首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five subjects ingested in a single oral dose containing 50 mg each of 2R,4'R,8'R-alpha-(5,7-(C2H3)2)tocopheryl acetate (d6-RRR-alpha-tocopheryl acetate) with natural stereochemistry, and of 2S,4'R,8'R-alpha-(5-C2H3)tocopheryl acetate (d3-SRR-alpha-tocopheryl acetate). These are two of eight stereoisomers in synthetic vitamin E. By day 1 the plasma and red blood cells were enriched fourfold with d6-RRR-alpha-tocopherol (P less than 0.004). The ratio of d6-RRR-/d2-SRR- further increased over the succeeding 4 days, because the d3-SRR- decreased at a faster rate than did the d6-RRR-stereoisomer. Plasma and lipoproteins were isolated at intervals during the first day, and daily for 3 days, from four additional subjects fed a mixture of equal amounts of the deuterated tocopherols. The plasma contained similar concentrations of the two forms until 11 h, when the d6-RRR-alpha-tocopherol concentration became significantly greater (P less than 0.05). The chylomicrons contained similar concentrations of the two deuterated tocopherols, but the VLDL (very low density lipoproteins) became preferentially enriched in d6-RRR-alpha-tocopherol by 11 h. The pattern of the deuterated tocopherols shows that during chylomicron catabolism all of the plasma lipoproteins were labeled equally with both tocopherols, but that during the subsequent VLDL catabolism the low and high density lipoproteins became enriched in d6-RRR-alpha-tocopherol. These results suggest the existence of a mechanism in the liver for assembling VLDL preferentially enriched in RRR- relative to SRR-alpha-tocopherol.  相似文献   

2.
The transport and secretion of vitamin E in lipoproteins have been studied in cynomolgus monkeys fed tocopherols labeled with different amounts of deuterium. The animals were fed a single dose of vitamin E containing 60 mumol of each 2R,4'R,8'R-alpha-(5,7-(C2H3)2)tocopheryl acetate (d6-RRR-alpha-tocopheryl acetate; alpha-tocopherol with natural stereochemistry), 2S,4'R,8'R-alpha-5-(C2H3)tocopheryl acetate (d3-SRR-alpha-tocopheryl acetate; alpha-tocopherol with unnatural stereochemistry), and 2R,4'R,8'R-gamma-(3,4-2H)tocopherol (d2-RRR-gamma-tocopherol; gamma-tocopherol with natural stereochemistry). Chylomicrons, as well as the other plasma lipoproteins, contained equal concentrations of all three tocopherols at the earliest time points after feeding suggesting that all three tocopherols were absorbed equally. At later times plasma lipoproteins became preferentially enriched in d6-RRR-alpha-tocopherol. This is likely to be due to hepatic secretion of VLDL (very low density lipoproteins) and other lipoproteins, which were enriched in d6-RRR-alpha-tocopherol, as demonstrated in the lipoproteins isolated from perfused livers that had been obtained 24 h following the administration of the deuterated tocopherols. Taken together these data demonstrate that the liver, not the intestine, is the likely site of discrimination between tocopherol isomers and that the liver secretes nascent lipoproteins preferentially enriched in d6-RRR-alpha-tocopherol.  相似文献   

3.
A monoclonal antibody to apolipoprotein (apo) B-100 (JI-H) with unique binding properties has been used to separate a population of triglyceride-rich lipoproteins from blood plasma of normotriglyceridemic individuals and patients with various forms of hypertriglyceridemia. This antibody fails to recognize an apoE-rich population of very low density lipoproteins (VLDL) containing apoB-100 as well as all triglyceride-rich lipoproteins containing apoB-48, but it binds other VLDL that contain apoE and almost all lipoproteins that contain apoB-100, but no apoE. The unbound triglyceride-rich lipoproteins separated by ultracentrifugation after separation from plasma by immunoaffinity chromatography contained 10-13% of the apoB of triglyceride-rich lipoproteins from three normotriglyceridemic individuals, 10-29% of that from five patients with endogenous hypertriglyceridemia, 40-48% of that from three patients with familial dysbetablipoproteinemia, and 65% of that from a patient with lipoprotein lipase deficiency. In all cases, the unbound triglyceride-rich lipoproteins contained more molecules of apoE and cholesteryl esters per particle than those that were bound to monoclonal antibody JI-H, and they were generally depleted of C apolipoproteins. These properties resemble those described for partially catabolized remnants of chylomicrons and VLDL. The affinity of the unbound lipoproteins for the low density lipoprotein (LDL) receptor varied widely, and closely resembled that of the total triglyceride-rich lipoproteins from individual subjects. Our results demonstrate that remnant-like chylomicrons and a population of remnant-like VLDL can be isolated and quantified in blood plasma obtained in the postabsorptive state from normotriglyceridemic and hypertriglyceridemic individuals alike.  相似文献   

