latter is associated with numerous factors related to the host, the antifungal agent, or the infecting isolate. Recently, a susceptible MIC breakpoint ( < or =2 microg/ml) was designed for Candida spp. to all three available echinocandins, anidulafungin (Pfizer), caspofungin (Merck) and micafungin (Astellas) and treatment failures have been associated with MICs > 2 microg/ml. In some of these cases, clinical failure was associated with the genetic mutations described below. Azole and flucytosine breakpoints, and the echinocandin susceptible breakpoint, are useful when isolates are tested by CLSI standardized methods; breakpoints are also available by the EUCAST method. More recently, in vitro resistant MIC breakpoints have been assigned for filamentous fungi (moulds) vs. five antifungal agents, but these categories are not based on correlations of in vitro with in vivo response to therapy. However, itraconazole (Janssen), amphotericin B (Bristol-Myers) and voriconazole (Pfizer) clinical failures in aspergillosis have been correlated with MICs > 2 microg/ml. This article provides a review of reported resistance molecular mechanisms to antifungal agents since 2005; previous related reviews are also listed.  相似文献   

8.
BackgroundMicafungin is an echinocandin antifungal drug recently approved for the treatment of candidiasis. The possibility of its clinical use against other invasive mycoses, has aroused the interest of numerous investigators in evaluating its efficacy in different animal models.ObjectivesTo critically review the current data on the use of micafungin in the treatment of invasive mycoses in animal models.MethodsWe searched the PubMed/Medline data base (National Library of Medicine) from 2005 to 2008, both inclusive, on the use of micafungin in the experimental treatment of the fungal infection.Results and conclusionsSeven, of a total of 18 articles reviewed, were done in animal models of candidiasis and six in animal models of pulmonary or SNC aspergillosis. Similarly to the other echinocandins, caspofungin and anidulafungin, micafungin seems to exert a fungicidal activity against Candida albicans and Candida glabrata and a fungistatic activity against Aspergillus fumigatus. The paradoxical effect observed in lung tissue the experimental caspofungin treatment of aspergillosis has not been seen in the case of micafungin. The available data demonstrate a higher efficacy of micafungin versus fluconazole in the experimental treatment of C. albicans infections caused by strains susceptible in vitro to both drugs. To improve the efficacy of micafungin in the treatment of C. glabrata and A. fumigatus infections, several authors have tested different combined therapies, the combination of micafungin with amphotericin B being that showed the best results.  相似文献   

9.
外阴阴道念珠菌病(vulvovaginal candidiasis,VVC)是女性的常见病。本研究收集了2018年1月-12月苏州地区VVC患者分离的289株念珠菌进行了病原学鉴定和包括棘白菌素类、新三唑类药物在内的9种抗真菌药物体外敏感性分析。本文采用核糖体RNA的D1/D2基因进行念珠菌菌种鉴定。参照M27-A3方法检测其对9种抗真菌药物(包括棘白菌素类及新三唑类药物)的体外敏感性。结果表明,289株VVC念珠菌菌株中,白念珠菌259株、光滑念珠菌14株、克柔念珠菌10株、热带念珠菌4株、近平滑念珠菌2株。259株VVC白念珠菌对棘白菌素类体外敏感性好,对米卡芬净敏感性高于另外两种棘白菌素类;对两性霉素B、5-氟胞嘧啶、氟康唑敏感性好;但对伊曲康唑、伏立康唑敏感性差;对泊沙康唑敏感性好。光滑念珠菌株和克柔念珠菌分离株对卡泊芬净敏感性差,但对米卡芬净、阿尼芬净敏感性好;光滑念珠菌株对两性霉素B、5-氟胞嘧啶体外敏感性好,对伊曲康唑敏感性差,对泊沙康唑敏感性好;伏立康唑对光滑念珠菌分离株MIC50/90为0.5/1μg/mL;克柔念珠菌对伊曲康唑、伏立康唑50%耐药;4株热带念珠菌对伊曲康唑50%耐药,对卡泊芬净、氟康唑、伏立康唑100%耐药,对其余5种抗真菌药物敏感。近平滑念珠菌对9种抗真菌药物均敏感。白念珠菌仍为苏州地区VVC的主要病原菌,其次是光滑念珠菌和克柔念珠菌,它们对临床常用药物伊曲康唑、伏立康唑、卡泊芬净敏感性差。研究结果提示对VVC病人常规进行分泌物培养、菌种鉴定,对苏州地区临床医生制定VVC治疗方案具有重要参考价值。尽管棘白菌素类、两性霉素B、5-氟胞嘧啶、新三唑类药物尚未应用到VVC的临床治疗中,但是这些药物对VVC病原体总体敏感性较好,未来有望成为氟康唑、咪唑类药物治疗失败患者的新选择。  相似文献   

