首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crystal structures of human endothelial nitric oxide synthase (eNOS) and human inducible NOS (iNOS) catalytic domains were solved in complex with the arginine substrate and an inhibitor S-ethylisothiourea (SEITU), respectively. The small molecules bind in a narrow cleft within the larger active-site cavity containing heme and tetrahydrobiopterin. Both are hydrogen-bonded to a conserved glutamate (eNOS E361, iNOS E377). The active-site residues of iNOS and eNOS are nearly identical. Nevertheless, structural comparisons provide a basis for design of isozyme-selective inhibitors. The high-resolution, refined structures of eNOS (2.4 A resolution) and iNOS (2.25 A resolution) reveal an unexpected structural zinc situated at the intermolecular interface and coordinated by four cysteines, two from each monomer.  相似文献   

2.
The structure of mouse class II alcohol dehydrogenase (ADH2) has been determined in a binary complex with the coenzyme NADH and in a ternary complex with both NADH and the inhibitor N-cyclohexylformamide to 2.2 A and 2.1 A resolution, respectively. The ADH2 dimer is asymmetric in the crystal with different orientations of the catalytic domains relative to the coenzyme-binding domains in the two subunits, resulting in a slightly different closure of the active-site cleft. Both conformations are about half way between the open apo structure and the closed holo structure of horse ADH1, thus resembling that of ADH3. The semi-open conformation and structural differences around the active-site cleft contribute to a substantially different substrate-binding pocket architecture as compared to other classes of alcohol dehydrogenase, and provide the structural basis for recognition and selectivity of alcohols and quinones. The active-site cleft is more voluminous than that of ADH1 but not as open and funnel-shaped as that of ADH3. The loop with residues 296-301 from the coenzyme-binding domain is short, thus opening up the pocket towards the coenzyme. On the opposite side, the loop with residues 114-121 stretches out over the inter-domain cleft. A cavity is formed below this loop and adds an appendix to the substrate-binding pocket. Asp301 is positioned at the entrance of the pocket and may control the binding of omega-hydroxy fatty acids, which act as inhibitors rather than substrates. Mouse ADH2 is known as an inefficient ADH with a slow hydrogen-transfer step. By replacing Pro47 with His, the alcohol dehydrogenase activity is restored. Here, the structure of this P47H mutant was determined in complex with NADH to 2.5 A resolution. His47 is suitably positioned to act as a catalytic base in the deprotonation of the substrate. Moreover, in the more closed subunit, the coenzyme is allowed a position closer to the catalytic zinc. This is consistent with hydrogen transfer from an alcoholate intermediate where the Pro/His replacement focuses on the function of the enzyme.  相似文献   

3.
The specificity of the proteinase of myeloblastosis-associated virus (MAV) was studied with (a) 21 substrate-based inhibitors, (b) 9 inhibitors with pseudopalindrome sequences, (c) 8 chimeric inhibitors, and (d) 3 compounds designed as human immunodeficiency virus 1 (HIV-1) proteinase inhibitors. The central inhibitory unit (transition state or cleaved bond analog) and the role of the inhibitor side chains from P4 to P4' were investigated. MAV proteinase prefers an aromatic side chain in P1 and a small aliphatic nonpolar chain in P2 and P2'. Residues in P5 and P4 positions are outside of the short catalytic cleft of the enzyme, but still influence binding considerably. The data obtained provide evidence that the MAV proteinase has generally lower specificity and poorer binding than the HIV proteinase.  相似文献   

4.
Human matrix metalloproteinase 9 (MMP-9), also called gelatinase B, is particularly involved in inflammatory processes, bone remodelling and wound healing, but is also implicated in pathological processes such as rheumatoid arthritis, atherosclerosis, tumour growth, and metastasis. We have prepared the inactive E402Q mutant of the truncated catalytic domain of human MMP-9 and co-crystallized it with active site-directed synthetic inhibitors of different binding types. Here, we present the X-ray structures of five MMP-9 complexes with gelatinase-specific, tight binding inhibitors: a phosphinic acid (AM-409), a pyrimidine-2,4,6-trione (RO-206-0222), two carboxylate (An-1 and MJ-24), and a trifluoromethyl hydroxamic acid inhibitor (MS-560). These compounds bind by making a compromise between optimal coordination of the catalytic zinc, favourable hydrogen bond formation in the active-site cleft, and accommodation of their large hydrophobic P1' groups in the slightly flexible S1' cavity, which exhibits distinct rotational conformations of the Pro421 carbonyl group in each complex. In all these structures, the side-chain of Arg424 located at the bottom of the S1' cavity is not defined in the electron density beyond C(gamma), indicating its mobility. However, we suggest that the mobile Arg424 side-chain partially blocks the S1' cavity, which might explain the weaker binding of most inhibitors with a long P1' side-chain for MMP-9 compared with the closely related MMP-2 (gelatinase A), which exhibits a short threonine side-chain at the equivalent position. These novel structural details should facilitate the design of more selective MMP-9 inhibitors.  相似文献   