4.
In order to explore the in vivo function of hepatic lipase, rats were injected with goat anti-rat hepatic lipase serum which produced a complete and specific inhibition of heparin-releasable hepatic lipase. In the fasting rats, protein, phospholipid and free cholesterol expressed as either mass or percent weight increased significantly in low-density lipoprotein (LDL) and high-density lipoprotein 2 (HDL-2) fractions. These three constituents were not affected in the VLDL and HDL-3 lipoproteins. In the fat-loaded (1 ml corn oil) rat, 6 h post inhibition of hepatic lipase triacylglycerol, phospholipid and free cholesterol concentrations in the d less than 1.006 fraction were 2.5-fold higher in the inhibited animals than in the control rats. The composition of the d less than 1.006 fraction was also affected. Expressed as percent mass, protein was lower (5.2 +/- 1.2 vs. 10.3 +/- 1.5, P less than 0.001) as was cholesteryl ester (1.7 +/- 0.7 vs. 2.6 +/- 0.4, P less than 0.01); triacylglycerol was elevated (77.2 +/- 4.0 vs. 72.6 +/- 2.4, P less than 0.025), as was free cholesterol (3.0 +/- 0.6 vs. 2.4 +/- 0.2, P less than 0.025). Overall, inhibition lowered the ratio of surface-to-core constituents suggesting a larger mean particle diameter. SDS-polyacrylamide gel electrophoresis showed the intermediate- and low-density lipoprotein from treated rats to be significantly enriched in apolipoprotein B-48. In the LDL fraction, apolipoprotein B-48 accounted for 62 +/- 14% of the total apolipoprotein B in the inhibited rats, vs. 12 +/- 2% in the control rats. The above results support the previously described in vivo function of hepatic lipase as a phospholipase. In addition, the results demonstrate a role of hepatic lipase in the catabolism of chylomicrons. Since removal of apolipoprotein B-48-containing lipoproteins is dependent upon apolipoprotein E, their appearance in the LDL fraction implies a masking of apolipoprotein E-binding determinants.  相似文献   

5.
Studies using rat livers perfused with recycled, serum-containing medium plus [3H]leucine revealed that secreted VLDL contain three forms of apolipoprotein B (apoB), B-48, B-95, and B-100, all synthesized by the liver. The B-48/(B-95 + B-100) [3H]leucine incorporation ratio ranged from 0.22 to 3.25 with livers of rats fed different diets, and the ratio was positively correlated with the triglyceride secretion rate in most of the livers. Generally, as more triglyceride was secreted, a greater proportion was packaged with B-48, which is the apoB form most rapidly cleared from the circulation. Together, these findings suggest a mechanism for regulating plasma triglyceride levels. [3H]Leucine incorporation into apoA-I also was positively correlated with the triglyceride secretion rate. Secretion of newly synthesized B-48 was delayed relative to all other apolipoproteins. There was little segregation of any of the three apoB forms into any of five subfractions of secreted VLDL separated on the basis of Sf value; only the smallest VLDL (Sf 20-100) were slightly enriched in B-95 and B-100. Less than 5% of newly synthesized apoB appeared in perfusate LDL. The B-100/B-95 [3H]leucine incorporation ratio was 3.3 with perfused livers of fed rats but only 1.6 in post-surgical, relatively fasted rats in vivo, suggesting physiologic regulation also of the relative amounts of the two large apoBs produced. With recycled serum-free perfusate, as opposed to serum-containing medium, there was hepatic reuptake of nascent VLDL, indicated by the reuptake of newly synthesized apoE and all three forms of apoB, and not other apolipoproteins. Divergent metabolism of B-100 and B-95 in the rat was evident from the following results: a) B-95 disappeared more rapidly from recycled, serum-free liver perfusate; b) B-100 disappeared more rapidly from the circulation in vivo; c) plasma lipoprotein fractions of increasing density between d less than 1.019 and d 1.072 g/ml contained increasing proportions of B-95 over B-100. In summary, these results show that hepatic VLDL production in the rat involves the biosynthesis of three forms of apoB, that the relative amounts produced are regulated by physiologic variables, and that there is divergent metabolism of the VLDL particles into which these different apoB forms, either individually or in combination, become incorporated.  相似文献   

