首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
4C nuclear DNA amounts were determined in 16 large decorative cultivars ofNarcissus (Amaryllidaceae), 13 ofHyacinthus (Hyacinthaceae) and 12 ofTulipa (Liliaceae) at different levels of ploidy. Within each genus, nuclear DNA amounts and ploidy levels are positively correlated, with no DNA loss in polyploids.Based on wide surveys of chromosome numbers, the maximum numbers of cultivars, interpreted as the optimum levels of selective success or horticultural fitness, were found to be at the tetraploid level inNarcissus (2n=4x=28), the triploid inHyacinthus (2n=3x=24) and the diploid inTulipa (2n=2x=24). All these ploidy optima were shown to correspond to a small range of nuclear DNA amounts (4C=96-139 pg), which could suggest the existence of a single DNA value optimal for the three biologically similar but unrelated genera. In each case the optimum is at an equilibrium reached between enhanced size and other morphological characteristics on one hand and reduced growth rate on the other, both resulting from increase in ploidy and nuclear DNA amounts.  相似文献   

2.
Phylogenetic relationships between sympatric, morphologically indistinguishable diploid and tetraploid plants ofDactylis glomerata L. (Gramineae) in Galicia (Spain) were assessed using allozyme markers for 6 distinct systems. The study exploited recent introduction in Galicia and subsequent hybridization of an alien 4xDactylis subspecies possessing distinct allozymes from those of all the native plants. Opportunities for gene exchanges between the ploidies were estimated from in situ observations of flowering, examination of progenies in 2x/4x natural and experimental crosses, and enzyme analyses. Results show a high genetic similarity between the Galician diploids and tetraploids, which possess peculiar alleles in common. Although the ploidy levels usually have distinct flowering periods, interploidal crosses do occasionally occur. Gene flow is likely much more important from the diploid to the tetraploid level. A good genetic intermixing occurs between the Galician and the alien tetraploid entities which have simultaneous flowering. Autopolyploidization of the diploids followed by various rates of hybridization is proposed as one very probable origin of natural tetraploids inDactylis.  相似文献   

3.
Tetraploid plants have been produced from nineZantedeschia cultivars usingin vitro colchicine treatment. Rapidly-multiplying shoot cultures were treated on a medium containing 0.05% colchicine for 1, 2 or 4 days to induce chromosome doubling. Following the treatment, most shoots were killed but the surviving shoots were multiplied for several subcultures. These shoots were then rootedin vitro and transferred to a greenhouse. Plants were screened 2 months later by measuring stomatal length, and 110 out of 565 plants were selected as putative tetraploids with a stomatal length significantly greater than in diploid control plants. Chromosome counts were carried out on root tips from 44 plants and confirmed that 38 were tetraploids, 2 were chimeras (predominantly tetraploid with a few octoploid cells), and 4 were diploids. Stomatal length has been rechecked in mature tetraploid plants of the cultivar Black Magic, demonstrating that stomatal length is a good indicator of ploidy level inZantedeschia. This study has shown that multiplying colchicine-treated shootsin vitro for several subcultures prior to transfer to soil produced very few chimeras. The stomatal length measurements are non-destructive and allow the rapid screening of a population for tetraploids.  相似文献   

4.
Studies on chromosome numbers and karyotypes in Orchid taxa from Apulia (Italy) revealed triploid complements inOphrys tenthredinifera andOrchis italica. InO. tenthredinifera there is no significant difference between the diploid and the triploid karyotypes. The tetraploid cytotype ofAnacamptis pyramidalis forms 36 bivalents during metaphase I in embryo sac mother cells. Aneuploidy was noticed inOphrys bertolonii ×O. tarentina with chromosome numbers n = 19 and 2n = 38. There were diploid (2n = 2x = 36), tetraploid (2n = 4x = 72), hexaploid (2n = 6x = 108) and octoploid (2n = 8x = 144) cells in the ovary wall of the diploid hybridOphrys apulica ×O. bombyliflora. Evolutionary trends inOphrys andOrchis chromosomes are discussed.  相似文献   