10.
Anidulafungin is a new echinocandin recently approved for the treatment of esophageal candidiasis, candidemia and other forms of invasive candidiasis, such as peritonitis and intra-abdominal abscesses in non-neutropenic patients. It is fungicidal against Candida spp. and fungistatic against Aspergillus spp. It is active against Pneumocystis jirovecii. In contrast, anidulafungin does not have activity against Cryptococcus neoformans, Zygomycetes or molds, other than Aspergillus spp. The drug is well tolerated, even in patients with renal or hepatic impairment. In contrast to other echinocandins, it does not significantly interfere with the cytochrome P450 pathway and has a low drug-drug interaction profile, including calcineurinic agents and other drugs used in transplant recipients. So far, anidulafungin appears to have an excellent safety profile with few adverse events and it promises a special consideration in the management of fungal infections happening in transplant recipients.  相似文献   

11.
Invasive mould infections (IMI) are a persistent problem with high morbidity and mortality rates among patients receiving chemotherapy for hematological malignancies and hematopoietic stem cell transplant recipients. Management of IMI in this setting has become increasingly complex with the advent of new antifungal agents and diagnostic tests, which have resulted in different therapeutic strategies (prophylactic, empirical, pre-emptive, and directed). A proper assessment of the individual risk for IMI appears to be critical in order to use the best prophylactic and therapeutic approach and increase the survival rates. Among the available antifungal drugs, the most frequently used in the hematologic patient are fluconazole, mould-active azoles (itraconazole, posaconazole and voriconazole), candins (anidulafungin, caspofungin and micafungin), and lipid formulations of amphotericin B. Specific recommendations for their use, and criteria for selecting the antifungal agents are discussed in this paper.  相似文献   

12.
The U.S. Clinical and Laboratory Standards Institute (CLSI) and the European Committee of Antimicrobial Susceptibility Testing (AFST-EUCAST) have developed broth microdilution methodologies for testing yeasts and filamentous fungi (molds). The mission of these methodologies is to identify in vitro antifungal resistance, which is accomplished by the use of either clinical breakpoints (CBPs), or to a lesser degree, epidemiologic cutoff values (ECVs). The newly adjusted and species-specific CLSI CBPs for Candida spp. versus fluconazole and voriconazole have ameliorated some of the differences between the two methodologies. In the absence of CBPs for mold testing, CLSI ECVs are available for six Aspergillus species versus the triazoles, caspofungin and amphotericin B. Recently, breakpoints were developed by the EUCAST for certain Aspergillus spp. versus amphotercin B, itraconazole and posaconazole, which to some extent are comparable to ECVs. We summarize these latest accomplishments, which have made possible the harmonization of some susceptibility cutoffs, if not methodologies for some agent/species combinations.  相似文献   

13.
Voriconazole has been developed to meet the increasing need for new and useful antifungal agents for the treatment of invasive mycoses. This review describes the spectrum of voriconazole antifungal activity based on data from in vitro studies published during the last three years. This survey demonstrates that voriconazole has a broad antifungal spectrum against the most common fungal pathogens being its action fungistatic for Candida and fungicidal for Aspergillus and other filamentous fungi. Overall, more than 95% of all Candida isolates tested are susceptible to voriconazole and less than 3% are resistant. Similar or even better activity rates have been described for Aspergillus, Cryptococcus and most of yeasts and moulds of medical importance. We also discuss the limitations related to the azole cross-resistance observed in some Candida glabrata isolates, the poor activity of voriconazole against Scedosporium prolificans, its activity against fungal biofilms and the great potential usefulness of combination of voriconazole with other antifungal drugs.  相似文献   

14.
The extensive use of azole antifungal agents has promoted the resistance of Candida spp to these drugs. Candida glabrata is a problematic yeast because it presents a high degree of primary or secondary resistance to fluconazole. In Brazil, C. glabrata has been less studied than other species. In this paper, we compared the activity of three major classes of antifungal agents (azoles, echinocandins and polyenes) against fluconazole-susceptible (FS) and fluconazole-resistant (FR) C. glabrata strains. Cross-resistance between fluconazole and voriconazole was remarkable. Among the antifungal agents, the echinocandins were the most effective against FS and FR C. glabrata and micafungin showed the lowest minimal inhibitory concentrations.  相似文献   

15.
Several new options are now available for treating serious fungal infections. All three echinocandin agents currently available have been shown in randomized, blinded clinical trials to be efficacious in treating candidemia and invasive candidiasis. By contrast, the demonstrated efficacy of the echinocandins for the treatment of invasive aspergillosis has been based on historically controlled salvage treatment trials in patients failing or intolerant of other therapies. The new triazole agents, voriconazole and posaconazole, have a broad spectrum of antifungal activity. Voriconazole has become the agent of choice for invasive aspergillosis. On the basis of compassionate treatment data, posaconazole appears to be effective for treatment of zygomycosis. These agents have also been shown to be effective in the treatment of non-Aspergillus mould infections, several of the endemic mycoses and serious Candida infections.  相似文献   

16.
Yan  Liang  Wang  Xiao-dong  Seyedmousavi  Seyedmojtaba  Yuan  Juan-na  Abulize  Palida  Pan  Wei-hua  Yu  Nong  Yang  Ya-li  Hu  Hai-qing  Liao  Wan-qing  Deng  Shu-wen 《Mycopathologia》2019,184(3):413-422