6.
The major in vivo oxidation products of alpha-tocopherol, alpha-T, are the Simon metabolites, 1 and 2. For these compounds to be formed from alpha-T the polyisoprenoid tail of alpha-T must be oxidatively cleaved at the 3' carbon atom. Comparison of the levels of 2R,4'R,8'R-alpha-(3',3'-2H2)-T and 2R,4'R,8'R-alpha-[5,7-(C2H3)2]-T remaining in various tissues of rats which had been preloaded with equal quantities of these two forms of vitamin E following a change to a vitamin E-free diet has shown that there is no statistically significant difference in the rates of loss of these two deuterium-labeled alpha-T's. This demonstrates that the Simon metabolites are not formed by a rate-controlling scission of the 3'C-H bond of alpha-T.  相似文献   

7.
Inbred mouse strains C57BL/6J (B6) (susceptible) and C3H/HeJ (C3H) (resistant) differ in atherosclerosis susceptibility due to a single gene, Ath-1. Plasma lipoproteins from female mice fed chow or an atherogenic diet displayed strain differences in lipoprotein particle sizes and apolipoprotein (apo) composition. High density lipoprotein (HDL) particle sizes were 9.5 +/- 0.1 nm for B6 and 10.2 +/- 0.1 nm for C3H. No major HDL particle size subclasses were observed. Plasma HDL level in the B6 strain was reduced by the atherogenic diet consumption while the HDL level in the resistant C3H mice was unaffected. The reduction in HDL in the B6 strain was associated with decreases in HDL apolipoproteins A-I(-34%) and A-II(-60%). The HDL apoC content in mice fed chow was two-fold higher in C3H than B6. Lipoproteins containing apolipoprotein B (VLDL, IDL, LDL) shifted from a preponderance of the B-100 (chow diet) to a preponderance of the B-48 (atherogenic diet). The LDL-particle size distribution was strain-specific with the chow diet but not genetically associated with the Ath-1 gene. In both strains on each diet, apolipoprotein E was largely distributed in the VLDL, LDL, and HDL fractions. The B6 strain became sixfold elevated in total lipoprotein E content which in the C3H strain was not significantly affected by diet. However, the C3H LDL apoE content was reduced. On both diets, the C3H strain exhibited apolipoprotein E levels comparable to the atherogenic diet-induced levels of the B6 mice.  相似文献   

