首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 713 毫秒
1.
In the northern Sea of Okhotsk, nekton and jellyfish consumed as many as 831 × 109 walleye pollock eggs per day in 2011. The nekton exerted the highest pressure, viz., 98.3% of the overall predation on pollock egg by aquatic animals. Of the entire quantity of consumed eggs, 55.9% were eaten by herring, 35.9% by walleye pollock, 6.5% by Sakhalin sole, and 1.7% by jellyfish. Among jellyfish, scyphomedusae Cyanea capillata and Chrysaora melonaster, as well as the hydromedusa Tima sachalinensis consumed the largest quantities of eggs. The total consumption of pollock egg by aquatic animals in 2011 was estimated at 42.4 × 1012, or 11.4% of the entire quantity of eggs that were spawned by walleye pollock in the waters of the northern part of the sea. The total amount of pollock eggs that were eaten by herring and pollock together for 51 days in 2011 amounted to 38.9 × 1012, which was 5.7 times as much as that in 2002. Thus, a significant growth of predation on pollock eggs by their main consumers, viz., herring and walleye pollock, was observed in 2011. This was caused by an increase in the populations of both species during the recent years and also by a higher concentration of pollock eggs.  相似文献   

2.
Microzooplankton, vertical mixing and advection in a larval fish patch   总被引:1,自引:0,他引:1  
A large ({small tilde}30 ? 75 km) patch of larval walleye pollock,Theragra chalcogramma, was located south of the Alaska Peninsuladuring May 1986. A drifter deployed in this patch followed ananticyclonic path consistent with dynamic topography. Changesin community composition and vertical distribution of microzooplankton>40 µm were sampled for 4 days alongside this drifterto examine feeding conditions for larvae. Biological and physicalchanges during the first 2 calm days revealed substantial small-scalevariability within the larger circulation pattern. Changes duringthe last 2 days were dominated by vertical mixing due to strongwinds. Despite mixing, prey concentrations remained adequatefor feeding by larval pollock as determined by laboratory studies.A satellite-tracked drifter replaced the first drifter and wasstill located within the patch 6 days later. Overall distributionsof larvae and movements of the drifters show a net translationof 7.8 km day–1 south-westward, but details of the studyreveal complex interactions between coastal waters and a coastalcurrent. During the 10-day period there was an increase in standardlength of the larval fish population of 0.13 mm day–1and a decline in abundance of {small tilde}7.6% day–1.Both calculated rates must be underestimates due to continuingrecruitment of small larvae from hatching eggs.  相似文献   

3.
Synopsis The behavioral capability of walleye pollock,Theragra chalcogramma free embryos and larvae to control vertical distribution was assessed by examining buoyancy during resting and swimming orientation and activity as they developed in complete darkness from hatching to first feeding readiness (1 to 7 d post hatching at 6° C). Free embryos exhibited positive geotaxis 1 d post hatching, actively swimming through a density gradient to remain in the lower water column. Activity increased with free embryo development and by 7 d post hatching, feeding-ready larvae reversed their vertical orientation, now exhibiting negative geotaxis as they migrated to the upper water column. The results indicate that even at the earliest developmental stages, walleye pollock possess the capability to control vertical distribution. Laboratory results are compared with patterns of vertical distribution observed in the sea.  相似文献   

4.
Synopsis Behavioral preference for a structured habitat (artificial seagrass) by juvenile walleye pollock,Theragra chalcogramma, was tested in controlled laboratory experiments. We monitored position of fish in 2000 1 tanks with and without artificial seagrass present in one half of the tank. In addition, we exposed walleye pollock to a predator model, assessing their response when a grass plot was available or unavailable as a potential refuge. In the absence of predators, the fish avoided the artificial seagrass, displaying a preference for the open water side of the experimental tanks. In the presence of a predator model, however, juvenile walleye pollock readily entered the artificial seagrass plots. In addition, they often remained in the grass canopy in proximity to the predator instead of moving out of the grass to avoid the predator (when no grass was present they consistently moved to the opposite side of the tank from the predator). The behavioral choices exhibited in this study suggest that juvenile walleye pollock modify habitat selection in response to perceived predation risk, and recognize the structure provided by artificial seagrass as a potential refuge.  相似文献   

