首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M S Rohrbach  J W Bodley 《Biochemistry》1977,16(7):1360-1363
Treatment of Escherichia coli elongation factor G with the arginine reagent, 2,3-butanedione, leads to the inactivation of the enzyme when performed in sodium borate buffers. The inhibition follows pseudo-first-order kinetics until 95% of the activity has been lost and further incubation results in complete inhibiton. Removal of the borate by exhaustive dialysis results in the restoration of approximately 85% of the original activity. The pH dependence of the reaction suggests that the ionization of a group in the protein with a pKa of approximately 8.8 facilitates the reaction with butanedione. A reaction order of 1.01 +/- 0.13 was calculated for the inhibition reaction, indicating that the incorporation of one butanedione per elongation factor G results in the inactivation of the enzyme. The kinetics of inhibition in the presence of GTP indicate that the elongation factor G-GTP complex is refractory to butanedione inhibiton. Elongation factor G which has been partially inactivated by butanedione has the same apparent Km for GTP as does the native enzyme. These results indicate that elongation factor G contains only one essential arginine residue which is reactive with butanedione and that this residue is located at its nucleotide binding site.  相似文献   

2.
M S Rohrback  J W Bodley 《Biochemistry》1976,15(21):4565-4569
The mechanism of guanosine triphosphate (GTP) hydrolysis catalyzed by elongation factor G and the ribosome in the absence of other participants in protein synthesis was examined by steady-state kinetic analysis. Optimal hydrolytic conditions were determined to be approximately pH 8.0, 20 mM Mg2+, and 80 mM NH4+. Kinetic analyses were performed under these conditions at constant elongation factor G concentrations and variable ribosome and GTP concentrations. The resulting double-reciprocal plots in conjunction with the inhibition patterns obtained with GDP indicated that the reaction occurs by an ordered mechanism in which GTP is the leading obligatory substrate. Dissociation constants for GTP and guanosine diphosphate (GDP), as well as limiting Michaelis constants for GTP and ribosomes, were calculated from the double-reciprocal plots. These values are: KSGTP = 37.0 muM, KSGDP = 16.5 muKMGTP = 8.0 muM, KMR = 0.22 muM. Inhibition was also observed at high ribosomal concentrations and suggests that inhibition was due both to the decreased breakdown of the tertiary elongation factor G-GDP-ribosome posthydrolytic complex and to the formation of a nonproductive elongation factor G-ribosome complex. A sequential mechanism with a dead-end elongation factor G-ribosome complex has been constructed to describe the hydrolysis of GTP catalyzed by elongation factor G and the ribosome.  相似文献   

3.
The ribosomal protein L2 is an essential component of the ribosomal large subunit by its relation to the peptidyl transferase reaction, subunit association and elongation factor G-GTP binding. We have isolated a 937 nucleotide long cDNA encoding a cytoplasmic ribosomal L2 protein. Its deduced protein contains 260 amino acid residues and shows 65% identity with eucaryotic RL2 but only 32% identity with the chloroplast homologue. In addition, the protein presents the PROSITE signature which matches all the 50S and 60S L2 proteins and the two residues involved in the peptidyl transferase activity. The corresponding mRNA is accumulated in young plant tissues, in growing cell suspension and in germinating seeds but is not detectable in mature plant tissues, stationary cell suspension and in dry seeds. The mRNA accumulation is correlated with the growth process. Southern blot hybridization shows that cytoplasmic ribosomal protein L2 is encoded by two types of gene which could originate from each parent. highly homologous L2 genes were also detected by Southern blots in the genomes of several monocot and dicot plant species.  相似文献   

