首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cadherins are a large family of single-pass transmembrane proteins principally involved in Ca2+-dependent homotypic cell adhesion. The cadherin molecules comprise three domains, the intracellular domain, the transmembrane domain and the extracellular domain, and form large complexes with a vast array of binding partners (including cadherin molecules of the same type in homophilic interactions and cellular protein catenins), orchestrating biologically essential extracellular and intracellular signalling processes. While current, contrasting models for classic cadherin homophilic interaction involve varying numbers of specific repeats found in the extracellular domain, the structure of the domain itself clearly remains the main determinant of cell stability and binding specificity. Through intracellular interactions, cadherin enhances its adhesive properties binding the cytoskeleton via cytoplasmic associated factors alpha- catenin, beta-catenin and p120ctn. Recent structural studies on classic cadherins and these catenin molecules have provided new insight into the essential mechanisms underlying cadherin-mediated cell interaction and catenin-mediated cellular signalling. Remarkable structural diversity has been observed in beta-catenin recognition of other cellular factors including APC, Tcf and ICAT, proteins that contribute to or compete with cadherin/catenin functioning.  相似文献   

2.
L. Levi  J. Douek  M. Osman  T. C. G. Bosch  B. Rinkevich   《Gene》1997,200(1-2):117-123
The genomic DNA for a novel member of the cadherin family (BS-cadherin) was cloned and characterized from the colonial marine invertebrate, Botryllus schlosseri. Using a differential display of mRNA by means of PCR, a small cDNA fragment of 380 nucleotides was found to be specifically expressed in a colony undergoing allogeneic rejection processes, as compared with naïve parts of the same genotype. This cDNA fragment was used as a probe to screen a genomic library of Botryllus schlosseri. A genomic fragment containing an ORF of 2718 nucleotides, with no introns, was isolated. The encoded protein exhibits a typical structure of cadherins; an extracellular domain with conserved repeated sequences (cadherin signatures), a single transmembrane domain and a conserved cytoplasmic tail region. The BS-cadherin amino-acid sequence shows 32–35% identity to mature classical cadherins type I, e.g., N-, P- and E-cadherin as well as mature classical cadherins type II, e.g., human cadherin-6, -8 and OB-cadherin. This cadherin represents a new cadherin gene family, evolutionarily distant to all other known classical cadherins.  相似文献   

3.
The adherens junction is a multiprotein complex consisting of the transmembrane vascular endothelial cadherin (VEC) and cytoplasmic catenins (p120, beta-catenin, plakoglobin, alpha-catenin) responsible for the maintenance of endothelial barrier function. Junctional disassembly and modifications in cadherin/catenin complex lead to increased paracellular permeability of the endothelial barrier. However, the mechanisms of junctional disassembly remain unclear. In this study, we used the proinflammatory mediator thrombin to compromise the barrier function and test the hypothesis that phosphorylation-induced alterations of VEC, beta-catenin, and p120 regulate junction disassembly and mediate the increased endothelial permeability response. The study showed that thrombin induced dephosphorylation of VEC, which is coupled to disassembly of cell-cell contacts, but VEC remained in aggregates at the plasma membrane. The cytoplasmic catenins dissociated from the VEC cytoplasmic domain in thin membrane projections formed in interendothelial gaps. We also showed that thrombin induced dephosphorylation of beta-catenin and phosphorylation of p120. Thrombin-induced interendothelial gap formation and increased endothelial permeability were blocked by protein kinase C inhibition using chelerythrine and G?-6976 but not by LY-379196. Chelerythrine also prevented thrombin-induced phosphorylation changes of the cadherin/catenin complex. Thus the present study links posttranslational modifications of VEC, beta-catenin, and p120 to the mechanism of thrombin-induced increase in endothelial permeability.  相似文献   