5.
The gametic chromosome numbers of sevenHymenasplenium (Aspleniaceae) species from Xishuangbanna, Yunnan Prov., China, were investigated. All the examined individuals ofH. obscurum, H. cheilosorum andH. latipinnum were sexual diploids with n=39 chromosomes. Intraspecific cytological variation was found inH. excisum, which has a sexual diploid (n=39) and a tetraploid (n=78). Only a triploid apogamous cytotype (n=ca.117) was found inH. laterepens. Hymenasplenium apogamum showed the most complicated intraspecific variation and included a sexual diploid (n=39), a sexual tetraploid (n=78) and an apogamous triploid (n=ca.117). This work reports for the first time the sexual diploids ofH. cheilosorum andH. apogamum, which are only apogamous elsewhere in east Asia, Himalayas and Indochina. These results may indicate that this area is one of the diversity centers ofHymenasplenium. Most of the above species have chromosome numbers based on x=39. In contrast,H. costarisorum contains a sexual diploid (n=36) and a sexual tetraploid (n=72), indicating that its basic number is x=36.  相似文献   

6.
7.
Chromosome numbers of n = 8, 12, and 16 were determined for 11 populations of Claytonia lanceolata occurring in the southwestern Rocky Mountains of Utah. No evidence of the wide infra-populational variation of chromosome numbers known in the related eastern species, C. virginica, was observed. The chromosome numbers in C. lanceolata probably evolved from a base number of x = 8. Diploids(n = 8) apparently produced tetraploids (n = 16) of putative autoploid origin. Pairing relationships, including the presence of univalents, bivalents, and trivalents, suggest the chromosome numbers of n = 12 are triploids derived from natural hybridization between diploids and tetraploids. Higher chromosome numbers previously reported in C. lanceolata from Colorado, and presumably based on x = 12, can be explained by subsequent polyploid increases in the triploids. The diploid and tetraploid populations analyzed in this study occupy different ecological habitats. The diploids occur at lower elevations along the foothills, whereas the tetraploids are restricted to higher montane and sub-alpine elevations. The triploids were discovered at intermediate elevations.  相似文献   

8.
The occurrence of hexaploid (2n = 6x = 42) forms in some otherwise natural tetraploid populations of Agropyron dasystachyum (2n = 4x = 28) was cytologically detected and studied. The hexaploid plants are morphologically similar to the tetraploids except for a small reduction in the anther size. The general survey of chromosome numbers of natural Northern Wheatgrass (A. dasystachyum 2n = 4x = 28) populations derived from eight different regions of Alberta indicated that the occurrence of hexaploid variants was not restricted to a single locality. A comparative study of chromosome pairing in the natural and the synthetic hexaploids revealed that the naturally occurring 42-chromosomed plants of A. dasystachyum originated as a result of fertilization between unreduced (SSHH) and the natural (SH) gametes, both coming from the tetraploid form of A. dasystachyum. Based on chromosome pairing, the genomes of the natural hexaploid A. dasystachyum have been designated as SSSHHH. The natural hexaploids appear to intercross among themselves and also with tetraploids producing euploid and aneuploid hybrids. The possible evolutionary significance of these findings is briefly discussed.  相似文献   

9.
Tetraploid plants have been produced from nineZantedeschia cultivars usingin vitro colchicine treatment. Rapidly-multiplying shoot cultures were treated on a medium containing 0.05% colchicine for 1, 2 or 4 days to induce chromosome doubling. Following the treatment, most shoots were killed but the surviving shoots were multiplied for several subcultures. These shoots were then rootedin vitro and transferred to a greenhouse. Plants were screened 2 months later by measuring stomatal length, and 110 out of 565 plants were selected as putative tetraploids with a stomatal length significantly greater than in diploid control plants. Chromosome counts were carried out on root tips from 44 plants and confirmed that 38 were tetraploids, 2 were chimeras (predominantly tetraploid with a few octoploid cells), and 4 were diploids. Stomatal length has been rechecked in mature tetraploid plants of the cultivar Black Magic, demonstrating that stomatal length is a good indicator of ploidy level inZantedeschia. This study has shown that multiplying colchicine-treated shootsin vitro for several subcultures prior to transfer to soil produced very few chimeras. The stomatal length measurements are non-destructive and allow the rapid screening of a population for tetraploids.  相似文献   

