首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutant tRNAs containing an extra nucleotide in the anticodon loop are known to suppress +1 frameshift mutations, but in no case has the molecular mechanism been clarified. It has been proposed that the expanded anticodon pairs with a complementary mRNA sequence (the frameshift sequence) in the A site, and this quadruplet "codon-anticodon" helix is translocated to the P site to restore the correct reading frame. Here, we analyze the ability of tRNA analogs containing expanded anticodons to recognize and position mRNA in ribosomal complexes in vitro. In all cases tested, 8 nt anticodon loops position the 3' three-quarters of the frameshift sequence in the P site, indicating that the 5' bases of the expanded anticodon (nucleotides 33.5, 34, and 35) pair with mRNA in the P site. We also provide evidence that four base-pairs can form between the P-site tRNA and mRNA, and the fourth base-pair involves nucleotide 36 of the tRNA and lies toward (or in) the 30 S E site. In the A site, tRNA analogs with the expanded anticodon ACCG are able to recognize either CGG or GGU. These data imply a flexibility of the expanded anticodon in the A site. Recognition of the 5' three-quarters of the frameshift sequence in the A site and subsequent translocation of the expanded anticodon to the P site results in movement of mRNA by four nucleotides, explaining how these tRNAs can change the mRNA register in the ribosome to restore the correct reading frame.  相似文献   

2.
One of the requirements for engineering expansion of the genetic code is a unique codon which is available for specifying the new amino acid. The potential of the quadruplet UAGA in Escherichia coli to specify a single amino acid residue in the presence of a mutant tRNA(Leu) molecule containing the extra nucleotide, U, at position 33.5 of its anticodon loop has been examined. With this mRNA-tRNA combination and at least partial inactivation of release factor 1, the UAGA quadruplet specifies a leucine residue with an efficiency of 13 to 26 %. The decoding properties of tRNA(Leu) with U at position 33.5 of its eight-membered anticodon loop, and a counterpart with A at position 33.5, strongly suggest that in both cases their anticodon loop bases stack in alternative conformations. The identity of the codon immediately 5' of the UAGA quadruplet influences the efficiency of quadruplet translation via the properties of its cognate tRNA. When there is the potential for the anticodon of this tRNA to dissociate from pairing with its codon and to re-pair to mRNA at a nearby 3' closely matched codon, the efficiency of quadruplet translation at UAGA is reduced. Evidence is presented which suggests that when there is a purine base at position 32 of this 5' flanking tRNA, it influences decoding of the UAGA quadruplet.  相似文献   

3.
Derivatives of E. coli tRNAfMet containing single base substitutions at the wobble position of the anticodon have been enzymatically synthesized in vitro. The procedure involves excision of the normal anticodon, CAU, by limited digestion of intact tRNAfMet with RNase A. RNA ligase is then used to join each of four trinucleotides, NAU, to the 5' half molecule and to subsequently link the 3' and modified 5' fragments to regenerate the anticodon loop. Synthesis of intact tRNAfMet containing the anticodon CAU by this procedure yields a product which is indistinguishable from native tRNAfMet with respect to its ability to be aminoacylated by E. coli methionyl-tRNA synthetase. Substitution of any other nucleotide at the wobble position of tRNAfMet drastically impairs the ability of the synthetase to recognize the tRNA. Measurement of methionine acceptance in the presence of high concentrations of pure enzyme has established that the rate of aminoacylation of the AAU, GAU and UAU anticodon derivatives of tRNAfMet is four to five orders of magnitude slower than that of the native or synthesized tRNA containing C as the wobble base. In addition, the inactive tRNA derivatives fail to inhibit aminoacylation of normal tRNAfMet, indicating that they bind poorly to the enzyme. These results support a model involving direct interaction between Met-tRNA synthetase and the C in the wobble position during aminoacylation of tRNAfMet.  相似文献   