4.
Cadherins are single pass transmembrane proteins that mediate Ca(2+)-dependent homophilic cell-cell adhesion by linking the cytoskeletons of adjacent cells. In adherens junctions, the cytoplasmic domain of cadherins bind to beta-catenin, which in turn binds to the actin-associated protein alpha-catenin. The physical properties of the E-cadherin cytoplasmic domain and its interactions with beta-catenin have been investigated. Proteolytic sensitivity, tryptophan fluorescence, circular dichroism, and (1)H NMR measurements indicate that murine E-cadherin cytoplasmic domain is unstructured. Upon binding to beta-catenin, the domain becomes resistant to proteolysis, suggesting that it structures upon binding. Cadherin-beta-catenin complex stability is modestly dependent on ionic strength, indicating that, contrary to previous proposals, the interaction is not dominated by electrostatics. Comparison of 18 cadherin sequences indicates that their cytoplasmic domains are unlikely to be structured in isolation. This analysis also reveals the presence of PEST sequences, motifs associated with ubiquitin/proteosome degradation, that overlap the previously identified beta-catenin-binding site. It is proposed that binding of cadherins to beta-catenin prevents recognition of degradation signals that are exposed in the unstructured cadherin cytoplasmic domain, favoring a cell surface population of catenin-bound cadherins capable of participating in cell adhesion.  相似文献   

5.
Type I and II classical cadherins help to determine the adhesive specificities of animal cells. Crystal-structure determination of ectodomain regions from three type II cadherins reveals adhesive dimers formed by exchange of N-terminal beta strands between partner extracellular cadherin-1 (EC1) domains. These interfaces have two conserved tryptophan side chains that anchor each swapped strand, compared with one in type I cadherins, and include large hydrophobic regions unique to type II interfaces. The EC1 domains of type I and type II cadherins appear to encode cell adhesive specificity in vitro. Moreover, perturbation of motor neuron segregation with chimeric cadherins depends on EC1 domain identity, suggesting that this region, which includes the structurally defined adhesive interface, encodes type II cadherin functional specificity in vivo.  相似文献   

6.
It is thought that the concentration of classic cadherins at cell-cell adhesion sites is essential for generating strong cell-cell adhesion activity, but the mechanism is not well understood. To clarify the structural basis of the concentration process and the cell adhesion activity, we constructed various mutants of cadherin-4 and examined the adhesion properties of the transfectants. A deletion mutant lacking the entire cytoplasmic domain had weak, but significant Ca(2+)-dependent cell adhesion activity. Interestingly, the deletion mutant showed intrinsic cluster formation in the absence of cell-cell adhesion, possible lateral cluster formation. The cytoplasmic domain-deleted cadherin-4 containing the mutation of Trp-2 to Ala, which is known to inhibit the strand dimer formation required for the cell-cell adhesion, retained the possible activity of lateral cluster formation, supporting this notion. These results suggest that the extracellular domain has intrinsic activity of lateral cluster formation. Indeed, deletion of a cadherin repeat in the extracellular domain significantly reduced or abolished the lateral cluster formation as well as the concentration of cadherin-4 at cell-cell contact sites and cell adhesion activity. When transfectants of the cytoplasmic domain-deleted cadherin-4 made cell-cell contact and formed intimate cell-cell adhesion, the lateral clusters of cadherin-4 initially gathered at cell-cell contact sites, and a smooth linear concentration was gradually formed along the cell-cell adhesion interface. The results suggest that the lateral cluster formation is involved in the concentration process of cadherin-4 at cell-cell adhesion sites, hence in the strong cell adhesion activity of cadherin-4 as well.  相似文献   