8.
Plasma lipoproteins from 5-week old male chickens were separated over the density range 1.006-1.172 g/ml into 22 subfractions by isopycnic density gradient ultracentrifugation, in order to establish the distribution of these particles and their constituent apolipoproteins as a function of density. Lipoprotein subfractions were characterized by electrophorectic, chemical and morphological analyses, and their protein moieties were defined according to net charge at alkaline pH, molecular weight and isoelectric point. These analyses have permitted us to reevaluate the density limits of the major chicken lipoprotein classes and to determine their main characteristics, which are as follows: (1) very-low-density lipoproteins (VLDL), isolated at d less than 1.016 g/ml, were present at low concentrations (less than 0.1 mg/ml) in fasted birds; their mean diameter determined by gradient gel electrophoresis and by electron microscopy was 20.5 and 31.4 nm respectively; (2) as the the density increased from VLDL to intermediate density lipoproteins (IDL), d 1.016-l.020 g/ml) and low-density lipoproteins (LDL, d 1.020-1.046 g/ml), the lipoprotein particles contained progressively less triacylglycerol and more protein, and their Stokes diameter decreased to 20.0 nm; (3) apolipoprotein B-100 was the major apolipoprotein in lipoproteins of d less than 1.046 g/ml, with an Mr of 350000; small amounts of apolipoprotein B-100 were detectable in HDL subfractions of d less than 1.076 g/ml; urea-soluble apolipoproteins were present in this density range as minor components of Mr 38000-39000, 27000-28000 (corresponding to apolipoprotein A-1) and Mr 11000-12000; (4) high density lipoprotein (HDL, d 1.052-1.130 g/ml) was isolated as a single band, whose protein content increased progressively with increase in density; the chemical composition of HDL resembled that of human HDL2, with apolipoprotein A-1 (M 27000-28000) as the major protein component, and a protein of Mr 11000-12000 as a minor component; (5) heterogeneity was observed in the particle size and apolipoprotein distribution of HDL subfractions: two lipoprotein bands which additional apolipoproteins of Mr 13000 and 15000 were detected. These studies illustrate the inadequacy in the chicken of the density limits applied to fractionate the lipoprotein spectrum, and particularly the inappropriateness of the 1.063 g/ml density limit as the cutoff for LDL and HDL particle populations in the species.  相似文献   

9.
125I-Labeled autologous very low density lipoprotein (VLDL) was injected intravenously into three lipoprotein (a) positive individuals. One other lipoprotein (a) positive subject received 125I-labeled VLDL from a a lipoprotein (a) negative donor. Specific activity of apolipoprotein B in VLDL, low density lipoprotein (LDL) and lipoprotein (a) was measured for 5 days. In the lipoprotein (a) fraction only traces of radioactivity could be detected, which were caused by contamination with labeled LDL. No precursor-product relationship existed between apolipoprotein B in VLDL or LDL and apolipoprotein B in lipoprotein (a). One lipoprotein (a)-positive individual was kept on a fat-free diet for 4 days to prevent chylomicron formation; no change in the serum level of lipoprotein (a) could be detected under these conditions. The data of this study indicate that lipoprotein (a) is not a metabolic product of VLDL or LDL. Also chylomicrons are not likely to play role as a precursor for lipoprotein (a). It is concluded that lipoprotein (a) is synthesized as a separate lipoprotein.  相似文献   

10.
In this study we have determined the fate of phospholipids, cholesterol, and apolipoprotein C during lipolysis of rat plasma very low density lipoprotein (rat VLDL). The experiment was carried out in vitro with lipoprotein lipase purified from bovine milk, VLDL labeled with [(14)C]palmitate, [(3)H]cholesterol, [(32)P]phospholipids, and (125)I-labeled apolipoprotein C and in plasma-devoid systems. Triglyceride hydrolysis ranged between 0 and 98.6%. [(32)P]Phospholipids, unesterified [(3)H]cholesterol, and (125)I-labeled apolipoprotein C were removed from the VLDL (d < 1.019 g/ml) during lipolysis. About one-third of the [(32)P]phosphatidylcholine was hydrolyzed to lysolecithin, and was transferred to the fraction d > 1.21 g/ml. The other two-thirds of the phospholipids were removed unhydrolyzed, mainly to the fraction d 1.04-1.21 g/ml. With the progression of the lipolysis, unesterified [(3)H]cholesterol was removed from VLDL at increasing rates, predominantly to the fraction d 1.04-1.21 g/ml. (125)I-Labeled apolipoprotein C removed from the VLDL partitioned between the fraction of d 1.04-1.21 g/ml and d > 1.21 g/ml. Negative-staining electron microscopy of the fraction d 1.04-1.21 g/ml (containing phospholipids, unesterified cholesterol, and apolipoprotein C) revealed many discoidal lipoproteins. [(3)H]Cholesteryl esters remained associated with the VLDL even when 70-80% of the triglycerides were hydrolyzed. These observations suggest that during in vitro lipolysis of VLDL, surface constituents leave the lipoprotein concomitantly with the hydrolysis of core triglycerides. The process of removal of surface constituents is independent of the presence of an acceptor lipoprotein and may occur in the form of a surface-fragment particle. -Eisenberg, S., and T. Olivecrona. Very low density lipoprotein. Fate of phospholipids, cholesterol, and apolipoprotein C during lipolysis in vitro.  相似文献   

