首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mouse fibroblast LM cells have been heated at 44 degrees C for different periods. Potassium content of the cells was measured at certain intervals during the postheating period at 37 degrees C for up to 24 hr. The level of K+ decreased gradually in time starting within some hours after the heat treatment. The rate of K+ loss as well as the ultimate level reached was heat-dose dependent. When the potassium content of the cell population was determined 16 hr after the heat treatment, a correlation was observed between the concentration of potassium and the level of cell survival. When X irradiation was applied immediately after hyperthermia, radiosensitization on the level of cell survival was obtained as expected, the extent being dependent on the severity of heat treatments. No added K+ loss was observed, however, when hyperthermia was combined with radiation. It is suggested that plasma membrane related functions are disturbed by the heat treatment. This points to membranes as possible candidates for primary targets in the case of cell inactivation by heat alone, and not with respect to the radiosensitization by hyperthermia.  相似文献   

2.
Survival after H2O2 exposure or heat shock of asynchronous Chinese hamster ovary cells (HA-1) was assayed following pretreatment with mildly toxic doses of either H2O2 or hyperthermia. H2O2 cytotoxicity at 37 degrees C, expressed as a function of mM H2O2 was found to be dependent on cell density at the time of treatment. The density dependence reflected the ability of cells to reduce the effectiveness of H2O2 as a cytotoxic agent. When the survival data were plotted as a function of mumoles H2O2/cell at the beginning of the treatment, survival was independent of cell density. Cells pretreated with 0.1 mM (3-5 mumoles/cell X 10(-7)) H2O2 for 1 hr at 37 degrees C (30-50% survival) became resistant to a subsequent H2O2 treatment 16-36 hr after pretreatment [dose modifying factor (DMF) at 1% isosurvival = 4-6]. Their resistance to 43 degrees C heating, however, was only slightly increased over controls 16-36 hr following pretreatment (DMF at 1% isosurvival = 1.2). During this same interval, the synthesis of protein migrating in the 70 kD region of a one-dimensional SDS-polyacrylamide gel was enhanced twofold in the H2O2-pretreated cells. When the cells were heated for 15 min at 45 degrees C (40-60% survival), the survivors became extremely resistant to 43 degrees C heating and somewhat resistant to H2O2 (DMF at 1% isosurvival = 2). The heat-induced resistance to heat developed much more rapidly (reached a maximum between 6 and 13 hr) following pretreatment than the heat-induced resistance to H2O2 (16-36 hr). The enhanced synthesis of 70 kD protein after heat shock was greater in magnitude and occurred more rapidly following preheating than following H2O2 pretreatment. The cells that became resistant to H2O2 by either pretreatment (H2O2 or heat shock) also increased their ability to reduce the H2O2 cytotoxicity from the treatment medium beyond that of the untreated HA-1 cells. This may be one of the mechanisms involved in the increased resistance and a common adaptive mechanism induced by both stresses. These data indicate that mammalian cells develop resistance to H2O2 following mild pretreatment with H2O2 or heat shock. The cross-resistance induced by H2O2 and heat shock reinforce the hypothesis that some overlap in mechanisms exist between the cellular responses to these two stresses. However, the failure of H2O2 pretreatment to induce much resistance to heat indicates that there are also differences in the actions of the two agents.  相似文献   

3.
Previous reports have suggested that the potentiation of cellular radiation sensitivity by hyperthermia may be due to its inhibition of the repair of single-strand breaks in DNA. Such inhibition could result in increased numbers of unrejoined breaks at long times following irradiation, lesions that are presumed to be lethal to the cell. As a test of this hypothesis, the amounts of residual strand-break damage in cells following combined hyperthermia and ionizing radiation were measured. The results show that hyperthermia does significantly enhance the relative number of unrejoined strand breaks as measured by the technique of alkaline elution and that the degree of enhancement is dependent on both the temperature and duration of the hyperthermia treatment. For example, compared to unheated cells, the proportion of unrejoined breaks measured 8 hr after irradiation was increased by a factor of 1.5 in cells that were treated for 30 min at 43 degrees C, by a factor of 6 for cells treated for 30 min at 45 degrees C, and by a factor of 4 for cells treated at 43 degrees C for 2 hr. In experiments in which the sequence of heat and irradiation were varied, a high degree of correlation was observed between the resulting level of cell killing and the relative numbers of unrejoined strand breaks. The greatest effects on both of these parameters were observed in those protocols in which the irradiation was delivered either during, just before, or just after the heat treatment.  相似文献   