5.
X-ray studies of aspartic proteinase-statine inhibitor complexes   总被引:3,自引:0,他引:3  
The conformation of a statine-containing renin inhibitor complexed with the aspartic proteinase from the fungus Endothia parasitica (EC 3.4.23.6) has been determined by X-ray diffraction at 2.2-A resolution (R = 0.17). We describe the structure of the complex at high resolution and compare this with a 3.0-A resolution analysis of a bound inhibitor, L-364,099, containing a cyclohexylalanine analogue of statine. The inhibitors bind in extended conformations in the long active-site cleft, and the hydroxyl of the transition-state analogue, statine, interacts strongly with the catalytic aspartates via hydrogen bonds to the essential carboxyl groups. This work provides a detailed structural analysis of the role of statine in peptide inhibitors. It shows conclusively that statine should be considered a dipeptide analogue (occupying P1 to P1') despite lacking the equivalent of a P1' side chain, although other inhibitor residues (especially P2) may compensate by interacting at the unoccupied S1' specificity subsite.  相似文献   

6.
Matrix metalloproteinases are a family of zinc endopeptidases involved in tissue remodelling. They have been implicated in various disease processes including tumour invasion and joint destruction. These enzymes consist of several domains, which are responsible for latency, catalysis and substrate recognition. Human neutrophil collagenase (PMNL-CL, MMP-8) represents one of the two 'interstitial' collagenases that cleave triple helical collagens types I, II and III. Its 163 residue catalytic domain (Met80 to Gly242) has been expressed in Escherichia coli and crystallized as a non-covalent complex with the inhibitor Pro-Leu-Gly-hydroxylamine. The 2.0 A crystal structure reveals a spherical molecule with a shallow active-site cleft separating a smaller C-terminal subdomain from a bigger N-terminal domain, composed of a five-stranded beta-sheet, two alpha-helices, and bridging loops. The inhibitor mimics the unprimed (P1-P3) residues of a substrate; primed (P1'-P3') peptide substrate residues should bind in an extended conformation, with the bulky P1' side-chain fitting into the deep hydrophobic S1' subsite. Modelling experiments with collagen show that the scissile strand of triple-helical collagen must be freed to fit the subsites. The catalytic zinc ion is situated at the bottom of the active-site cleft and is penta-coordinated by three histidines and by both hydroxamic acid oxygens of the inhibitor. In addition to the catalytic zinc, the catalytic domain harbours a second, non-exchangeable zinc ion and two calcium ions, which are packed against the top of the beta-sheet and presumably function to stabilize the catalytic domain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Schmidt A  Gübitz GM  Kratky C 《Biochemistry》1999,38(8):2403-2412
Following a recent low-temperature crystal structure analysis of the native xylanase from Penicillium simplicissimum [Schmidt et al. (1998) Protein Sci. 7, 2081-2088], where an array of glycerol molecules, diffused into the crystal during soaking in a cryoprotectant, was observed within the active-site cleft, we utilized monomeric xylose as well as a variety of linear (Xn, n = 2 to 5) and branched xylooligomers at high concentrations (typically 20% w/v) as cryoprotectant for low-temperature crystallographic experiments. Binding of the glycosidic moiety (or its hydrolysis products) to the enzyme's active-site cleft was observed after as little as 30 s soaking of a native enzyme crystal. The use of a substrate or substrate analogue as cryoprotectant therefore suggests itself as a simple and widely applicable alternative to the use of crystallographic flow-cells for substrate-saturation experiments. Short-chain xylooligomers, i.e., xylobiose (X2) and xylotriose (X3), were found to bind to the active-site cleft with its reducing end hydrogen-bonded to the catalytic acid-base catalyst Glu132. Xylotetraose (X4) and -pentaose (X5) had apparently been cleaved during the soaking time into a xylotriose plus a monomeric (X4) or dimeric (X5) sugar. While the trimeric hydrolysis product was always found to bind in the same way as xylotriose, the monomer or dimer yielded only weak and diffuse electron density within the xylan-binding cleft, at the opposite side of the active center. This suggests that the two catalytic residues divide the binding cleft into a "substrate recognition area" (from the active site toward the nonreducing end of a bound xylan chain), with strong and specific xylan binding and a "product release area" with considerably weaker and less specific binding. The size of the substrate recognition area (3-4 subsites for sugar rings) explains enzyme kinetic data, according to which short oligomers (X2 and X3) bind to the enzyme without being hydrolyzed.  相似文献   