11.
Using thrombin and trypsin as probes, we determined: first, that low-density lipoprotein (LDL) receptor binding determinants switch from apolipoprotein (apo) E to apo-B within the very-low-density lipoprotein (VLDL) Sf 20-60 region of the metabolic cascade from VLDL1 (Sf 100-400) of hypertriglyceridemic (HTG) human subjects to LDL. Second, two different conformations of apo-E exist in HTG-VLDL Sf greater than 60, one accessible (greater than or equal to 1 mol/mol of particle) and one inaccessible (1-2 mol/mol) to both thrombin and the LDL receptor; normal VLDL (Sf greater than 60) have only the inaccessible conformation and therefore do not bind to the LDL receptor. Third, thrombin degrades apo-B into large fragments, three of which have electrophoretic mobilities similar to B-48, B-74, and B-26; this, however, has no effect on apo-B-mediated receptor binding. Fibroblast studies showed that thrombin could abolish receptor uptake of HTG-VLDL1 and HTG-VLDL2 (Sf 60-100), had little or no effect on HTG-VLDL3 (Sf 20-60), and no effect on uptake of intermediate-density lipoprotein (IDL) or LDL. Trypsin abolished the binding of HTG-VLDL1 and HTG-VLDL2, reduced that of HTG-VLDL3, but had little to no effect on IDL or LDL binding. Immunochemical techniques revealed that thrombin cleaved some apo-E into the E-22 and E-12 fragments; after trypsin treatment no apo-E was detected in any HTG-lipoprotein. Normal VLDL subclasses contained less apo-E than the corresponding HTG-VLDL subclasses and it was not cleaved by thrombin. Apo-B immunoreactivities of VLDL subclasses were not significantly changed after treatment with thrombin, although thrombin cleaved some of the B-100 of each VLDL subclass, and all apo-B in IDL and LDL, into 4-6 major large fragments. Trypsin converted all of the apo-B of each lipoprotein into smaller fragments (Mr less than 100,000). We conclude that apo-E of the thrombin-accessible conformation mediates uptake of HTG-VLDL1 and HTG-VLDL2 but that apo-B alone is sufficient to mediate receptor binding of IDL and LDL; the switch from apo-E to apo-B as the primary or sufficient binding determinant occurs within the VLDL3 (Sf 20-60) region of the metabolic cascade, where receptor binding first appears in VLDL subclasses from normal subjects.  相似文献   

12.
The structural domains of human apolipoprotein B-100 in low density lipoproteins (LDL) and the conformational changes of B-100 that accompany the conversion of very low density lipoproteins (VLDL) to LDL were investigated by limited proteolysis with 12 endoproteases of various specificities, and their cleavage sites were determined. In B-100 of LDL, we identified two peptide regions that are highly susceptible to proteolytic cleavage. One region encompassed about 40 amino acids (residues 1280-1320, designated as the NH2-terminal region) and the other about 100 amino acids (residues 3180-3280, designated as the COOH-terminal region). IN LDL, the cleavage sites in both susceptible regions of B-100 were readily accessible to limited proteolysis; but in VLDL, only sites in the COOH-terminal region were readily accessible. Moreover, B-100 in VLDL appeared less degraded than B-100 in LDL by all enzymes used. Reduction of disulfide bonds of B-100 in both LDL and VLDL before digestion by Staphylococcus aureus V8 protease and clostripain exposed additional cleavage sites and increased the rate of B-100 degradation, suggesting that disulfide bonds probably exert conformational constraints. These results indicate the presence of three principal structural domains in B-100 of LDL that are relatively resistant to limited proteolysis. These three domains are connected by the two susceptible peptide regions. Our results also demonstrate differential accessibility of cleavage sites in B-100 of LDL and VLDL to limited proteolysis. This differential accessibility suggests that substantial changes in the conformation or environment of B-100 accompany the conversion of VLDL to LDL.  相似文献   