4.
The mechanism of the Mg2+-dependent myosin subfragment 1 catalyzed hydrolysis of GTP and 2-amino-6-mercapto-9-beta-ribofuranosylpurine 5'-triphosphate (thioGTP) has been investigated by rapid-reaction techniques. The myosin was isolated from rabbit skeletal muscle. The steady-state intermediate of these reactions consists pre-dominantly of a protein-substrate complex unlike the myosin subfragment 1 ATPase reaction which has a protein-products complex as the principal steady-state component. The mechanism of GTP hydrolysis catalyzed by subfragment 1 has other marked differences from the ATPase mechanism. The second-order rate constant of binding of GTP to subfragment 1 is tenfold greater than that for GDP binding. The dissociation rate constant of GDP from subfragment 1 is 0.06 s-1 compared with the subfragment 1 catalytic center activity for GTP hydrolysis of 0.5 s-1 at pH 8.0 and 20 degrees C. This shows that GDP bound to subfragment 1 forms a complex which is not kinetically competent to be an intermediate of the GTPase mechanism. GDP is hydrolyzed in the presence of subfragment 1 to GMP and Pi. The subfragment 1 GTPase mechanism has a nuber if features in common with that of the elongation factor Tu GTPase of the protein biosynthetic system of Escherichia coli.  相似文献   

5.
Mutations in human mitochondrial tRNA genes are associated with a number of multisystemic disorders. These single nucleotide substitutions in various domains of tRNA molecules may affect different steps of tRNA biogenesis. Often, the prominent decrease of aminoacylation and/or steady-state levels of affected mitochondrial tRNA have been demonstrated in patients' tissues and in cultured cells. Similar effect has been observed for pathogenic mutations in nuclear genes encoding mitochondrial aminoacyl-tRNA-synthetases, while over-expression of mitochondrial aminoacyl-tRNA synthetases or elongation factor EF-Tu rescued mutated tRNAs from degradation. In this review we summarize experimental data concerning the possible regulatory mechanisms governing mitochondrial tRNA steady-state levels, and propose a hypothesis based on the tRNA channelling principle. According to this hypothesis, interaction of mitochondrial tRNA with proteins ensures not only tRNA synthesis, maturation and function, but also protection from degradation. Mutations perturbing this interaction lead to decreased tRNA stability.  相似文献   

6.
Spatial and temporal analyses of elongation and cell length of monocotyledon leaves have most often been performed during the period when leaves are visible and elongate at a constant rate (steady-state). In the present study, the focus was on the earlier stages, during the establishment of the elongation zone. Regardless of leaf development stage, the segment located between 0 and 35 mm from the leaf insertion point had a relative elongation rate that increased with distance from insertion point ('accelerating zone') while the segment located further than 35 mm had a relative elongation rate that decreased ('decelerating zone'). This stable pattern held for both young, non-emerged leaves, where it was restricted to the portion corresponding to the length of the blade, and for leaves during steady-state elongation. In the same way, the profile of cell length was essentially the same during early development and during steady-state elongation. The results of a temporal analysis of whole-leaf elongation rate, carried out in the field and in the greenhouse at different light intensities were consistent with a time-invariant pattern of elongation. Whole-leaf relative elongation rate increased with time until the leaf reached 30-40 mm length (although at different leaf ages depending on conditions), and declined afterwards. These results suggest that the patterns governing the elongation rate of a sector of a maize leaf are independent of the leaf developmental stage but depend on sector position only.  相似文献   

7.
Surface organelles (so-called pili) expressed on the bacterial membrane mediate the adhesion of Escherichia coli causing urinary tract infection. These pili possess some extraordinary elongation properties that are assumed to allow a close bacterium-to-host contact even in the presence of shear forces caused by urine flow. The elongation properties of P pili have therefore been assessed for low elongation speeds (steady-state conditions). This work reports on the behavior of P pili probed by dynamic force spectroscopy. A kinetic model for the unfolding of a helixlike chain structure is derived and verified. It is shown that the unfolding of the quaternary structure of the PapA rod takes place at a constant force that is almost independent of elongation speed for slow elongations (up to approximately 0.4 mum/s), whereas it shows a dynamic response with a logarithmic dependence for fast elongations. The results provide information about the energy landscape and reaction rates. The bond length and thermal bond opening and closure rates for the layer-to-layer bond have been assessed to approximately 0.76 nm, approximately 0.8 Hz, and approximately 8 GHz, respectively. The results also support a previously constructed sticky-chain model for elongation of the PapA rod that until now had been experimentally verified only under steady-state conditions.  相似文献   