10.
Chromosome numbers are polyploid, 2n = 28 inBrunellia comocladiifolia andB. mexicana, and 2n = 46 inCaryocar brasiliense, C. microcarpum andC. villosum. The chromosome are small in both genera, with a length of ca. 1,6-0,4µm. Interphase nuclei correspond to the prochromosomal and the chromocentric type, respectively. This is in conformance with the systematic placement ofBrunelliaceae intoCunoniales, and ofCaryocaraceae intoTheales. Brunellia exhibits affinities to various other orders ofRosidae (andHamamelididae), and is suggested to be primarily apetalous. On a comparative basis, the chromosome numbers found in both families are interpreted as paleopolyploid (4 x and 6 x). This apparently is in correspondence with their rather primitive features, systematic isolation, relatively depauperate status, and evidently great age.  相似文献   

11.
Karyomorphological comparisons were made of 16 native and cultivated species ofSelaginella in Japan. The somatic chromosome numbers are 2n=16 inS. boninensis; 2n=18 inS. doederleinii, S. helvetica, S. limbata, S. lutchuensis, S. nipponica, S. selaginoides, S. tama-montana, andS. uncinata; 2n=20 inS. biformis, S. involvens, S. moellendorffii, S. remotifolia, andS. tamariscina; 2n=30 inS. rossii; and 2n=32 inS. heterostachys. The interphase nuclei of all species examined are uniformly assigned to the simple chromocenter type. The metaphase karyotype of 2n=16 (x=8) is 8 m (=median centromeric chromosomes)+8(st+t)(=subterminal and terminal). The group of the species having 2n=18 (x=9) is heterogeneous karyomorphologically: The karyotype ofS. nipponica is 2n=18=6 m+12(st+t),S. tama-montana 10 m+2 sm(=submedian)+6(st+t), andS. uncinata 6 m+7 sm+5(st+t). Although the remaining five species have the common karyotype 8 m+4 sm+6(st+t), the values of mean chromosome length are variable. Another group of the specles having 2n=20 (x=10) is homogeneous, since all species have the same karyotypes 8 m+4 sm+8(st+t) and have similar chromosome size. The karyotype of 2n=30 is 12 m+6 sm+12(st+t) and is suggested to be a triploid of x=10, and 2n=32=16m+16(st+t), a tetraploid of x=8. Thus, three kinds of basic chromosome numbers, x=8, 9, 10 are present in JapaneseSelaginella examined, and their karyomorphological relationships are discussed.  相似文献   

12.
Summary Chloroplast DNA variation has been used to examine some of the maternal lineages involved in the evolution of the intraspecific polyploid complex, Dactylis glomerata L. Diploid (2x) and tetraploid (4x) individuals were collected from natural populations of the subspecies glomerata (4x), marina (4x) and lusitanica (2x), as well as from sympatric 2x/4x populations of the Galician type. Digestion of their ctDNA with 11 restriction endonucleases revealed enough variation to characterise three ctDNA variants, designated MBMK, MBmK and mBMK. The distribution of these ctDNA variants reflects different stages in their spread among the populations. The MBMK ctDNA variant predominated at both ploidy levels in subspecies glomerata, lusitanica and marina, and in recent tetraploid Galician/glomerata hybrids. The MBmK variant was detected in a single tetraploid individual and probably results from a relatively recent mutation. Fixation of the mBMK minority variant in the diploid and tetraploid Galician populations adds to the evidence concerning the possible origin of the Galician tetraploids. It means that the Galician diploids were maternal ancestors of the tetraploids. This result complements evidence from earlier studies based on morphology or biochemical markers, and reduces the likelihood that the tetraploids arose by hybridisation between an ancient Galician diploid and an alien tetraploid. It is, however, consistent with a true autopolyploid origin of the tetraploids.  相似文献   

13.
Somaclonal variation was studied in two Iranian land races of O. sativa spp. japonica var Hassani and O. sativa spp. indica var Sadridomsiah and 2000 plants of each cultivar were cytogenetically examined in two steps. In the first step, chromosome counts of root tips was used to detect ploidy levels and aneuploids of regenerated plants. In the second step, chromosomal aberrations were characterized by pachytene analysis of PMC’s. Ploidy levels were seen between n and 4n (haploids to tetraploids) in both cultivars with diploid resource (2n = 2x = 24). The total rate of variation for Hassani (japonica) was 13.7% including 10.8% for changes in chromosome number (ploidy levels and aneuploids) and 2.9% for chromosomal aberrations such as deficiency. A total rate of variation for Sadridomsiah (indica) was 15.6% including 12.4% for change in numbers and 3.2% for aberrations in construction. Most of important cytological mutations were observed in various chromosomes among regenerated plants of cultivars. Neither nullisomics nor inversions were distinguished in any samples.  相似文献   