7.
《The Journal of cell biology》1996,134(5):1271-1281
Catenins were first characterized as linking the cytoplasmic domains of cadherin cell-cell adhesion molecules to the cortical actin cytoskeleton. In addition to their essential role in modulating cadherin adhesivity, catenins have more recently been indicated to participate in cell and developmental signaling pathways. beta-Catenin, for example, associates directly with at least two receptor tyrosine kinases and transduces developmental signals within the Wnt pathway. Catenins also complex with the tumor suppressor protein adenomatous polyposis coli (APC), which appears to have a role in regulating cell proliferation. We have used the yeast two-hybrid method to reveal that fascin, a bundler of actin filaments, binds to beta-catenin's central Armadillo repeat domain. Western blotting of immunoprecipitates from cell line and mouse and rat brain extracts indicate that this interaction exists in vivo. Fascin and beta-catenin's association was further substantiated in vitro using purified proteins isolated from recombinant bacterial and baculoviral sources. Immunoprecipitation analysis indicates that fascin additionally binds to plakoglobin, which is highly homologous to beta-catenin but not to p120cas, a newly described catenin which contains a more divergent Armadillo-repeat domain. Immunoprecipitation, in vitro competition, and domain-mapping experiments demonstrate that fascin and E-cadherin utilize a similar binding site within beta-catenin, such that they form mutually exclusive complexes with beta-catenin. Immunofluorescence microscopy reveals that fascin and beta-catenin colocalize at cell-cell borders and dynamic cell leading edges of epithelial and endothelial cells. In addition to cell-cell borders, cadherins were unexpectedly observed to colocalize with fascin and beta-catenin at cell leading edges. It is conceivable that beta-catenin participates in modulating cytoskeletal dynamics in association with the microfilament-bundling protein fascin, perhaps in a coordinate manner with its functions in cadherin and APC complexes.  相似文献   

8.
Cadherins and catenins play an important role in cell-cell adhesion. Two of the catenins, beta and gamma, are members of a group of proteins that contains a repeating amino acid motif originally described for the Drosophila segment polarity gene armadillo. Another member of this group is a 120-kD protein termed p120, originally identified as a substrate of the tyrosine kinase pp60src. In this paper, we show that endothelial and epithelial cells express p120 and p100, a 100-kD, p120- related protein. Peptide sequencing of p100 establishes it as highly related to p120. p120 and p100 both appear associated with the cadherin/catenin complex, but independent p120/catenin and p100/catenin complexes can be isolated. This association is shown by coimmunoprecipitation of cadherins and catenins with an anti-p120/p100 antibody, and of p120/p100 with cadherin or catenin antibodies. Immunocytochemical analysis with a p120-specific antibody reveals junctional colocalization of p120 and beta-catenin in epithelial cells. Catenins and p120/p100 also colocalize in endothelial and epithelial cells in culture and in tissue sections. The cellular content of p120/p100 and beta-catenin is similar in MDCK cells, but only approximately 20% of the p120/p100 pool associates with the cadherin/catenin complex. Our data provide further evidence for interactions among the different arm proteins and suggest that p120/p100 may participate in regulating the function of cadherins and, thereby, other processes influenced by cell-cell adhesion.  相似文献   

9.
p120 was originally identified as a substrate of pp60src and several receptor tyrosine kinases, but its function is not known. Recent studies revealed that this protein shows homology to a group of proteins, beta-catenin/Armadillo and plakoglobin (gamma-catenin), which are associated with the cell adhesion molecules cadherins. In this study, we examined whether p120 is associated with E-cadherin using the human carcinoma cell line HT29, as well as other cell lines, which express both of these proteins. When proteins that copurified with E- cadherin were analyzed, not only alpha-catenin, beta-catenin, and plakoglobin but also p120 were detected. Conversely, immunoprecipitates of p120 contained E-cadherin and all the catenins, although a large subpopulation of p120 was not associated with E-cadherin. Analysis of these immunoprecipitates suggests that 20% or less of the extractable E- cadherin is associated with p120. When p120 immunoprecipitation was performed with cell lysates depleted of E-cadherin, beta-catenin was no longer coprecipitated, and the amount of plakoglobin copurified was greatly reduced. This finding suggests that there are various forms of p120 complexes, including p120/E-cadherin/beta-catenin and p120/E- cadherin/plakoglobin complexes; this association profile contrasts with the mutually exclusive association of beta-catenin and plakoglobin with cadherins. When the COOH-terminal catenin binding site was truncated from E-cadherin, not only beta-catenin but also p120 did not coprecipitate with this mutated E-cadherin. Immunocytological studies showed that p120 colocalized with E-cadherin at cell-cell contact sites, even after non-ionic detergent extraction. Treatment of cells with hepatocyte growth factor/scatter factor altered the level of tyrosine phosphorylation of p120 as well as of beta-catenin and plakoglobin. These results suggest that p120 associates with E-cadherin at its COOH-terminal region, but the mechanism for this association differs from that for the association of beta-catenin and plakoglobin with E-cadherin, and thus, that p120, whose function could be modulated by growth factors, may play a unique role in regulation of the cadherin- catenin adhesion system.  相似文献   