5.
Changes in buoyancy in fertilized bathypelagic eggs of the walleye pollock, Theragra chalcogramma , collected from Shelikof Strait in the Gulf of Alaska were measured under controlled laboratory conditions in density gradient columns from 90 h post–fertilization through hatching. Eggs were incubated at 6° C and exposed to either diel light or constant dark. Eggs held under diel light conditions became more dense than eggs under constant dark beginning <10 h after exposure to light and remained so until 12 h before hatching. Eggs held under constant dark then became more dense than those under diel light. Hatching of eggs under both conditions began at the same time but eggs under diel light showed a delayed hatching rate. Light–induced changes in egg density indicate the ability of walleye pollock eggs to respond to external stimuli and thereby alter their position in the water column in an ecologically meaningful way.  相似文献   

6.
Walleye pollock larvae under controlled laboratory conditions were exposed to vertical gradients of sea water flow in low and high light. Whether flow originated from the surface or the bottom, larvae responded by altering depth distribution, showing attraction to low flows, avoidance of higher flows and when flow was above a threshold level, loss of ability to orient, swim and feed. These results demonstrate that walleye pollock have the capability for responding to gradients of flow by adjusting their vertical distribution. Walleye pollock and many other pelagic fish larvae have weak swimming capabilities and are generally unable to directly control horizontal distributions in the sea by swimming in higher flow regimens. However, using vertical migration, larvae may select conditions of flow direction and speed which are favorable for feeding and predator avoidance and which indirectly allow them to control transport, aggregation and dispersion.  相似文献   

7.
The predatory behavior of the carnivorous marine copepod, adultfemale Euchaeta elongata Esterly, feeding on eggs and larvaeof the Pacific hake, Merluccius productus, was examined in thelaboratory and in a natural setting. E. elongata did not feedon eggs. Predation on larvae is believed to depend on larvalswimming behavior: (1) predation rates were low on early stageyolk-sac larvae which are inactive swimmers and are relativelyundetected by the predator; (2) rates were high on middle stageyolk-sac larvae which are more active swimmers yet have a poorlydeveloped escape response; and (3) rates were low on largerlarvae which are able to escape the predator effectively. Starvedhake larvae were more vulnerable to predation due to a poorescape ability although they were less active and not easilydetected. The presence of naturally occurring alternative prey,Pseudocalanus sp., depressed the rate of E. elongata predationon hake larvae. In an analysis of field data, hake larvae andE. elongata were found to occupy the same depths in Dabob Bay.A high percentage of E. elongata collected had apparently beenfeeding on hake larvae, as indicated by the presence of pigmentsin their guts. Survival of hake larvae in late spring appearsto be relatively poor compared with early spring; poorer survivalin late spring may be due partly to an increase in the abundanceof invertebrate predators, such as E. elongata. *Current address: Northwest and Alaska Fisheries Center, 2725Montlake Blvd, Seattle, WA 98112, USA.  相似文献   

8.
Smith J. W. 1984. The abundance of Anisakis simplex L3 in the body-cavity and flesh of marine teleosts. International Journal for Parasitology14: 491–495. In experiments conducted at sea, whole (ungutted) fish of three species were stored on ice at 3–5 °C for periods from 0 to 72 h. Some Anisakis simplex L3 migrated from the body-cavity into the flesh in mackerel Scomber scombrus, but not in either blue whiting Micromesistius poutassou or whiting Merlangius merlangus. Earlier work has shown that larvae migrate into the flesh of herring Clupea harengus post mortem but not of walleye pollock Theragra chalcogramma. It seems, therefore, that larvae migrate post mortem into the flesh of ‘fatty’ species (e.g. herring, mackerel) but not of ‘non-fatty’ species (e.g. blue whiting, whiting, walleye pollock). No significant larval excapsulation occurred in isolated mackerel or whiting viscera. In vivo, most encapsulated L3 occur in the body-cavity of euphausiid-feeding fish (herring, mackerel, blue whiting, walleye pollock) but are more widely distributed throughout the tissues of piscivorous fish (whiting, cod). These observations are discussed in relation to the apparent importance of euphausiids as intermediate hosts of A. simplex.  相似文献   