14.
Mitotic chromosome numbers are reported from 25 vascular plant taxa, endemic to the Balearic Islands that are poorly known cytogenetically. The chromosome numbers ofAnthyllis vulneraria subsp.balearica (2n=12),Cymbalaria fragilis (2n=56), andPolygonum romanum subsp.balearicum (2n=40) were determined for the first time. A new chromosome number was found in several populations ofAnthyllis hystrix (2n=70) suggesting that this species is decaploid, in contrast to an earlier work reporting a higher ploidy level (2n=12x=84). The new chromosome number 2n=32 was reported inHypericum hircinum subsp.cambessedesii. It is suggested that the previous count (2n=40) could be explained by the presence of anomalous pentaploid cells in some tissues, contrating with the presence of a regular tetraploid complement (2n=32). Cytogenetic observations suggest thatSibthorpia africana has a diploid chromosome complement of 2n=18, with 0–2 accessory chromosomes. Accessory chromosomes are also reported forPhlomis italica, being the first record of B chromosomes in this genus. Chromosomal instability was found inGalium crespianum andG. friedichii species, with three numbers 2n=44, 55 and 66. Two cytotypes differing in ploidy level were documented within single plants. It is suggested that both species share a regular complement of 2n=44 and that the past hybridization events and formation of regenerating roots from the typical rootstock ofG. crespianum andG. friedrichii could be involved in the genesis of chromosome variants through partial endopolyploidy and concomitant somatic segregation.  相似文献   

15.
Chromosome counts in 16 populations of fiveArtemisia species from Poland are presented in this paper. Those ofA. annua (2n=18) andA. dracunculus (2n=90) are reported for the first time in Polish populations. The decaploid level (2n=90) is described for the first time in non-cultivated populations ofA. dracunculus, and several cases of aneusomaty (intraindividual aneuploid variations in chromosome number: 2n=87, 88 and 89) have been detected in this species. In addition to the already known diploid number (2n=18), the tetraploid level (2n=36) has been detected inA. absinthium. The same two numbers have been recorded inA. abrotanum, which represents the first tetraploid count in populations of this taxon occurring outside botanical gardens. Finally, the chromosome number ofArtemisia campestris subsp.sericea (tetraploid, 2n=36) is reported for the first time. The relevance of polyploidy for the evolution of the genus and other cytotaxonomic or cytobiogeographical aspects are briefly discussed.  相似文献   

16.
Summary Haploid and diploid anther-derivedZea mays callus lines were treated with the antimicrotubule herbicide pronamide to produce mixed ploidy callus as determined by flow cytometry. The ploidy levels of the plants regenerated from the callus were determined by counting the leaf epidermal guard cell chloroplast numbers. The proportion of diploid regenerated plants was somewhat lower than the proportion of diploid cells of the callus. The diploid plants regenerated somewhat faster than the haploids. The proportion of tetraploids regenerated from the pronamide treated diploid callus, which originated by spontaneous chromosome doubling, was much lower than the proportion of cells indicating that tetraploid cells survive or regenerate plants at a lower frequency than diploid cells.  相似文献   