4.
Asynchronous or synchronous G1 cells were heated initially and then heated or irradiated a second time when the multiplicity of viable cells in microcolonies that developed from cells surviving the first heat dose had increased to 6-30. The survival of these microcolonies was compared with the survival of single cells that were heated or irradiated after the microcolonies had been trypsinized and dispersed into single cells. The survival of the single cells was similar to the survival of the microcolonies and much higher than single cell survival calculated by correcting microcolony survival for multiplicity. However, when microcolonies developed from control unheated cells, the observed single cell survival corresponded to single cell survival calculated by correcting microcolony survival for multiplicity. Therefore, multiplicity corrections, which assume that cells within a microcolony survive independently from one another, are not valid when the microcolony has developed from a cell surviving an initial heat treatment.  相似文献   

5.
We examined the dependence of heat killing and thermotolerance on the position and progression of Chinese hamster ovary (CHO) cells in the cell cycle. We measured cell cycle perturbations and survival of asynchronous and synchronized G1-, S-, and G2-phase cells resulting from continuous heating at 42.0 degrees C for up to 80 hr. Thermotolerance under these conditions was transient in nature, was dependent on the position of cells in the cell cycle, and occurred concurrently with a heat-induced delay of progression of G1- and G2-phase cells. When G1 cells were heated, survival decreased to 25% after 4 hr, at which time the thermotolerance was expressed. For G2 cells survival decreased initially at the same rate (T0 congruent to 3 hr) but thermotolerance was not expressed until approximately 12 hr, at which time the survival was 4%. The rate of decrease in survival was much more rapid for cells heated in mid-S phase (T0 congruent to 0.5 hr), and these cells did not express thermotolerance at a measurable level. Concurrent with the expression of thermotolerance, the progression of cells heated in G1 and G2 was delayed. Following the expression of tolerance, progression resumed at a rate approximately equal to the rate of decrease in survival of the G1 population. Cells heated in mid-S phase continued to progress through the cell cycle until they reached G2, where they were also delayed.  相似文献   

6.
The interaction between hyperthermia and X irradiation was determined in cultured Reuber H35 hepatoma cells with different states of thermosensitivity. Incubation at 41 degrees C followed by 4-Gy X rays resulted after 2 hr in a stabilization of cell survival for heat or plus X rays, with a maximum synergism factor of 1.6. Thermotolerance did not develop during incubation at 41.7 or 42.5 degrees C. When heat treatment of cells was followed by irradiation, the synergism factor for thermal radiosensitization increased with both the amount of thermal cell killing and the amount of X-ray cell killing; the influence of thermal exposure on the synergism factor was greater than that of the X-ray dose. Cells were made thermotolerant either by incubation at 42.5 degrees C for 30 or 60 min followed by an interval at 37 degrees C, or by continuous incubation at 41 degrees C. In both cases thermotolerance was measured by incubation at 42.5 degrees C. No difference was observed between the maximum thermotolerance achieved with both methods. When cells were irradiated in addition to the second heat treatment, thermal radiosensitization was strongly reduced concomitant with the decreased sensitivity to killing by heat.  相似文献   

7.
We have used alkaline elution to study the repair of X-ray-induced DNA strand breaks in vivo in two fibrosarcoma tumors and in several normal mouse tissues after whole-body irradiation of mice with 10-12.5 Gy of X rays. Both tumors were found to repair damage significantly faster and to a greater extent than any of the normal tissues, so that by 2 hr after irradiation the level of damage in both tumors was indistinguishable from unirradiated control values. Of the normal tissues studied, liver repaired the fastest. The kinetics for the other normal tissues were essentially the same, showing an appreciable level (7-16%) of unrepaired lesions still evident after 2 hr. Even as late as 12 hr there was a significant amount of residual damage in some tissues, with testes and spleen showing the greatest level (ca. 15%). The repair kinetics for each tissue were not appropriately described by a sum of two exponentials. In contrast, previously reported data for many homogeneous mammalian cell systems in vitro and for some tissues in vivo have shown biphasic repair kinetics. This difference may be related to heterogeneity of both cell type and environment within the tissue populations used in the investigation. The faster repair of DNA strand breaks by tumor cells relative to cells from normal tissues was not readily explainable in terms of such radiobiological parameters as overall tissue oxygenation or sulfhydryl content. Rather, it appears that the degree of differentiation of the cells within the tissue population may be a major determinant of repair proficiency. Based on a model incorporating a competition between repair and fixation of sublethal lesions, these data are consistent with the idea that tumor cells may have a repair, and hence survival, advantage over normal cells in response to ionizing radiation.  相似文献   