8.
UCHL1 is a 223 amino acid member of the UCH family of deubiquitinating enzymes (DUBs), found abundantly and exclusively expressed in neurons and the testis in normal tissues. Two naturally occurring variants of UCHL1 are directly involved in Parkinson’s disease (PD). Not only has UCHL1 been linked to PD, but it has oncogenic properties, having been found abnormally expressed in lung, pancreatic, and colorectal cancers. Although inhibitors of UCHL1 have been described previously the co-crystal structure of the enzyme bound to any inhibitor has not been reported. Herein, we report the X-ray structure of UCHL1 co-crystallized with a peptide-based fluoromethylketone inhibitor, Z-VAE(OMe)-FMK (VAEFMK) at 2.35 Å resolution. The co-crystal structure reveals that the inhibitor binds in the active-site cleft, irreversibly modifying the active-site cysteine; however, the catalytic histidine is still misaligned as seen in the native structure, suggesting that the inhibitor binds to an inactive form of the enzyme. Our structure also reveals that the inhibitor approaches the active-site cleft from the opposite side of the crossover loop as compared to the direction of approach of ubiquitin’s C-terminal tail, thereby occupying the P1′ (leaving group) site, a binding site perhaps used by the unknown C-terminal extension of ubiquitin in the actual in vivo substrate(s) of UCHL1. This structure provides a view of molecular contacts at the active-site cleft between the inhibitor and the enzyme as well as furnishing structural information needed to facilitate further design of inhibitors targeted to UCHL1 with high selectivity and potency.  相似文献   

9.
10.
The crystal structure of Bacillus stearothermophilus PhoE (originally termed YhfR), a broad specificity monomeric phosphatase with a molecular mass of approximately 24 kDa, has been solved at 2.3 A resolution in order to investigate its structure and function. PhoE, already identified as a homolog of a cofactor-dependent phosphoglycerate mutase, shares with the latter an alpha/beta/alpha sandwich structure spanning, as a structural excursion, a smaller subdomain composed of two alpha-helices and one short beta-strand. The active site contains residues from both the alpha/beta/alpha sandwich and the sub-domain. With the exception of the hydrophilic catalytic machinery conserved throughout the cofactor-dependent phosphoglycerate mutase family, the active-site cleft is strikingly hydrophobic. Docking studies with two diverse, favored substrates show that 3-phosphoglycerate may bind to the catalytic core, while alpha-napthylphosphate binding also involves the hydrophobic portion of the active-site cleft. Combining a highly favorable phospho group binding site common to these substrate binding modes and data from related enzymes, a catalytic mechanism can be proposed that involves formation of a phosphohistidine intermediate on His10 and likely acid-base behavior of Glu83. Other structural factors contributing to the broad substrate specificity of PhoE can be identified. The dynamic independence of the subdomain may enable the active-site cleft to accommodate substrates of different sizes, although similar motions are present in simulations of cofactor-dependent phosphoglycerate mutases, perhaps favoring a more general functional role. A significant number of entries in protein sequence databases, particularly from unfinished microbial genomes, are more similar to PhoE than to cofactor-dependent phosphoglycerate mutases or to fructose-2,6-bisphosphatases. This PhoE structure will therefore serve as a valuable basis for inference of structural and functional characteristics of these proteins.  相似文献   