8.
9.
10.
Even in the presence of colchicine or Taxol(R), sea urchin embryonic cilia undergo substantial steady-state turnover, with a rate of tubulin incorporation approaching half that seen in full regeneration [Stephens: Mol Biol Cell 8:2187-2198, 1997]. Preliminary experiments suggest that tubulin incorporates differentially into the most stable portion of the outer doublet, the junctional protofilaments [Stephens: Cell Struct Funct 24:413-418, 1999]. To explore this possibility further, embryos of the sea urchin Tripneustes gratilla, a ciliary length inducible system [Stephens: J Exp Zool 269:106-115, 1994a], were pulse labeled with (3)H leucine during steady-state turnover or induced elongation, followed by regeneration in the presence of unlabeled leucine. Cilia were isolated by hypertonic shock and fractionated into detergent-soluble membrane plus matrix, thermally-solubilized microtubule walls, and insoluble 9-fold symmetric remnants of A-B junctional protofilaments plus associated architectural elements. The fractions were resolved by SDS-PAGE and the specific activity of alpha-tubulin was determined. In cilia undergoing turnover or elongation during an isotope pulse, the specific activity of tubulin in the junctional region approximated that of precursor membrane plus matrix tubulin but surpassed that of the tubule wall by a factor of approximately 1.5. In cilia regenerated during an isotope chase, the specific activity of junctional tubulin exceeded that of both the membrane plus matrix and the tubule wall by a similar factor. These data indicate that tubulin is preferentially incorporated into junctional protofilaments during steady-state turnover, induced elongation and regeneration. A model for directional incorporation based on surface lattice discontinuities in the outer doublet is proposed.  相似文献   

11.
Toxin-resistant polypeptide chain elongation factor 2 cDNA has been cloned from a mutant hamster cell line with only non-ADP-ribosylatable elongation factor 2. The mutation conferring resistance to diphtheria toxin and Pseudomonas aeruginosa exotoxin A is a G-to-A transition in the first nucleotide of codon 717. Codon 715 encodes a histidine residue that is modified post-translationally to diphthamide, which is the target amino acid for ADP-ribosylation by both toxins. Transfection of mouse L cells with a recombinant elongation factor 2 cDNA differing from the wild-type only by this G-to-A transition confers resistance to P. aeruginosa exotoxin A. The degrees of toxin-resistant protein synthesis of stable transfectants are dependent on the ratio of non-ADP-ribosylated elongation factor 2 to wild-type elongation factor 2, not the amount of non-ADP-ribosylated elongation factor 2. The mutation creates a new Mbo II restriction site in the elongation factor 2 gene. Several independently isolated diphtheria toxin-resistant Chinese hamster ovary cell lines show the same alteration in the Mbo II restriction pattern.  相似文献   

12.
Novel mutants of elongation factor G   总被引:4,自引:0,他引:4  
A novel mutant form of elongation factor G (EF-G) in Escherichia coli is described. This variant EF-G restricts reading frame errors by a factor of 2 to 3 in vivo at two different positions in a lacIZ fusion. In addition, a conventional fusidic acid resistant (fusR) mutant of EF-G was compared with the restrictive mutant. Both mutants were characterized in vitro in a steady-state poly(U) translating system. The data indicate that the restrictive EF-G variant has an altered interaction with the ribosome both in vivo and in vitro. In contrast, the conventional fusR variant is altered in its interaction with GTP, which is evident in vitro.  相似文献   

13.
Rates of incorporation of [3H]phenylalanine and [14C]leucine from the aminoacylated transfer-RNA into polypeptides synthesized on poly(U) programmed Escherichia coli ribosomes have been determined in cell-free translation systems containing either elongation factors Tu and G with GTP, or just elongation factor Tu or G with GTP, or none of the elongation factors. The presence of elongation factor Tu with GTP has been shown to reduce the leucine to phenylalanine ratio in the product at relatively low concentrations of Mg2+. This error-reducing effect of elongation factor Tu has not been observed at high concentrations of Mg2+, although the factor still contributed to the speed of elongation. The results are discussed in terms of the kinetic proof-reading mechanism proposed by Hopfield (1974).  相似文献   

14.