8.
In CHO and R1H cells thermotolerance was induced by a pre-incubation at 40 degrees C, by an acute heat shock at 43 degrees C followed by a time interval at 37 degrees C, and during continuous heating at 42 degrees C. Thermotolerance, which was tested at 43 degrees C, primarily causes an increase in D0 of the heat-response curve. The degree of maximum thermotolerance was found to be generally more pronounced in CHO than in R1H cells, but the time interval at 37 degrees C, as well as at 40 degrees C, to reach this maximum level was the same in both cell lines. CHO and R1H cells could be sensitized to 40 degrees C by a pre-treatment at 43 degrees C. When compared for the same survival rate after pre-treatment at 43 degrees C alone the degree of thermosensitization was about the same in both cell lines. In either cell line thermosensitization was found to be suppressed when cells were made thermotolerant by a previous incubation at 40 degrees C for 16 hours.  相似文献   

9.
CHO cells subline HA-1 were made thermotolerant by a priming heat treatment (43 degrees C, 30 min). Later, 4, 16, or 24 hr, they were either irradiated or heated (43 degrees C, 30 min) and irradiated. Thermotolerance had no effect on the radiation sensitivity of the cells as measured by the D0 value of the clonogenic survival curve. However, the N value of the curve (width of shoulder) showed a significant increase at 24 hr, indicating an increased capacity to accumulate sublethal damage. This indicates that the fractionation schedule 43 degrees C, 30 min + 37 degrees C, 24 hr + 43 degrees C, 30 min + X ray required approximately 100 rad more radiation than 43 degrees C, 30 min + X ray to reduce survival to the same level. The same priming treatment was given to RIF-1 tumors growing in C3H mice. Later, 24 hr, when the tumors were either irradiated or heated (43 degrees C, 30 min) and irradiated, it was found that thermotolerance had no effect on the radiosensitivity of the cells as measured by in vitro assay. However, thermal radiosensitization was not apparent 24 hr after the priming treatment.  相似文献   

10.
Asynchronously growing V79 cells were assayed for mutation induction following exposure to hyperthermia either immediately before or after being irradiated with 60Co gamma rays. Hyperthermia exposures consisted of either 43.5 degrees C for 30 min or 45 degrees C for 10 min. Each of these heat treatments resulted in a survival level of 42%. For all sequences of combined treatment with hyperthermia and radiation, cell killing by gamma rays was enhanced. Mutation induction by gamma rays was enhanced when heat preceded gamma irradiation, but no increase was observed when heat was given after gamma exposures. Treatment at 45 degrees C for 10 min gave a higher yield in mutants at all gamma doses studied compared to treatment at 43.5 degrees C for 30 min. When heat-treated cells were incubated for different periods before being exposed to gamma rays, thermal enhancement of radiation killing was lost after 24 h. In contrast, only 5-6 h incubation was needed for loss of mutation induction enhancement.  相似文献   

11.
When HA-1 CHO cells were cultured in media with a range of fetal calf serum (FCS) concentrations, they became increasingly heat sensitive at low (5%) serum levels. Heat sensitization occurred concomitantly with increased insulin binding capacity. Insulin binding capacity also became more heat sensitive. Thermotolerance induced by a mild treatment (10 min/45 degrees C) 12 hr prior to assay, caused marked heat resistance expressed both as cell survival or insulin binding and abolished differences in sensitivity between the serum adapted cell lines.  相似文献   

12.
When Chinese hamster ovary (CHO) cells were exposed to 22 degrees C for 2 hr prior to 42.4 degrees C hyperthermia, neither the shoulder region of the survival curve nor the characteristic development of thermotolerance after 3-4 hr of heating were observed. Absolute cell survival after 4 hr at 42.4 degrees C was decreased by a factor of between 10 and 100 (depending on the rate of heating of nonprecooled controls). Conditioning at 30 degrees C for 2 hr, 26 degrees C for 2 hr, or 22 degrees C for 20 min followed by heating to 42.4 degrees C over 30 min did not result in sensitization. Prolonged (16 hr) conditioning at 30 degrees C, however, increased the cytotoxicity of immediate exposure to 41.4 or 45 degrees C with maximum sensitization to 45 degrees C occurring after 6 hr at 30 degrees C. Both 3- and 18-hr pretreatments at 30 degrees C similarly increased the cytotoxicity of 45-41.5 degrees C step-down heating (D0 = 28 min in precooled versus 40 min in nonprecooled cells).  相似文献   