11.
The exosome is a macromolecular complex that plays fundamental roles in the biogenesis and turnover of a large number of RNA species. Here we report the crystal structures of the Rrp41-Rrp42 core complex of the S. solfataricus exosome bound to short single-stranded RNAs and to ADP. The RNA binding cleft recognizes four nucleotides in a sequence-unspecific manner, mainly by electrostatic interactions with the phosphate groups. Interactions at the 2' hydroxyls of the sugars provide specificity for RNA over DNA. The structures show both the bound substrate and the cleaved product of the reaction, suggesting a catalytic mechanism for the 3'-5' phosphorolytic activity of the exosome.  相似文献   

12.
Endoplasmic reticulum (ER) class I alpha1,2-mannosidase (also known as ER alpha-mannosidase I) is a critical enzyme in the maturation of N-linked oligosaccharides and ER-associated degradation. Trimming of a single mannose residue acts as a signal to target misfolded glycoproteins for degradation by the proteasome. Crystal structures of the catalytic domain of human ER class I alpha1,2-mannosidase have been determined both in the presence and absence of the potent inhibitors kifunensine and 1-deoxymannojirimycin. Both inhibitors bind to the protein at the bottom of the active-site cavity, with the essential calcium ion coordinating the O-2' and O-3' hydroxyls and stabilizing the six-membered rings of both inhibitors in a (1)C(4) conformation. This is the first direct evidence of the role of the calcium ion. The lack of major conformational changes upon inhibitor binding and structural comparisons with the yeast alpha1, 2-mannosidase enzyme-product complex suggest that this class of inverting enzymes has a novel catalytic mechanism. The structures also provide insight into the specificity of this class of enzymes and provide a blueprint for the future design of novel inhibitors that prevent degradation of misfolded proteins in genetic diseases.  相似文献   

13.
A crystallographic study to 2.4-A resolution of the ternary complex between horse liver alcohol dehydrogenase (LADH), NADH, and the effector molecule imidazole (Im) (LADH-NADH-Im) is presented. The ligand binding and the changes in the protein structure due to ligand interactions were interpreted from difference electron density maps calculated with phase angles derived from the refined native enzyme model. The complex crystallizes in the orthorhombic space group C2221, and the enzyme structure remains in the apo conformation in which the active-site cleft is not entirely shielded from the solvent. NADH binds in an extended conformation, and the protein-coenzyme interactions are weaker compared to other complexes. The B-stereospecific side of the nicotinamide ring faces the catalytic center (LADH is known to be an A-side-specific enzyme). However, the reactive carbon atom C4 of the ring has a similar position in relation to active-center groups in this structure compared to LADH complexes where the A side of the ring faces the substrate site. The carboxamide group is situated within hydrogen-bonding distance to the sulfur of Cys-46, which is one of the three protein ligands to the active-site zinc atom. The imidazole molecule is directly ligated to the metal ion, which has a roughly tetrahedral geometry in the complex.  相似文献   

14.
Metallocarboxpeptidases cleave C-terminal residues from peptide substrates and participate in a wide range of physiological processes, but they also contribute to human pathology. On the basis of structural information, we can distinguish between two groups of such metallopeptidases: cowrins and funnelins. Cowrins comprise protozoan, prokaryotic, and mammalian enzymes related to both neurolysin and angiotensin-converting enzyme and their catalytic domains contain 500–700 residues. They are ellipsoidal and traversed horizontally by a long, deep, narrow active-site cleft, in which the C-terminal residues are cut from oligopeptides and unstructured protein tails. The consensus cowrin structure contains a common core of 17 helices and a three-stranded β-sheet, which participates in substrate binding. This protease family is characterized by a set of spatially conserved amino acids involved in catalysis, HEXXH+EXXS/G+H+Y/R+Y. Funnelins comprise structural relatives of the archetypal bovine carboxypeptidase A1 and feature mammalian, insect and bacterial proteins with strict carboxypeptidase activity. Their ~ 300-residue catalytic domains evince a consensus central eight-stranded β-sheet flanked on either side by a total of eight helices. They also contain a characteristic set of conserved residues, HXXE+R+NR+H+Y+E, and their active-site clefts are rather shallow and lie at the bottom of a funnel-like cavity. Therefore, these enzymes act on a large variety of well-folded proteins. In both cowrins and funnelins, substrate hydrolysis follows a common general base/acid mechanism. A metal-bound solvent molecule ultimately performs the attack on the scissile peptide bond with the assistance of a strictly conserved glutamate residue.  相似文献   