Background  

SelB is the dedicated elongation factor for delivery of selenocysteinyl-tRNA to the ribosome. In archaea, only a subset of methanogens utilizes selenocysteine and encodes archaeal SelB (aSelB). A SelB-like (aSelBL) homolog has previously been identified in an archaeon that does not encode selenosysteine, and has been proposed to be a pyrrolysyl-tRNA-specific elongation factor (EF-Pyl). However, elongation factor EF-Tu is capable of binding archaeal Pyl-tRNA in bacteria, suggesting the archaeal ortholog EF1A may also be capable of delivering Pyl-tRNA to the ribosome without the need of a specialized factor.  相似文献   

15.
The tet(M) tetracycline resistance gene has been found in a wide variety of clinically important bacteria. It has been shown previously (Burdett, V. (1986) J. Bacteriol. 165, 564-569) that the tet(M) gene product mediates resistance at the level of protein synthesis as judged by in vitro assay. Using this assay, large amounts of protein were purified from an Escherichia coli overproducer expressing the gene under control of a T7 promoter. The purified activity consists of a single polypeptide of molecular weight 68,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and was confirmed to be the tet(M) gene product by amino-terminal sequence analysis. Purified Tet(M) has an associated ribosome-dependent GTPase with the specific activity being similar to that of the corresponding activity associated with elongation factor G. Since Tet(M) also displays substantial homology to elongation factor G throughout its length, Tet(M) may function as an analog of this elongation factor.  相似文献   

16.
The parasitic protozoa Trypanosoma brucei has a complex life cycle. Oxidative phosphorylation is highly active in the procyclic form but absent from bloodstream cells. The mitochondrial genome encodes several gene products that are required for oxidative phosphorylation, but it completely lacks tRNA genes. For mitochondrial translation to occur, the import of cytosolic tRNAs is therefore essential for procyclic T. brucei. Whether the same is true for the bloodstream form has not been studied so far. Here we show that the steady-state levels of mitochondrial tRNAs are essentially the same in both life stages. Editing of the imported tRNA(Trp) also occurs in both forms as well as in mitochondria of Trypanosoma evansi, which lacks a genome and a translation system. These results show that mitochondrial tRNA import is a constitutive process that must be mediated by proteins that are expressed in both forms of the life cycle and that are not encoded in the mitochondrial genome. Moreover, bloodstream cells lacking either mitochondria-specific translation elongation factor Tu or mitochondrial tryptophanyl-tRNA synthetase are not viable indicating that mitochondrial translation is also essential in this stage. Both of these proteins show trypanosomatid-specific features and may therefore be excellent novel drug targets.  相似文献   

17.
18.
19.
The ability of partially purified phospholipase C preparations (Bacillus cereus) to disaggregate elongation factor 1 from rabbit reticulocytes is due to the presence of carboxypeptidase A in the preparations. A similar factor has been purified from the growth medium of B. cereus. In contrast, the disaggregation of elongation factor 1 observed with extracts of Artemia salina nauplii appears to be due to a protease. These results show that different types of proteolytic modification of elongation factor 1 can result in disaggregation of the factor.  相似文献   

20.
Cleland RE 《Plant physiology》1992,99(4):1556-1561
Although rapid auxin-induced growth of coleoptile sections can persist for at least 18 hours, acid-induced growth lasts for a much shorter period of time. Three theories have been proposed to explain this difference in persistence. To distinguish between these theories, the pH dependence for auxin-induced growth of oat (Avena sativa L.) coleoptiles has been determined early and late in the elongation process. Coleoptile sections from which the outer epidermis was removed to facilitate buffer entry were incubated, with or without 10 micromolar indoleacetic acid, in 20 millimolar buffers at pH 4.5 to 7.0 to maintain a fixed wall pH. During the first 1 to 2 hours after addition of auxin, elongation occurs by acid-induced extension (i.e. the pH optimum is <5 and the elongation varies inversely with the solution pH). Auxin causes no additional elongation because the buffers prevent further changes in wall pH. After 60 to 90 minutes, a second mechanism of auxin-induced growth, whose pH optimum is 5.5 to 6.0, predominates. It is proposed that rapid growth responses to changes in auxin concentration are mediated by auxin-induced changes in wall pH, whereas the prolonged, steady-state growth rate is controlled by a second, auxin-mediated process whose pH optimum is less acidic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号