4.
We have used the temperature-jump relaxation technique to determine the kinetic and thermodynamic parameters for the association between the following tRNAs pairs having complementary anticodons: tRNA(Ser) with tRNA(Gly), tRNA(Cys) with tRNA(Ala) and tRNA(Trp) with tRNA(Pro). The anticodon sequence of E. coli tRNA(Ser), GGA, is complementary to the U*CC anticodon of E. coli tRNA(Gly(2] (where U* is a still unknown modified uridine base) and A37 is not modified in none of these two tRNAs. E. coli tRNA(Ala) has a VGC anticodon (V is 5-oxyacetic acid uridine) while tRNA(Cys) has the complementary GCA anticodon with a modified adenine on the 3' side, namely 2-methylthio N6-isopentenyl adenine (mS2i6A37) in E. Coli tRNA(Cys) and N6-isopentenyl adenine (i6A37) in yeast tRNA(Cys). The brewer yeast tRNA(Trp) (anticodon CmCA) differs from the wild type E. coli tRNA(Trp) (anticodon CCA) in several positions of the nucleotide sequence. Nevertheless, in the anticodon loop, only two interesting differences are present: A37 is not modified while C34 at the first anticodon position is modified into a ribose 2'-O methyl derivative (Cm). The corresponding complementary tRNA is E.coli tRNA(Pro) with the VGG anticodon. Our results indicate a dominant effect of the nature and sequence of the anticodon bases and their nearest neighbor in the anticodon loop (particularly at position 37 on the 3' side); no detectable influence of modifications in the other tRNA stems has been detected. We found a strong stabilizing effect of the methylthio group on i6A37 as compared to isopentenyl modification of the same residue. We have not been able so far to assess the effect of isopentenyl modification alone in comparison to unmodified A37. The results obtained with the complex yeast tRNA(Trp)-E.coli tRNA(Pro) also suggest that a modification of C34 to Cm34 does not significantly increase the stability of tRNA(Trp) association with its complementary anticodon in tRNA(Pro). The observations are discussed in the light of inter- and intra-strand stacking interactions among the anticodon triplets and with the purine base adjacent to them, and of possible biological implications.  相似文献   

5.
A genetic approach has been used to establish the molecular basis of 4-base codon recognition by frameshift suppressor tRNA containing an extra nucleotide in the anticodon. We have isolated all possible base substitution mutations at the position 4 (N) in the 3'-CCCN-5' anticodon of a Saccharomyces cerevisiae frameshift suppressor glycine tRNA encoded by the SUF16 gene. Base substitutions at +1 frameshift sites in the his4 gene have also been obtained such that all possible 4-base 5'-GGGN-3' codons have been identified. By testing for suppression in different strains that collectively represent all 16 possible combinations of position 4 nucleotides, we show that frameshift suppression does not require position 4 base pairing. Nonetheless, position 4 interactions influence the efficiency of suppression. Our results suggest a model in which 4-base translocation of mRNA on the ribosome is directed primarily by the number of nucleotides in the anticodon loop, whereas the resulting efficiency of suppression is dependent on the nature of position 4 nucleotides.  相似文献   

6.
From the consideration of general features of the anticodon loop and stem in tRNA and the properties of present-day translation, we put forward a plausible scenario to explain the evolution of the genetic code from a highly ambiguous triplet code to the present refined decoding system. Our model based on the reading of the code suggests that the anticodon of primordial tRNA could adopt either the 3' or the 5' stacked conformation permitting the formation of the "best two out of three" base pairs, either the first and second codon position or the second and third. Progressive acquisition of precise structural constraint and the modification of bases in the anticodon loop would give way eventually to the less ambiguous "two out of three" reading mechanism having only the 3' stacked conformation. Further adjustments of base composition and modification leads inevitably to the present generalized code. In this way the primordial code encoding 4-8 amino acids or related derivates evolves smoothly to the present code having 20 amino acids.  相似文献   

7.
8.
Extragenic suppressors of +1 frameshift mutations in proline codons map in genes encoding two major proline tRNA isoacceptors. We have shown previously that one isoacceptor encoded by the SUF2 gene (chromosome 3) contains no intervening sequence. SUF2 suppressor mutations result from the base insertion of a G within a 3'-GGA-5' anticodon, allowing the tRNA to read a 4-base code word. In this communication we describe suppressor mutations in genes encoding a second proline tRNA isoacceptor (wild-type anticodon 3'-GGU-5') that result in a novel mechanism for translation of a 4-base genetic code word. The genes that encode this isoacceptor include SUF7 (chromosome 13), SUF8 (chromosome 8), trn1 (chromosome 1), and at least two additional unmapped genes, all of which contain an intervening sequence. We show that suppressor mutations in the SUF7 and SUF8 genes result in G-to-U base substitutions at position 39 that disrupted the normal G . C base pairing in the last base pair of the anticodon stem adjacent to the anticodon loop. These anticodon stem mutations might alter the size of the anticodon loop and permit the use of a 3'-GGGU-5' sequence within the loop to read 4-base proline codons. Uncertainty regarding the exact structure of the mature suppressor tRNAs results from the possibility that anticodon stem mutations might affect sites of intervening sequence removal. The possible role of the intervening sequence in the generation of mature suppressor tRNA is discussed. Besides an analysis of suppressor tRNA genes, we have extended previous observations of the apparent relationship between tRNA genes and repetitive delta sequences found as solo elements or in association with the transposable element TY1. Hybridization studies and a computer analysis of the DNA sequence surrounding the SUF7 gene revealed two incomplete, inverted delta sequences that form a stem and loop structure located 165 base pairs from the 5' end of the tRNA gene. In addition, sequences beginning 164 base pairs from the 5' end of the trn1 gene also exhibit partial homology to delta. These observations provide further evidence for a nonrandom association between tRNA genes and delta sequences.  相似文献   