15.
Unlike other synthetic or physiological inhibitors for matrix metalloproteinases (MMPs), the β-amyloid precursor protein-derived inhibitory peptide (APP-IP) having an ISYGNDALMP sequence has a high selectivity toward MMP-2. Our previous study identified amino acid residues of MMP-2 essential for its selective inhibition by APP-IP and demonstrated that the N to C direction of the decapeptide inhibitor relative to the substrate-binding cleft of MMP-2 is opposite that of substrate. However, detailed interactions between the two molecules remained to be clarified. Here, we determined the crystal structure of the catalytic domain of MMP-2 in complex with APP-IP. We found that APP-IP in the complex is indeed embedded into the substrate-binding cleft of the catalytic domain in the N to C direction opposite that of substrate. With the crystal structure, it was first clarified that the aromatic side chain of Tyr(3) of the inhibitor is accommodated into the S1' pocket of the protease, and the carboxylate group of Asp(6) of APP-IP coordinates bidentately to the catalytic zinc of the enzyme. The Ala(7) to Pro(10) and Tyr(3) to Ile(1) strands of the inhibitor extend into the nonprime and the prime sides of the cleft, respectively. Therefore, the decapeptide inhibitor has long range contact with the substrate-binding cleft of the protease. This mode of interaction is probably essential for the high MMP-2 selectivity of the inhibitor because MMPs share a common architecture in the vicinity of the catalytic center, but whole structures of their substrate-binding clefts have sufficient variety for the inhibitor to distinguish MMP-2 from other MMPs.  相似文献   

16.
Metallocarboxpeptidases cleave C-terminal residues from peptide substrates and participate in a wide range of physiological processes, but they also contribute to human pathology. On the basis of structural information, we can distinguish between two groups of such metallopeptidases: cowrins and funnelins. Cowrins comprise protozoan, prokaryotic, and mammalian enzymes related to both neurolysin and angiotensin-converting enzyme and their catalytic domains contain 500-700 residues. They are ellipsoidal and traversed horizontally by a long, deep, narrow active-site cleft, in which the C-terminal residues are cut from oligopeptides and unstructured protein tails. The consensus cowrin structure contains a common core of 17 helices and a three-stranded beta-sheet, which participates in substrate binding. This protease family is characterized by a set of spatially conserved amino acids involved in catalysis, HEXXH+EXXS/G+H+Y/R+Y. Funnelins comprise structural relatives of the archetypal bovine carboxypeptidase A1 and feature mammalian, insect and bacterial proteins with strict carboxypeptidase activity. Their approximately 300-residue catalytic domains evince a consensus central eight-stranded beta-sheet flanked on either side by a total of eight helices. They also contain a characteristic set of conserved residues, HXXE+R+NR+H+Y+E, and their active-site clefts are rather shallow and lie at the bottom of a funnel-like cavity. Therefore, these enzymes act on a large variety of well-folded proteins. In both cowrins and funnelins, substrate hydrolysis follows a common general base/acid mechanism. A metal-bound solvent molecule ultimately performs the attack on the scissile peptide bond with the assistance of a strictly conserved glutamate residue.  相似文献   

17.
Papain-like lysosomal cysteine proteases are processive and digestive enzymes that are expressed in organisms from bacteria to humans. Increasing knowledge about the physiological and pathological roles of cysteine proteases is bringing them into the focus of drug discovery research. These proteases have rather short active-site clefts, comprising three well defined substrate-binding subsites (S2, S1 and S1') and additional broad binding areas (S4, S3, S2' and S3'). The geometry of the active site distinguishes cysteine proteases from other protease classes, such as serine and aspartic proteases, which have six and eight substrate-binding sites respectively. Exopeptidases (cathepsins B, C, H and X), in contrast with endopeptidases (such as cathepsins L, S, V and F), possess structural features that facilitate the binding of N- and C-terminal groups of substrates into the active-site cleft. Other than a clear preference for free chain termini in the case of exopeptidases, the substrate-binding sites exhibit no strict specificities. Instead, their subsite preferences arise more from the specific exclusion of substrate types. This presents a challenge for the design of inhibitors to target a specific cathepsin: only the cumulative effect of an assembly of inhibitor fragments will bring the desired result.  相似文献   