13.
The microsomal triglyceride transfer protein (MTP) is necessary for the proper assembly of the apolipoprotein B containing lipoproteins, very low density lipoprotein and chylomicrons. Recent research has significantly advanced our understanding of the role of MTP in these pathways at the molecular and cellular level. Biochemical studies suggest that initiation of lipidation of the nascent apolipoprotein B polypeptide may occur through a direct association with MTP. This early lipidation may be required to allow the nascent polypeptide to fold properly and therefore avoid ubiquitination and degradation. Concerning the addition of core neutral lipids in the later stages of lipoprotein assembly, cell culture studies show that MTP lipid transfer activity is not required for this to occur for apolipoprotein B-100 containing lipoproteins. Likewise, MTP does not appear to directly mediate addition of core neutral lipid to nascent apoB-48 particles. However, new data indicate that MTP is required to produce triglyceride rich droplets in the smooth endoplasmic reticulum which may supply the core lipids for conversion of nascent, dense apoB-48 particles to mature VLDL. In addition, assembly of dense apolipoprotein B-48 containing lipoproteins has been observed in mouse liver in the absence of MTP. As a result of these new data, an updated model for the role of MTP in lipoprotein assembly is proposed.  相似文献   

14.
Western blot analysis of the alloantisera (i.e., anti-Lpq1, anti-Lpq2, anti-Lpq3, and anti-Lpq4) which defined the three lpq genes of rabbit linkage group VIII showed that they reacted strongly with an apolipoprotein of molecular weight 320,000. They also cross-reacted with an apolipoprotein of molecular weight 220,000. The two apolipoproteins that reacted with the alloantisera were found by SDS-polyacrylamide gel electrophoresis to be present in very low density (VLDL), intermediate density (IDL), and low density (LDL) lipoprotein fractions and by Western blot analysis to react with an anti-apolipoprotein B antiserum. These results support the conclusion that the alloantisera react with allotypes associated with the B apolipoproteins. The distribution of the four allotypes among different lipoprotein fractions, however, differed. The quantitative competitive Enzyme Linked Immunosorbant Assay (ELISA) showed that the Lpq1, Lpq2, and Lpq4 allotypes were found in the highest concentration in VLDL, IDL, and LDL, and in significantly lower concentrations in plasma chylomicrons. The concentrations of these allotypes in high density lipoproteins (HDL) as measured in the ELISA were about 1% of the concentrations found in LDL. The Lpq3 allotype, on the other hand, was present in the highest concentrations only in IDL and LDL and in significantly lower concentrations in VLDL and plasma chylomicrons. Surprisingly, the concentration of the Lpq3 allotype in HDL was 20% of the level found in LDL.  相似文献   

15.
We have identified a new species of apolipoprotein (apo) B in an individual with heterozygous hypobetalipoproteinemia. The new apo B (apo B-32) is the result of a single point mutation (1450 Gln----Stop) in the apo B gene that prevents full length translation. Apo B-32 is predicted to contain the 1449 amino-terminal amino acids of apo B-100 and is associated with a markedly decreased low density lipoprotein (LDL) cholesterol level. The density distribution of apo B-32 in the plasma lipoproteins makes it unique amongst other truncated apo B species. Normally, apo B-100 is found in both very low density lipoprotein (VLDL) and LDL particles. However, the majority of the apo B-32 protein was found in the high density lipoprotein (HDL) and lipoprotein-deplete (d greater than 1.21 g/ml) fractions, suggesting that it was mainly assembled into abnormally dense lipoprotein particles. A small amount of apo B-32 was also found in the LDL, making it the shortest known apo B variant capable of forming particles in this density range. Apo B-32 was undetected in VLDL. The apo B-32 mutation further defines the minimum length of the apo B protein that is required for the assembly of LDL.  相似文献   