9.
When the egg-carrying copepod, Eudiaptomus gracilis, is capturedby larvae of predatory Chaoborus species (C.obscuripes or C.flavicans)in laboratory experiments, the external egg clutch detachesin 16-29% of caw, thereby allowing the eggs to escape from ingestion.Clutch detachment may be due to active removal by the femalebefore she is eaten or the result of accidental loss by thepredator during handling. Detached clutches were significantlylarger than thase that were ingested along with the female.Clutch detachment is advantageous to the female since ingestedeggs are lost, whereas detached eggs hatch normally and maypotentially propagate the genotype. Chaoborus predation maytherefore influence the evolution of clutch size and the degreeof iteroparity in Eudiaptomus.  相似文献   

10.
1. The indirect effects of predators on lower trophic levels have been studied without much attention to phenotypically plastic traits of key food web components. Phenotypic plasticity among species creates phenotypic diversity over a changing environmental landscape. 2. We measured the indirect effects of planktivorous larval walleye (Stizostedion vitreum) on phytoplankton biomass through their effects on the dominant herbivore species, Daphnia pulicaria and D. mendotae. 3. Fish had no effect on phytoplankton biomass or overall Daphnia density. We observed a compensatory response to predation by functionally comparable species within a trophic level in the form of shifting dominance and coexistence of Daphnia species. We hypothesized that this phenotypically plastic response to predation decoupled a potential trophic cascade in this freshwater pelagic system. Daphnia pulicaria density decreased over time with fish predation, but D. mendotae density increased over time with fish predation. 4. Phenotypically plastic life history trait shifts and reproductive rates differed between species in fishless and fish enclosures, accounting for population trends. Daphnia pulicaria were also proportionally higher in walleye larvae stomachs than in the enclosures, indicating that walleye preferred to feed on D. pulcaria over D. mendotae. The resultant shift in dominance may partially explain the overall benign effect of fish on grazers and supports the hypothesis that trophic level diversity can decouple a trophic cascade.  相似文献   

11.
The spatial distribution of eggs and larvae of the walleye pollock Theragra chalcogramma is considered in respect to dynamics of oceanologic processes, nutrients, chlorophyll а and zooplankton off the northeastern coast of Sakhalin Island in spring 2012. It is shown that the effect of severe temperature regime in the near-bottom horizons in the western Sea of Okhotsk during the spawning period of walleye pollock becomes milder due to specific features of water dynamics. The egg distribution is determined by mesoscale eddies in the region. The species survival depends on the effect of such environmental factors as freshwater discharge from the Amur River, eddy structure in waters of the Sea of Okhotsk, and dynamics of phytoplankton and zooplankton development.  相似文献   

12.
The total biomass of jellyfish on the shelf of the eastern Sea of Okhotsk in the summer is estimated as 1672700 tons according to the results of hydroacoustic measurements and 901000 tons by the method of squares. The use of hydroacoustic technologies makes evaluation of the actual stock and range of medusae more accurate, and the further enhancement and perfection of the hydroacoustic method based on multifrequency measurements enables one to obtain more reliable estimates. A significant increase (nearly 25 times) of the total jellyfish biomass takes place in the summer period. Cyanea prevailed in biomass in the spring and Chrysaora melanaster prevailed in the summer. Some species showed considerable expressed spatial differentiation of distribution and affinity to certain environmental conditions. The studied species were almost exclusively zoophages. Their algal diet consisted mainly of diatom algae. Scyphomedusa’s diet mainly included the so-called “peaceful” zooplankton, viz., euphausiids and copepods (as a rule, over 50% the mass), at the same time carnivorous zooplankton, saggits, amphipods, and small medusae also formed a substantial share of their diet. One individual of the predominant jellyfish species consumes a total of 6.1 to 70.5 kcal during its lifecycle, which corresponds to 79.1–513.0 g of raw organic material, assuming 70% assimilability. The relatively low demand for food of this sort can be explained by the low caloric value of the jellyfish body, 96–97% of which consists of water. The distribution and composition of the jellyfish prey show that scyphomedusae exert the greatest influence on the nekton community, as they concentrate in the shelf area of the eastern part of the sea, at walleye pollock spawning sites. There the larvae of bottom invertebrates, including commercially valuable organisms, such as crab and shrimp, are also consumed. In the summer, jellyfish eat nearly 100 billion eggs and 20 billion larvae of walleye pollock, as well as 130 billion decapod (mostly crab) larvae each day, which corresponds to 0.03% of the eggs and 0.003% of the larvae of walleye pollock and 0.003% of the decapod larvae in the estimated stock.  相似文献   