10.
Using a dual pipette assay that measures the force required to separate adherent cell doublets, we have quantitatively compared intercellular adhesiveness mediated by Type I (E- or N-cadherin) or Type II (cadherin-7 or -11) cadherins. At similar cadherin expression levels, cells expressing Type I cadherins adhered much more rapidly and strongly than cells expressing Type II cadherins. Using chimeric cadherins, we found that the extracellular domain exerts by far the dominant effect on cell adhesivity, that of E-cadherin conferring high adhesivity, and that of cadherin-7 conferring low adhesivity. Type I cadherins were incorporated to a greater extent into detergent-insoluble cytoskeletal complexes, and their cytoplasmic tails were much more effective in disrupting strong adherent junctions, suggesting that Type II cadherins form less stable complexes with beta-catenin. The present study demonstrates compellingly, for the first time, that cadherins are dramatically different in their ability to promote intercellular adhesiveness, a finding that has profound implications for the regulation of tissue morphogenesis.  相似文献   

11.
Modulators of cadherin function are of great interest given that the cadherin complex actively contributes to the morphogenesis of virtually all tissues. The catenin p120(ctn) (formerly p120cas) was first identified as a src- and receptor-protein tyrosine kinase substrate and later shown to interact directly with cadherins. In common with beta-catenin and plakoglobin (gamma-catenin), p120(ctn) contains a central Armadillo repeat region by which it binds cadherin cytoplasmic domains. However, little is known about the function of p120(ctn) within the cadherin complex. We examined the role of p120(ctn)1A in early vertebrate development via its exogenous expression in Xenopus. Ventral overexpression of p120(ctn)1A, in contrast to beta-catenin, did not induce the formation of duplicate axial structures resulting from the activation of the Wnt signaling pathway, nor did p120(ctn) affect mesoderm induction. Rather, dorsal misexpression of p120(ctn) specifically perturbed gastrulation. Lineage tracing of cells expressing exogenous p120(ctn) indicated that cell movements were disrupted, while in vitro studies suggested that this may have been a consequence of reduced adhesion between blastomeres. Thus, while cadherin-binding proteins beta-catenin, plakoglobin, and p120(ctn) are members of the Armadillo protein family, it is clear that these proteins have distinct biological functions in early vertebrate development. This work indicates that p120(ctn) has a role in cadherin function and that heightened expression of p120(ctn) interferes with appropriate cell-cell interactions necessary for morphogenesis.  相似文献   

12.
The entire coding sequences for five possible human cadherins, named cadherin-4,-8,-11,-12 and-13, were determined. The deduced amino acid sequences of cadherin-4 and cadherin-13 showed high homology with those of chicken R-cadherin or chicken T-caciherin, suggesting that cadherin-4 and cadherin-13 are mammalian homologues of the chicken R-cadherin or T-cadherin. Comparison of the extracellular domain of these proteins with those of other cadherins and cadherin-related proteins clarifies characteristic structural features of this domain. The domain is subdivided into five subdomains, each of which contains a cadherin-specific motif characterized by well-conserved amino acid residues and short amino acid sequences. Moreover, each subdomain has unique features of its own. The comparison also provides additional evidence for two structurally different types of cadherins: the first type includes B-, E-, EP-, M, N-, P-and R-cadherins and cadherin-4; the second type includes cadherin-5 through cadherin-12. Cadherin-13 lacks the sequence corresponding to the cytoplasmic domain of typical cadherins, but the extracellular domain shares most of the features common to the extracellular domain of cadherins, especially those of the first type of cadherins, suggesting that cadherin-13 is a special type of cadherin. These results, and those of other recent cloning studies, indicate that many cadherins with different properties are expressed in various tissues of different organisms.  相似文献   