16.
Like rat C apolipoproteins, each of the C apolipoproteins from human blood plasma (C-I, C-II, C-III-1, and C-III-2) bound to small chylomicrons from mesenteric lymph of estradiol-treated rats and inhibited their uptake by the isolated perfused rat liver. This inhibitory effect of the C apolipoproteins was independent of apolipoprotein E, which is present only in trace amounts in these chylomicrons. Addition of rat apolipoprotein E to small chylomicrons from mesenteric lymph of normal rats did not displace C apolipoproteins and had no effect on the uptake of these particles by the perfused liver, indicating that an increased ratio of E apolipoproteins to C apolipoproteins on chylomicron particles, unaccompanied by depletion of the latter, may not promote recognition by the chylomicron remnant receptor. The hepatic uptake of remnants of rat hepatic very low density lipoproteins (VLDL) and small chylomicrons, which had been produced in functionally eviscerated rats, was also inhibited by addition of C apolipoproteins. These observations are consistent with the hypothesis that the addition of all of the C apolipoproteins to newly secreted chylomicrons and VLDL inhibits premature uptake of these particles by the liver and that depletion of all of these apolipoproteins from remnant particles facilitates their hepatic uptake. Remnants of chylomicrons and VLDL incubated with rat C apolipoproteins efficiently took up C-III apolipoproteins, but not apolipoprotein C-II (the activator protein for lipoprotein lipase). Preferential loss of apolipoprotein C-II during remnant formation may regulate the termination of triglyceride hydrolysis prior to complete removal of triglycerides from chylomicrons and VLDL.  相似文献   

17.
The assembly of very low density lipoproteins (VLDL) by hepatocytes is believed to occur via a two-step process. The first step is the formation of a dense phospholipid and protein-rich particle that is believed to be converted to VLDL by the addition of bulk triglyceride in a second step. Previous studies in our laboratory led us to hypothesize a third assembly step that occurs in route to or in the Golgi apparatus. To investigate this hypothesis, nascent lipoproteins were recovered from Golgi apparatus-rich fractions isolated from mouse liver. The Golgi fractions were enriched 125-fold in galactosyltransferase and contained lipoprotein particles averaging approximately 35 nm in diameter. These lipoproteins were separated by ultracentrifugation into two fractions: d < 1.006 g/ml and d1.006;-1.210 g/ml. The d < 1.006 g/ml fraction contained apolipoprotein B-100 (apoB-100), apoB-48, and apoE, while the d1.006;-1.210 g/ml fraction contained these three apoproteins as well as apoA-I and apoA-IV. Both fractions contained a 21-kDa protein that was isolated and sequenced and identified as major urinary protein. Approximately 50% of the apoB was recovered with the denser fraction. To determine if these small, dense lipoproteins were secreted without further addition of lipid, mice were injected with Triton WR1339 and [(3)H]leucine, and the secretion of apoB-100 and apoB-48 into serum VLDL (d < 1.006 g/ml) and d1.006;-1.210 g/ml fractions was monitored over a 2-h period. More than 80% of the newly synthesized apoB-48 and nearly 100% of the apoB-100 were secreted with VLDL. These studies provide the first characterization of nascent lipoproteins recovered from the Golgi apparatus of mouse liver. We conclude that these nascent hepatic Golgi lipoproteins represent a heterogeneous population of particles including VLDL as well as a population of small, dense lipoproteins. The finding of the latter particles, coupled with the demonstration that the primary secretory product of mouse liver is VLDL, suggests that lipid may be added to nascent lipoproteins within the Golgi apparatus.  相似文献   