13.
Synopsis Although planktonic marine fish larvae are often distributed in aggregations, the role of behavioral responses to environmental factors in these aggregations is not well understood. This work examines, under laboratory conditions, the influence of visual and chemical stimuli in the formation and maintenance of aggregations in walleye pollock,Theragra chalcogramma, larvae. Larvae were exposed to a horizontal gradient of light (visual stimulus), prey scent (chemical stimuli: squid/copepod and rotifer) or prey density (visual & chemical stimuli: rotifers). While larvae did not respond to prey scent, they did respond to a gradient of light or prey, which resulted in the formation and maintenance of aggregations. Larvae moved into and remained in a zone of higher light intensity (0.56 versus 0.01 mol photons m-2 s-1). Once encountering a patch of prey, larvae remained aggregated within the patch to feed. In nature, movement of walleye pollock larvae in response to selected environmental factors (e.g., gravity, light, temperature, turbulence) may serendipitously bring them into contact with prey patches, where they then could remain to feed as long as light intensity remained at or above levels necessary for feeding.  相似文献   

14.
The biomass of the walleye pollock (Theragra chalcogramma) stock in waters of Primorskii krai, Sea of Japan, during the 1976–2015 observation period ranged from 48000 to 373000 tons; their number ranged from 99 to 1115 million fish. Four very strong year-classes born in 1975, 1981, 1997, and 2006 have been identified. It has been shown that the duration of the sexual-maturity period is determined by the periodicity of the dynamics of the year-class strength close to the 9-year cycle. According to the results of numerical modeling, an increase in the walleye pollock stock in Primorye is expected from 2017 to 2020.  相似文献   

15.
The respiration rate and swimming activity of walleye pollock (Theragra chalcogramma) larvae were measured in the laboratory to determine how these were affected by body size (measured as dry weight), and amount of light. Size influenced respiration rates, but not activity. Activity increased with increased light, and as walleye pollock larvae developed, light had an increasingly important effect on respiration rate. For older larvae, light is an important factor affecting respiration rate and this may be due to an increased sensitivity to light. Thus, in addition to size, light plays an important role in the energetics of walleye pollock larvae.  相似文献   

16.
It has been hypothesized that the production of diapausing eggs in Daphnia can be induced by fish kairomones. A population of Daphnia could survive severe predation using this predator avoidance strategy. However, in changing environments, diapausing eggs experience various temperature conditions, and hatchlings at emergence may be exposed to the same predation risks as their mothers. Therefore, staying in diapause or an immediate response upon hatching to available environmental information could be important for hatchling survival. For this study, we investigated the impact of water temperature (10, 15, 20, and 25°C) in the presence and absence of fish kairomones (Lepomis macrochirus) on the hatching success of resting eggs (D. galeata). Results show that no diapausing eggs hatched at the lowest temperature (10°C), and the highest hatch percentage occurred at 15°C. Although higher water temperatures reduced hatching success, diapausing eggs hatched more quickly. The number of hatchlings was significantly higher after exposure to fish kairomones, and this was more noticeable at higher temperatures (20 and 25°C). The present results suggest that the diapausing eggs were produced as a predator avoidance strategy in Daphnia; however, the presence of fish works as a positive signal to increase hatchlings when the diapausing stage is terminated.  相似文献   

17.
Survival of age-0 walleye pollock Theragra chalcogramma in the absence of food followed simple bioenergetic models, with large body size, high initial condition, and cold temperatures all increasing survival rates. High survival after >200 days at cold temperatures (<3·0° C) indicated extended tolerance of extreme cold, as long as sufficient body size and condition are attained during the summer growth period. Analysis of body constituents demonstrated a substantial increase in tissue water and depletion of lipid during starvation. Survivors had significantly higher lipid stores than mortalities, and larger fish had higher levels of lipid than smaller fish among experimental survivors, laboratory fish that were never starved, and wild fish. Fish returned to warm temperatures and high rations following 205 days of food deprivation displayed nearly complete recovery, with rapid increases in length, weight, and condition and minimal mortality (6·8%) during the subsequent 3 months. Age-0 walleye pollock collected in September in the Bering Sea were substantially smaller and generally had lower lipid levels than fish used in laboratory starvation experiments, suggesting they are susceptible to size- and condition-dependent mortality during the winter. The results are interpreted with respect to field distributions of age-0 walleye pollock, overwinter survival, and synergistic effects of food and temperature under varying models of climate change.  相似文献   