18.
PDE4 (phosphodiesterase-4)-selective inhibitors have attracted much attention as potential therapeutics for the treatment of both depression and major inflammatory diseases, but their practical application has been compromised by side effects. A possible cause for the side effects is that current PDE4-selective inhibitors similarly inhibit isoforms from all four PDE4 subfamilies. The development of PDE4 subfamily-selective inhibitors has been hampered by a lack of structural information. In the present study, we rectify this by providing the crystal structures of the catalytic domains of PDE4A, PDE4B and PDE4D in complex with the PDE4 inhibitor NVP {4-[8-(3-nitrophenyl)-[1,7]naphthyridin-6-yl]benzoic acid} as well as the unliganded PDE4C structure. NVP binds in the same conformation to the deep cAMP substrate pocket and interacts with the same residues in each instance. However, detailed structural comparison reveals significant conformational differences. Although the active sites of PDE4B and PDE4D are mostly comparable, PDE4A shows significant displacements of the residues next to the invariant glutamine residue that is critical for substrate and inhibitor binding. PDE4C appears to be more distal from other PDE4 subfamilies, with certain key residues being disordered. Our analyses provide the first structural basis for the development of PDE4 subfamily-selective inhibitors.  相似文献   

19.
Chagasin is a protein produced by Trypanosoma cruzi, the parasite that causes Chagas' disease. This small protein belongs to a recently defined family of cysteine protease inhibitors. Although resembling well-known inhibitors like the cystatins in size (110 amino acid residues) and function (they all inhibit papain-like (C1 family) proteases), it has a unique amino acid sequence and structure. We have crystallized and solved the structure of chagasin in complex with the host cysteine protease, cathepsin L, at 1.75 A resolution. An inhibitory wedge composed of three loops (L2, L4, and L6) forms a number of contacts responsible for high-affinity binding (K(i), 39 pM) to the enzyme. All three loops interact with the catalytic groove, with the central loop L2 inserted directly into the catalytic center. Loops L4 and L6 embrace the enzyme molecule from both sides and exhibit distinctly different patterns of protein-protein recognition. Comparison with a 1.7 A structure of uncomplexed chagasin, also determined in this study, demonstrates that a conformational change of the first binding loop (L4) allows extended binding to the non-primed substrate pockets of the enzyme active site cleft, thereby providing a substantial part of the inhibitory surface. The mode of chagasin binding is generally similar, albeit distinctly different in detail, when compared to those displayed by cystatins and the cysteine protease inhibitory p41 fragment of the invariant chain. The chagasin-cathepsin L complex structure provides details of how the parasite protein inhibits a host enzyme of possible importance in host defense. The high level of structural and functional similarity between cathepsin L and the T. cruzi enzyme cruzipain gives clues to how the cysteine protease activity of the parasite can be targeted. This information will aid in the development of synthetic inhibitors for use as potential drugs for the treatment of Chagas disease.  相似文献   

20.
To compare the substrate preferences of rat brain neurolysin and cancer-producing matrix metalloproteinases (MMPs), which have the same architecture in their catalytic domains, the cleavage activity of neurolysin toward MMP-specific fluorescence-quenching peptides was quantitatively measured. The results show that neurolysin effectively cleaved MOCAc [(7-methoxy coumarin-4-yl) acetyl]-RPKPYANvaWMK(Dnp[2,4-dinitrophenyl])-NH2, a specific substrate of MMP-2 and MMP-9, but hardly cleaved MOCAc-RPKPVENvaWRK(Dnp)-NH2, a specific substrate of MMP-3, suggesting that neurolysin has a similar substrate preference to MMP-2 and MMP-9. A structural comparison between neurolysin and MMP-9 showed the similar key amino acid residues for substrate recognition. The possible application of neurolysin displayed on the yeast cell surface, as a safe protein alternative to MMP-2 and MMP-9 which induce cancer cell growth, invasion, and metastasis, to analysis of properties of the MMPs, including the screening of inhibitors and analysis of inhibition mechanism etc., are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号