9.
10.
11.
The mutant tRNA(2Arg) encoded by the genetically-selected frameshift suppressor, sufT621, inserts arginine and causes a +1 reading-frame shift at the proline codon, CCG(U). There is an extra base, G36.1, in argV beta, one of the four identical genes for tRNA(2Arg) in the position between bases 36 and 37, corresponding to the 3' side of the anticodon. The new four-base anticodon, predicted from DNA sequencing to be 3' GGCA 5', is complementary to the four-base codon CCGU. Quadruplet translocation promoted by mutant argV does not require perfect complementarity between the codon and the anticodon since synthetic genes encoding derivatives of tRNA(2Arg) and tRNA(1Pro), with four-base anticodons complementary to three out of the four bases of CCGU, were also shown to be capable of frameshifting. Two other mutants of argV, inferred to have normal-size, seven-base anticodon loops, were also found to be capable of four-base-decoding demonstrating that quadruplet translocation promoted by mutant argV does not require an enlarged anticodon loop. Other alleles of argV, predicted to have nine bases in the anticodon loop, were also found to cause frameshifting. The DNA sequence of two of these showed in addition, either a deletion of G24, or a ten-base duplication in the region corresponding to the TFC arm. A general finding is that mutations in the DHU arm of tRNA(2Arg) are compatible with, and in one case necessary for, frameshifting.  相似文献   

12.
The bacterial tRNA(Lys)-specific PrrC-anticodon nuclease cleaves its natural substrate 5' to the wobble base, yielding 2',3'-cyclic phosphate termini. Previous work has implicated the anticodon of tRNA(Lys) as a specificity element and a cluster of amino acid residues at the carboxy-proximal half of PrrC in its recognition. We further examined these assumptions by assaying unmodified and hypomodified derivatives of tRNA(Lys) as substrates of wild-type and mutant alleles of PrrC. The data show, first, that the anticodon sequence and wobble base modifications of tRNA(Lys) play major roles in the interaction with anticodon nuclease. Secondly, a specific contact between the substrate recognition site of PrrC and the tRNA(Lys) wobble base is revealed by PrrC missense mutations that suppress the inhibitory effects of wobble base modification mutations. Thirdly, the data distinguish between the anticodon recognition mechanisms of PrrC and lysyl-tRNA synthetase.  相似文献   

13.
N1-Methylguanosine (m1G) or wye nucleoside (Y) are found 3' adjacent to the anticodon (position 37) of eukaryotic tRNAPhe. The biosynthesis of these two modified nucleosides has been investigated. The importance of the type of nucleosides in the anticodon of yeast tRNAPhe on the potentiality of this tRNA to be a substrate for the corresponding maturation enzyme has also been studied. This involved microinjection into Xenopus laevis oocytes and incubation in a yeast extract of restructured yeast tRNAPhe in which the anticodon GmAA and the 3' adjacent Y nucleoside were substituted by various tetranucleotides ending with a guanosine. The results obtained by oocyte microinjection indicate: that all the restructured yeast tRNAsPhe are efficient substrates for the tRNA (guanosine-37 N1)methyltransferase. This means that the anticodon sequence is not critical for the tRNA recognition by this enzyme; in contrast, for Y nucleoside biosynthesis, the anticodon sequence GAA is an absolute requirement; the conversion of G-37 into Y-37 nucleoside is a multienzymatic process in which m1G-37 is the first obligatory intermediate; all the corresponding enzymes are cytoplasmic. In a crude yeast extract, restructured yeast tRNAPhe with G-37 is efficiently modified only into m1G-37; the corresponding enzyme is a S-adenosyl-L-methionine-dependent tRNA methyltransferase. The pure Escherichia coli tRNA (guanosine-37 N1) methyltransferase is unable to modify the guanosine-37 of yeast tRNAPhe.  相似文献   

14.
Introns in transfer RNA genes are rare in vertebrates. Until now, the only intron-containing human tRNA genes were believed to be those coding for tRNA(Tyr). All of these introns are inserted 3' to the anticodon position in these genes. We have designed polymerase chain reaction primers that can amplify all of the tRNA(Tyr) genes for cloning and sequencing by using the conserved portions of the gene coding for the structural part of the tRNA. Our preliminary results have revealed five tRNA(Tyr) genes, each of which contains a different intron. We used the same technique to amplify, clone, and sequence the human genes for tRNA(Leu)CAA. This has resulted in the discovery that this human tRNA gene family also has introns inserted 3' to the anticodon. This polymerase chain reaction technique is useful in detecting new families of intron-containing tRNA genes as well as identifying sequence variations in the introns of individual genes.  相似文献   