18.
In comparison to very low density lipoprotein (VLDL), chylomicrons are cleared quickly from plasma. However, small changes in fasting plasma VLDL concentration substantially delay postprandial chylomicron triglyceride clearance. We hypothesized that differential binding to lipoprotein lipase (LPL), the first step in the lipolytic pathway, might explain these otherwise paradoxical relationships. Competition binding assays of different lipoproteins were performed in a solid phase assay with purified bovine LPL at 4 degrees C. The results showed that chylomicrons, VLDL, and low density lipoprotein (LDL) were able to inhibit specific binding of (125)I-labeled VLDL to the same extent (85.1% +/- 13.1, 100% +/- 6.8, 90.7% +/- 23.2% inhibition, P = NS), but with markedly different efficiencies. The rank order of inhibition (K(i)) was chylomicrons (0.27 +/- 0.02 nm apoB) > VLDL (12.6 +/- 3.11 nm apoB) > LDL (34.8 +/- 11.1 nm apoB). By contrast, neither triglyceride (TG) liposomes, high density lipoprotein (HDL), nor LDL from patients with familial hypercholesterolemia were efficient at displacing the specific binding of (125)I-labeled VLDL to LPL (30%, 39%, and no displacement, respectively). Importantly, smaller hydrolyzed chylomicrons had less affinity than the larger chylomicrons (K(i) = 2.34 +/- 0.85 nm vs. 0.27 +/- 0.02 nm apoB respectively, P < 0.01). This was also true for hydrolyzed VLDL, although to a lesser extent. Chylomicrons from patients with LPL deficiency and VLDL from hypertriglyceridemic subjects were also studied. Taken together, our results indicate an inverse linear relationship between chylomicron size and K(i) whereas none was present for VLDL. We hypothesize that the differences in binding affinity demonstrated in vitro when considered with the differences in particle number observed in vivo may largely explain the paradoxes we set out to study.  相似文献   

19.
In vitro metabolism of apolipoprotein E   总被引:1,自引:0,他引:1  
Apolipoprotein E plays a major role in the uptake of chylomicrons and of very-low-density lipoprotein (VLDL) remnants by the liver. It has also been clearly demonstrated that apolipoprotein E rapidly and spontaneously exchanges between lipoproteins. To assess whether all lipoprotein-bound apolipoprotein E is available to participate in spontaneous transfer and/or exchange, the present study followed the fate of radiolabeled apolipoprotein E in an in vitro system. The results show that in vitro, apolipoprotein E can be considered as having both a spontaneously exchangeable pool and a nonexchangeable pool. Based upon specific radioactivity data, only a limited amount of apolipoprotein E originating in VLDL or in high-density lipoproteins (HDL) was capable of in vitro exchange with that in other lipoprotein fractions. Lipolysis of VLDL triacylglycerol by milk lipoprotein lipase, however, resulted in complete transfer of VLDL apolipoprotein E mass and radioactivity to HDL, supporting the potential for transformation of exchangeable apolipoprotein to a transferable pool in vivo. The results of these studies indicate that during the course of lipoprotein metabolism, conformational changes occur which alter the accessibility of apolipoprotein E. Such dynamic heterogeneity may have implications for the regulation of lipoprotein metabolism.  相似文献   

20.
Human plasma low density lipoprotein (LDL), which binds 0.2% of plasma T4, was shown to interact with the hormone through its protein moiety, apolipoprotein B-100. LDL and LDL2, the major subfraction of LDL, were found to have 3 equivalent binding sites for T4 with Ka = 2.5 x 10(6) M-1. Photoaffinity labeling of LDL with inner ring-labeled [125I]T4, followed by SDS-PAGE or agarose-SDS-PAGE of the labeled products, revealed that apoB-100 and its proteolytic cleavage products, apoB-74 and apoB-26, bound [125I]T4. In the presence of 1 or 10 microM T4, labeling was decreased in 7 separate experiments by 40-53% or 65-86%, respectively, consistent with a Ka of approximately 10(6) M-1. Binding of T4 to apoB-100 associated with VLDL was also demonstrated by photoaffinity labeling. The observed thyroid hormone binding property of lipid-complexed apoB-100 and the knowledge that receptors for the apolipoprotein exist in various tissues suggest a possible physiological role in thyroid hormone transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号