13.
The cadherins are a family of adhesive proteins involved in cell-cell homophilic interactions. VE-cadherin, expressed in endothelial cells, is involved in morphogenesis, regulation of permeability, and cellular proliferation. The cytoplasmic tails of cadherins contain two major domains, the juxtamembrane domain that plays a role in the intercellular localization of the protein and also serves for binding of p120ctn, and a C-terminal domain that associates with beta- or gamma-catenin. A highly conserved region present in the juxtamembrane domain of the cadherins has been shown to be necessary for p120ctn binding in E-cadherin. Using a mutant VE-cadherin lacking a highly conserved octapeptide, we demonstrated that it is required for p120ctn binding to VE-cadherin as determined by immunoprecipitation and colocalization studies. By immunofluorescence, this mutant protein has a topographical distribution similar to that of the wild-type VE-cadherin and, therefore, we conclude that the topographical distribution of VE-cadherin is independent of this motif. In addition, although cell-cell association is present in cells expressing this mutant form of VE-cadherin, we found that the strength of adhesion is decreased. Finally, our results for the first time demonstrate that the interaction of VE-cadherin with p120 catenin plays an important role in cellular growth, suggesting that the binding of p120 catenin to cadherins may regulate cell proliferation.  相似文献   

14.
Cadherins play an important role in specific cell-cell adhesion events. Their expression appears to be tightly regulated during development and each tissue or cell type shows a characteristic pattern of cadherin molecules. Inappropriate regulation of their expression levels or functionality has been observed in human malignancies, in many cases leading to aggravated cancer cell invasion and metastasis. The cadherins form a superfamily with at least six subfamilies, which can be distinguished on the basis of protein domain composition, genomic structure, and phylogenetic analysis of the protein sequences. These subfamilies comprise classical or type-I cadherins, atypical or type-II cadherins, desmocollins, desmogleins, protocadherins and Flamingo cadherins. In addition, several cadherins clearly occupy isolated positions in the cadherin superfamily (cadherin-13, -15, -16, -17, Dachsous, RET, FAT, MEGF1 and most invertebrate cadherins). We suggest a different evolutionary origin of the protocadherin and Flamingo cadherin genes versus the genes encoding desmogleins, desmocollins, classical cadherins, and atypical cadherins. The present phylogenetic analysis may accelerate the functional investigation of the whole cadherin superfamily by allowing focused research of prototype cadherins within each subfamily.  相似文献   

15.
Classical cadherins.   总被引:15,自引:0,他引:15  
Cadherins represent a gene family of Ca(2+)-dependent cell adhesion molecules (CAMs) identified during development and in adult organs. They generally mediate cell-cell adhesion by homotypic interaction, although heterotypic binding between different cadherin molecules is possible. Molecular cloning and sequence comparison has led to the characterization of a highly homologous group of 'classical' cadherins and more distantly related members, together composing a gene superfamily. The classical cadherins are transmembrane glycoproteins which exhibit, in addition to the structural homologies, a very similar overall protein topology. Protein sequence comparison has led to the identification of domains of common functional importance. The cytoplasmic domains of cadherins associate with peripheral cytoplasmic proteins termed catenin alpha, beta and gamma with molecular weights of 102, 88 and 80 kDa respectively. This complex formation seems to regulate the adhesive function of cadherins, most likely by connecting cadherins with actin microfilaments. Possible implications of catenins for cadherin function are discussed.  相似文献   