15.
The natural modification of specific nucleosides in many tRNAs is essential during decoding of mRNA by the ribosome. For example, tRNA(Lys)(UUU) requires the modification N6-threonylcarbamoyladenosine at position 37 (t(6)A37), adjacent and 3' to the anticodon, to bind AAA in the A site of the ribosomal 30S subunit. Moreover, it can only bind both AAA and AAG lysine codons when doubly modified with t(6)A37 and either 5-methylaminomethyluridine or 2-thiouridine at the wobble position (mnm(5)U34 or s(2)U34). Here we report crystal structures of modified tRNA anticodon stem-loops bound to the 30S ribosomal subunit with lysine codons in the A site. These structures allow the rationalization of how modifications in the anticodon loop enable decoding of both lysine codons AAA and AAG.  相似文献   

16.
17.
18.
In Escherichia coli a UGA codon can be efficiently suppressedby a suppressor tRNATrp called Su9. Here, we show that the levelof UGA suppression is determined by the nature of the nucleotideat the 5' side of the anticodon of the suppressor (position33). UGA suppression occurs when a pyrimidine residue is locatedin position 33 of the tRNA, and suppression is more efficientwith a U than with a C in this position. On the other hand,when a purine residue is located at this position UGA suppressionis extremely low. These results show that in the case of tRNASu9, the UGA codon context effect does not require base pairingbetween the nucleotide at the 3' side of the codon and the 5'side of the anticodon.  相似文献   

19.
The discovery of separate 5' and 3' halves of transfer RNA (tRNA) molecules-so-called split tRNA-in the archaeal parasite Nanoarchaeum equitans made us wonder whether ancestral tRNA was encoded on 1 or 2 genes. We performed a comprehensive phylogenetic analysis of tRNAs in 45 archaeal species to explore the relationship between the three types of tRNAs (nonintronic, intronic and split). We classified 1953 mature tRNA sequences into 22 clusters. All split tRNAs have shown phylogenetic relationships with other tRNAs possessing the same anticodon. We also mimicked split tRNA by artificially separating the tRNA sequences of 7 primitive archaeal species at the anticodon and analyzed the sequence similarity and diversity of the 5' and 3' tRNA halves. Network analysis revealed specific characteristics of and topological differences between the 5' and 3' tRNA halves: the 5' half sequences were categorized into 6 distinct groups with a sequence similarity of >80%, while the 3' half sequences were categorized into 9 groups with a higher sequence similarity of >88%, suggesting different evolutionary backgrounds of the 2 halves. Furthermore, the combinations of 5' and 3' halves corresponded with the variation of amino acids in the codon table. We found not only universally conserved combinations of 5'-3' tRNA halves in tRNA(iMet), tRNA(Thr), tRNA(Ile), tRNA(Gly), tRNA(Gln), tRNA(Glu), tRNA(Asp), tRNA(Lys), tRNA(Arg) and tRNA(Leu) but also phylum-specific combinations in tRNA(Pro), tRNA(Ala), and tRNA(Trp). Our results support the idea that tRNA emerged through the combination of separate genes and explain the sequence diversity that arose during archaeal tRNA evolution.  相似文献   

20.
The nucleotide sequences of the complete set of tRNA species in Mycoplasma capricolum, a derivative of Gram-positive eubacteria, have been determined. This bacterium represents the first genetic system in which the sequences of all the tRNA species have been determined at the RNA level. There are 29 tRNA species: three for Leu, two each for Arg, Ile, Lys, Met, Ser, Thr and Trp, and one each for the other 12 amino acids as judged from aminoacylation and the anticodon nucleotide sequences. The number of tRNA species is the smallest among all known genetic systems except for mitochondria. The tRNA anticodon sequences have revealed several features characteristic of M. capricolum. (1) There is only one tRNA species each for Ala, Gly, Leu, Pro, Ser and Val family boxes (4-codon boxes), and these tRNAs all have an unmodified U residue at the first position of the anticodon. (2) There are two tRNAThr species having anticodons UGU and AGU; the first positions of these anticodons are unmodified. (3) There is only one tRNA with anticodon ICG in the Arg family box (CGN); this tRNA can translate codons CGU, CGC and CGA. No tRNA capable of translating codon CGG has been detected, suggesting that CGG is an unassigned codon in this bacterium. (4) A tRNATrp with anticodon UCA is present, and reads codon UGA as Trp. On the basis of these and other observations, novel codon recognition patterns in M. capricolum are proposed. A comparatively small total, 13, of modified nucleosides is contained in all M. capricolum tRNAs. The 5' end nucleoside of the T psi C-loop (position 54) of all tRNAs is uridine, not modified to ribothymidine. The anticodon composition, and hence codon recognition patterns, of M. capricolum tRNAs resemble those of mitochondrial tRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号