We investigated the antifungal susceptibility profiles of 207 independent Candida albicans strains isolated from patients with vulvovaginal candidiasis (VVC) in Xinjiang Province of China. Using CLSI M27-A3 and M27-S4 guidelines, anidulafungin and micafungin were the most active drugs against C. albicans showing an MIC50/MIC90 corresponding to 0.016/0.0313 µg/mL, followed by caspofungin (0.25/0.25 µg/mL), posaconazole (0.125/0.5 µg/mL), ravuconazole (0.063/1 µg/mL), itraconazole (0.125/1 µg/mL), amphotericine B (0.5/1 µg/mL), isavuconazole (0.063/2 µg/mL), 5-flucytosine (1/2 µg/mL), voriconazole (0.125/4 µg/mL), and fluconazole (0.5/4 µg/mL). 96.1% (199)–100.0% (207) isolates were sensitive to the three echinocandins tested, amphotericine B and 5-flucytosine. The in vitro activity of triazoles against all isolates tested was variable; itraconazole and voriconazole had reduced the activity to almost half of the isolates (55.1% (114) and 51.2% (106) susceptible, respectively). Fluconazole was active against 76.3% (158) isolates tested. The new triazoles ravuconazole, isavuconazole and posaconazole showed good in vitro potency against 89.9% (186)–95.2% (197) of isolates with the geometric mean MIC (µg/mL) of 0.10, 0.12 and 0.14 µg/mL, respectively. In conclusion, our study indicates that for effective management of systemic candidiasis in Xinjiang Province of China, it is important to determine the susceptibility profiles of isolated C. albicans from patients with VVC.

  相似文献   

17.
Three classes of antifungals—polyenes, extended-spectrum azoles, and echinocandins—are now available for treating systemic fungal infections. Guidance for the appropriate use of this expanded variety of antifungals may come from recent clinical trials. Extended-spectrum azoles have excellent in vitro activity against Aspergillus and have been shown to improve clinical outcomes. For Zygomycetes, along with the lipid formulations of amphotericin, of the new agents, only posaconazole has activity. For Candida, the echinocandins offer a broad spectrum of activity. These new agents offer less toxicity and potentially improved efficacy in these difficult infections.  相似文献   

18.
Rhodotorula species are commensal yeasts that have emerged as a cause of life-threatening fungemia in severely immunocompromised patients. A case of Rhodotorula mucilaginosa fungemia in a 48-year-old woman that had undergone consecutive abdominal surgeries due to ovarian cancer and bowel necrosis while she was receiving fluconazole prophylaxis is presented. Several risk factors were identified such as presence of central venous catheters, solid organ neoplasm, abdominal surgery and administration of antibiotics. Identification was performed using commercial systems. The yeast was resistant to fluconazole, posaconazole and voriconazole and to echinocandins, whereas MIC to amphotericin B was 1.5?mg/L. Furthermore, published cases of Rhodotorula spp fungemia during the last decade are reviewed. In conclusion, Rhodotorula spp must be considered a potential pathogen in patients with immunosupression and central venous catheters. Correct identification is mandatory for appropriate management, as Rhodotorula spp are resistant to antifungal agents, such as fluconazole and echinocandins.  相似文献   

19.
Although reference broth microdilution protocol is currently available for filamentous fungi antifungal susceptibility testing (AFST), simpler alternatives as Etest® tend to be favoured in clinical routine, making their validation of utmost importance. In this study, Etest® method using 2 % glucose supplemented Muller–Hinton agar was compared to the Clinical and Laboratory Standards Institute (CLSI) M38-A2 protocol for filamentous fungi AFST. The echinocandins, caspofungin and anidulafungin, the azoles voriconazole and posaconazole, and the polyene amphotericin B were tested against 48 Aspergillus spp., seven Fusarium spp., one Beauveria bassiana and three Paecilomyces lilacinus isolates. The majority of the isolates were susceptible to the antifungals tested, and the overall level of agreement between the CLSI and Etest methods was 71.9 % for one dilution and 99.7 % when using two dilutions. Since interpretative breakpoints for filamentous fungi employing the CLSI or Etest methods are not available yet, the established epidemiological cut-off values for Aspergillus spp. were used to distinguish wild-type isolates from those with acquired resistance mechanisms. Forty-five Aspergillus strains did not evidence resistance mutations.  相似文献   

20.
Increase in invasive fungal infections over the past few years especially in immunocompromised patients prompted the search for new antifungal agents with improved efficacy. Current antifungal armoury includes very few effective drugs like Amphotericin B; new generation azoles, including voriconazole and posaconazole; echinocandins like caspofungin and micafungin to name a few. Azole class of antifungals which target the fungal cell membrane are the first choice of treatment for many years because of their effectiveness. As the fungal cell membrane is predominantly made up of sterols, glycerophospholipids and sphingolipids, the role of lipids in pathogenesis and target identification for improved therapeutics were largely pursued by researchers during the last few years. Present review focuses on cell membrane as an antifungal target with emphasis on membrane biogenesis, structure and function of cell membrane, cell membrane inhibitors, screening assays, recent advances and future prospects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号