16.
郑正  牛建华 《生物磁学》2010,(12):2391-2393,2400
LI-cadherin,也被称为cadherin-17,是肠上皮细胞中一种贯穿细胞膜的、钙依赖性的、介导细胞间连接的糖蛋白。与经典钙黏蛋白相比,LI-cadherin是一种具备独特结构和功能的新型钙黏蛋白。LI-cadherin由7个胞外重复序列和一个只包含20个氨基酸残基的较短的胞质尾区组成。在人体中,LI-cadherin特异性的位于肝细胞和肠细胞中的底外侧区。而LI-cadherin介导细胞连接时,既不与链蛋白结合,也不导致β-catenin的上调。一些研究发现,在胃癌中LI-cadherin的过度表达与CDX-2显著相关,而且在肠化生中CDX-2的表达总是与LI-cadherin呈现很强的成对性。最新的研究认为LI-cadherin的表达与胃癌的发生、发展、转移及预后均有关系。在针对胃癌的临床处理方面,LI-cadherin将会是有用的肿瘤标记物。  相似文献   

17.
p120-Catenin regulates clathrin-dependent endocytosis of VE-cadherin   总被引:11,自引:0,他引:11       下载免费PDF全文
VE-cadherin is an adhesion molecule critical to vascular barrier function and angiogenesis. VE-cadherin expression levels are regulated by p120 catenin, which prevents lysosomal degradation of cadherins by unknown mechanisms. To test whether the VE-cadherin cytoplasmic domain mediates endocytosis, and to elucidate the nature of the endocytic machinery involved, the VE-cadherin tail was fused to the interleukin (IL)-2 receptor (IL-2R) extracellular domain. Internalization assays demonstrated that the VE-cadherin tail dramatically increased endocytosis of the IL-2R in a clathrin-dependent manner. Interestingly, p120 inhibited VE-cadherin endocytosis via a mechanism that required direct interactions between p120 and the VE-cadherin cytoplasmic tail. However, p120 did not inhibit transferrin internalization, demonstrating that p120 selectively regulates cadherin internalization rather than globally inhibiting clathrin-dependent endocytosis. Finally, cell surface labeling experiments in cells expressing green fluorescent protein-tagged p120 indicated that the VE-cadherin-p120 complex dissociates upon internalization. These results support a model in which the VE-cadherin tail mediates interactions with clathrin-dependent endocytic machinery, and this endocytic processing is inhibited by p120 binding to the cadherin tail. These findings suggest a novel mechanism by which a cytoplasmic binding partner for a transmembrane receptor can serve as a selective plasma membrane retention signal, thereby modulating the availability of the protein for endo-lysosomal processing.  相似文献   

18.
The extracellular segment of the receptor-type type protein tyrosine phosphatase PTPmu, possesses an MAM domain, an immunoglobulin domain, and four fibronectin type-III repeats. It binds homophilically, i.e., PTPmu on the surface of one cell binds to PTPmu on an apposing cell, and the binding site lies within the immunoglobulin domain. The intracellular segment of PTPmu has two PTP domains and a juxtamembrane segment that is homologous to the conserved intracellular domain of the cadherins. In cadherins, this segment interacts with proteins termed catenins to mediate association with the actin cytoskeleton. In this article, we demonstrate that PTPmu associates with a complex containing cadherins, alpha- and beta-catenin in mink lung (MvLu) cells, and in rat heart, lung, and brain tissues. Greater than 80% of the cadherin in the cell is cleared from Triton X-100 lysates of MvLu cells after immunoprecipitation with antibodies to PTPmu; however, the complex is dissociated when lysates are prepared in more stringent, SDS-containing RIPA buffer. In vitro binding studies demonstrated that the intracellular segment of PTPmu binds directly to the intracellular domain of E-cadherin, but not to alpha- or beta-catenin. Consistent with their ability to interact in vivo, PTPmu, cadherins, and catenins all localized to points of cell-cell contact in MvLu cells, as assessed by immunocytochemical staining. After pervanadate treatment of MvLu cells, which inhibits cellular tyrosine phosphatase activity including PTPmu, the cadherins associated with PTPmu are now found in a tyrosine- phosphorylated form, indicating that the cadherins may be an endogenous substrate for PTPmu. These data suggest that PTPmu may be one of the enzymes that regulates the dynamic tyrosine phosphorylation, and thus function, of the cadherin/catenin complex in vivo.  相似文献   