17.
Isogenic diploid and tetraploid alfalfa (Medicago sativa L.) was studied with molecular markers to help understand why diploid performance and breeding behavior does not always predict that of tetraploids. In a previous study of partially heterozygous alfalfa genotypes, we detected a low correlation between yields of isogenic diploid (2x) and tetraploid (4x) single-cross progenies, and genetic distances were more highly correlated with yields of tetraploids than diploids. These differences may be related to the level of RFLP heterozygosity expected among progenies derived from heterozygous parents at the two ploidy levels. The objectives of this study were to determine the relationships among genetic distance, forage yield and heterozygosity in isogenic 2 x and 4 x alfalfa populations. Four diploid genotypes were chromosome doubled to produce corresponding isogenic autotetraploids, and these genotypes were mated in 4 × 4 diallels to produce 6 single-cross families at each ploidy level for field evaluation. Allele compositions of parents were determined at 33 RFLP loci by monitoring segregation of homologous restriction fragments among individuals within progenies, and these were used to estimate RFLP heterozygosity levels for all single-cross progenies at both ploidy levels. RFLP heterozygosity rankings were identical between progenies of isogenic diploid and tetraploid parents; but significant associations (P < 0.05) between estimated heterozygosity levels and forage yield were detected only at the tetraploid level. Since tetraploid families were nearly 25% more heterozygous than the corresponding diploid families, inconsistencies in the association between molecular marker diversity and forage yields of isogenic 2 x and 4 x single crosses may be due to recessive alleles that are expressed in diploids but masked in tetraploids. The gene action involved in heterosis may be the same at both ploidy levels; however, tetraploids benefit from greater complementary gene interactions than are possible for equivalent diploids. Present address: AgResearch Grasslands, New Zealand Pastoral Agriculture Research Institute, Palmerston North, New Zealand  相似文献   

18.
Ploidy of watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai shoots and plantlets was estimated by painting the lower epidermis of intact in vitro-derived leaves with fluorescein diacetate (FDA) and observing fluorescence of guard cell chloroplasts with a microscope and UV light. Leaves from in vitro shoot-tip cultures of known diploid cultivars and tetraploid breeding lines were used to establish the mean number of chloroplasts per guard cell pair. Leaves from diploid and tetraploid shoot cultures had 9.7 and 17.8 chloroplasts per guard cell pair, respectively. This method then was used to estimate the ploidy of shoots regenerated from cotyledon explants of the diploid cultivar Minilee. Approximately 11% of the 188 regenerated shoots were classified as tetraploid during in vitro culture. Putative tetraploids were transplanted to the field and self-pollinated. About 45% of tetraploids identified in vitro produced fruit and viable seed. Chloroplast counts of R1 progeny were used to confirm their ploidy. All of the putative diploids were confirmed diploid and all putative tetraploids proved to be non-chimeric true breeding tetraploids. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
The five annual species ofAdonis L., sect.Adonis, growing in Israel, form a series of diploid, tetraploid and hexaploid species. Their somatic chromosome numbers are 2n = 16 inA. annua L.,A. dentata Del. andA. palaestina Boiss., 2n = 32 inA. microcarpa DC., 2n = 48 inA. aestivalis L.; counts forA. dentata, A. palaestina andA. microcarpa are new records. There are indications that alloploidization may have been involved in the process of speciation in sect.Adonis. A taxonomic survey of the 8 species of the section reveals that a higher ploidy level is usually combined with a larger distribution area.  相似文献   

20.
Summary Endosperm Balance Number (EBN) is a genetic, dose-dependent crossability system functioning in tuber-bearing Solanum species. Each species has been assigned 1EBN, 2EBN, or 4EBN. Species thus designated cross only within their EBN group. Doubling of chromosome number also doubles the EBN. The ploidy: EBN ratio is not consistent among Solanum species. Some diploids are 2EBN while others are 1EBN. Some tetraploids are 4EBN while others are 2EBN. Species from Mexico typically have EBNs that are one-half of their ploidy [e.g. 2x(1EBN), 4x(2EBN)]. Hybrids of Mexican species and a South American species, 2x(1EBN) S. Commersonii, and its 4x(2EBN) colchicine derivative were made and crossed to 1, 2, and 4EBN standard testers to determine the relationship of the genetic organization of EBN among and within these species. Diploid hybrids crossed only to 1EBN standard testers. Hybrids of 4x(2EBN) S. commersonii and 4x(2EBN) Mexican species crossed almost exclusively to 2EBN standard testers. Complex tetraploid hybrids involving S. commersonii, S. stenophyllidium (a Mexican diploid), and Mexican tetraploids of series Longipedicellata also crossed only to 2EBN testers. The apparent lack of recombination and segregation for EBN in these hybrids indicates that the genomes of the Mexican diploid and tetraploid species carry EBN in a way genetically similar to that of the South American species S. Commersonii.Cooperative investigation of the U.S. Department of Agriculture, Agricultural Research Service and the Wisconsin Experiment Station. Supported in part by the USDA/Cooperative States Research Service Competitive Grant No. 83-CRCR-1-1253  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号