18.
The lobate ctenophore, Mnemiopsis leidyi, consumed eggs andlarvae of the bay anchovy, Anchoa mitchilli, in laboratory experiments.This ctenophore exhibited a type I functional response to increasesin egg densities without reaching saturation at high prey densities.Clearance rate increased with increasing experimental containervolume. There was a 3-fold increase in the volume of water clearedby 2.0–2.5-cm ctenophores and a >5-fold increase for4.5–5.0-cm ctenophores in 15–1 versus 100–200–1containers. Clearance rate was dependent on tenophore lengthbut was probably underestimated for the larger animals due tocontainer effects. The presence of various densities of alternateprey, Acartia hudsonica or Anemia sp. nauplii, in addition toAnchoa mitchilli eggs did not affect the clearance rates onthe eggs alone. Comparison of clearance rates of 2.0–2.5-cmctenophores on various ages of starved and fed bay anchovy larvaeindicated that predation may be higher on yolk-sac larvae thanon eggs but decreases as the larvae grow. After 3 days posthatch starved anchovy larvae become more vulnerable to predationthan fed larvae. The ctenophore, M.leidyi has the potentialto inflict substantial predation pressure on early stages inthe life history of bay anchovy. 1 Present address: University of Maryland, Center for Environmentaland Estuarine Studies, Chesapeake Biological Laboratory, POBox 38, Solomons, MD 20688-0038, USA  相似文献   

19.
The thermal sensitivity of Arctic fish species is poorly understood, yet such data are a critical component of forecasting and understanding ecosystem impacts of climate change. In this study, we experimentally measured temperature-dependent growth and routine swim activity in the juvenile stage of two Arctic gadids (Arctic cod, Boreogadus saida and saffron cod, Eleginus gracilis) and two North Pacific gadids (walleye pollock, Gadus chalcogrammus and Pacific cod, Gadus macrocephalus) over a 6-week growth period across five temperatures (0, 5, 9, 16 and 20 °C). Arctic cod demonstrated a cold-water, stenothermic response in that there was relatively high growth at 0 °C (0.73 % day?1), near-maximal growth at 5 °C (1.35 % day?1) and negative impacts on activity, growth and survival at 16 °C. In contrast, saffron cod demonstrated a warmer-water, eurythermic response, and temperature had a positive effect on growth and condition beyond 16 °C. However, despite these distinct thermal responses, walleye pollock and Pacific cod grew 2–3 times faster than Arctic gadids across a relatively broad temperature range above 5 °C. These results, coupled with possible northward expansion by both Pacific cod and walleye pollock, suggest Arctic cod are highly vulnerable to continued climate change in the Arctic, especially in coastal areas of the Beaufort and Chukchi Seas where temperatures already exceed 14 °C in the summer growth period.  相似文献   

20.
Invasive predators can have dramatic impacts on invaded communities. Extreme declines in macroinvertebrate populations often follow killer shrimp (Dikerogammarus villosus) invasions. There are concerns over similar impacts on fish through predation of eggs and larvae, but these remain poorly quantified. We compare the predatory impact of invasive and native amphipods (D. villosus and Gammarus pulex) on fish eggs and larvae (ghost carp Cyprinus carpio and brown trout Salmo trutta) in the laboratory. We use size-matched amphipods, as well as larger D. villosus reflecting natural sizes. We quantify functional responses, and electivity amongst eggs or larvae and alternative food items (invertebrate, plant and decaying leaf). D. villosus, especially large individuals, were more likely than G. pulex to kill trout larvae. However, the magnitude of predation was low (seldom more than one larva killed over 48 h). Trout eggs were very rarely killed. In contrast, carp eggs and larvae were readily killed and consumed by all amphipod groups. Large D. villosus had maximum feeding rates 1.6–2.0 times higher than the smaller amphipods, whose functional responses did not differ. In electivity experiments with carp eggs, large D. villosus consumed the most eggs and the most food in total. However, in experiments with larvae, consumption did not differ between amphipod groups. Overall, our data suggest D. villosus will have a greater predatory impact on fish populations than G. pulex, primarily due to its larger size. Higher invader abundance could amplify this difference. The additional predatory pressure could reduce recruitment into fish populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号