19.
《The Journal of cell biology》1994,125(6):1327-1340
Calcium-dependent cell-cell adhesion is mediated by the cadherin family of cell adhesion proteins. Transduction of cadherin adhesion into cellular reorganization is regulated by cytosolic proteins, termed alpha-, beta-, and gamma-catenin (plakoglobin), that bind to the cytoplasmic domain of cadherins and link them to the cytoskeleton. Previous studies of cadherin/catenin complex assembly and organization relied on the coimmunoprecipitation of the complex with cadherin antibodies, and were limited to the analysis of the Triton X-100 (TX- 100)-soluble fraction of these proteins. These studies concluded that only one complex exists which contains cadherin and all of the catenins. We raised antibodies specific for each catenin to analyze each protein independent of its association with E-cadherin. Extracts of Madin-Darby canine kidney epithelial cells were sequentially immunoprecipitated and immunoblotted with each antibody, and the results showed that there were complexes of E-cadherin/alpha-catenin, and either beta-catenin or plakoglobin in the TX-100-soluble fraction. We analyzed the assembly of cadherin/catenin complexes in the TX-100- soluble fraction by [35S]methionine pulse-chase labeling, followed by sucrose density gradient fractionation of proteins. Immediately after synthesis, E-cadherin, beta-catenin, and plakoglobin cosedimented as complexes. alpha-Catenin was not associated with these complexes after synthesis, but a subpopulation of alpha-catenin joined the complex at a time coincident with the arrival of E-cadherin at the plasma membrane. The arrival of E-cadherin at the plasma membrane coincided with an increase in its insolubility in TX-100, but extraction of this insoluble pool with 1% SDS disrupted the cadherin/catenin complex. Therefore, to examine protein complex assembly in both the TX-100- soluble and -insoluble fractions, we used [35S]methionine labeling followed by chemical cross-linking before cell extraction. Analysis of cross-linked complexes from cells labeled to steady state indicates that, in addition to cadherin/catenin complexes, there were cadherin- independent pools of catenins present in both the TX-100-soluble and - insoluble fractions. Metabolic labeling followed by chase showed that immediately after synthesis, cadherin/beta-catenin, and cadherin/plakoglobin complexes were present in the TX-100-soluble fraction. Approximately 50% of complexes were titrated into the TX-100- insoluble fraction coincident with the arrival of the complexes at the plasma membrane and the assembly of alpha-catenin. Subsequently, > 90% of labeled cadherin, but no additional labeled catenin complexes, entered the TX-100-insoluble fraction.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Beta-catenin, a member of the Armadillo repeat protein family, binds directly to the cytoplasmic domain of E-cadherin, linking it via alpha-catenin to the actin cytoskeleton. A 30-amino acid region within the cytoplasmic domain of E-cadherin, conserved among all classical cadherins, has been shown to be essential for beta-catenin binding. This region harbors several putative casein kinase II (CKII) and glycogen synthase kinase-3beta (GSK-3beta) phosphorylation sites and is highly phosphorylated. Here we report that in vitro this region is indeed phosphorylated by CKII and GSK-3beta, which results in an increased binding of beta-catenin to E-cadherin. Additionally, in mouse NIH3T3 fibroblasts expression of E-cadherin with mutations in putative CKII sites resulted in reduced cell-cell contacts. Thus, phosphorylation of the E-cadherin cytoplasmic domain by CKII and GSK-3beta appears to modulate the affinity between beta-catenin and E-cadherin, ultimately modifying the strength of cell-cell adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号