13.
Electron microscopy of Staphylococcus aureus cell wall lysis   总被引:3,自引:3,他引:0  
Virgilio, Rafael (Escuela de Química y Farmacia, Universidad de Chile, Santiago, Chile), C. González, Nubia Mu?oz, and Silvia Mendoza. Electron microscopy of Staphylococcus aureus cell wall lysis. J. Bacteriol. 91:2018-2024. 1966.-A crude suspension of Staphylococcus aureus cell walls (strain Cowan III) in buffer solution was shown by electron microscopy to lyse slightly after 16 hr, probably owing to the action of autolysin. The lysis was considerably faster and more intense after the addition of lysozyme. A remarkable reduction in thickness and rigidity of the cell walls, together with the appearance of many irregular protrusions in their outlines, was observed after 2 hr; after 16 hr, there remained only a few recognizable cell wall fragments but many residual particulate remnants. When autolysin was previously inactivated by trypsin, there was a complete inhibition of the lytic action of lysozyme; on the other hand, when autolysin was inactivated by heat and lysozyme was added, a distinct decrease in the thickness of the cell walls was observed, but there was no destruction of the walls. The lytic action of lysozyme, after treatment with hot 5% trichloroacetic acid, gave rise to a marked dissolution of the structure of the cell walls, which became lost against the background, without, however, showing ostensible alteration of wall outlines. From a morphological point of view, the lytic action of autolysin plus lysozyme was quite different from that of trichloroacetic acid plus lysozyme, as shown by electron micrographs, but in both cases it was very intense. This would suggest different mechanisms of action for these agents.  相似文献   

14.
Assay of ribonucleotide reduction in nucleotide-permeable hamster cells   总被引:9,自引:0,他引:9  
Ribonucleotide reduction was measured in Chinese hamster ovary cells made permeable to nucleotides by treatment with the detergent Tween-80. When compared to the respective ribonucleotide reductase activity in partially purified cell extracts, CDP and GDP reductase activities in permeabilized cells responded in a similar fashion to dithiothreitol, pH, MgCl2, FeCl3, substrate concentration and the presence of positive or negative allosteric effectors. At low protein concentrations both CDP and GDP reduction with whole cells increased linearly with cell number and was greater than the activity in corresponding cell extracts. Permeabilized cells were used to measure the level of CDP and GDP reductase in a hamster cell line resistant to the cytotoxic effects of hydroxyurea. The hydroxyurea-resistant cell line contained four to ten times more CDP and GDP reductase activity compared to parental or revertant cell lines. The permeabilized cell assay was also used to measure CDP and GDP reductase activities in Chinese hamster ovary cells synchronized by isoleucine starvation. CDP reductase activity was low in G1 arrested cells but increased 10-fold by 16 hours after the readdition of isoleucine to the growth medium. GDP reductase, which is present at much higher levels, is similarly induced after isoleucine addition, but only by 2-fold. The maximum activity of both CDP and GDP reductase occurred from 14 to 16 hours after isoleucine addition, which corresponded to the period of maximum DNA synthesis.  相似文献   

15.
16.
The modification of methylglyoxal bis(guanylhydrazone) (MGBG) by 42 degrees C hyperthermia-and/or radiation-induced cell killing was examined in Chinese hamster V-79 cells. At concentrations of more than 10 microM, cell survival decreased exponentially with increased MGBG exposure times. Cell lethality of MGBG (10 microM) was not specific for cell-cycle phases tested from G1/S through G2. When cells were treated with MGBG (10 microM) for 6 hr and then exposed to 42 degrees C hyperthermia with or without a 24-hr interval, cell survival decreased markedly compared with that for 42 degrees C alone. Cells became thermosensitive after MGBG treatment. Cells exposed to MGBG (10 microM) for 6 hr before or after X irradiation were slightly radiosensitive. When X irradiation was combined with MGBG and 42 degrees C hyperthermia, cells became more radiosensitive. From these results, it is suggested that MGBG may change the intracellular state to sensitize cells to the cytotoxic action(s) of hyperthermia.  相似文献   

17.
Strand breaks were detected in the DNA of Ehrlich ascites cells as well as in HeLa S3 cells directly after 1-5 hr at 43-45 degrees C by the use of the unwinding in high salt/hydroxylapatite method. The strand breaks found could not be attributed to the decay of incorporated tritiated thymidine. When the cells were incubated at 37 degrees C after the hyperthermic treatments, the amount of strand breaks formed remained at a constant level. Hyperthermia inhibited the repair of "radiation-induced" strand breaks. The repair curves obtained this way show a heat-dose-dependent decrease of the relative weight of the fast component of repair. Similar repair curves of "radiation-induced" strand breaks could be obtained by mixing heat inactivated and vital control cells prior to irradiation. In the latter case, however, the DNA repair was inhibited to a greater extent for identical levels of cell survival. The possible underlying molecular mechanisms are discussed.  相似文献   

18.
Cerebellar granule cells (CGC) die apoptotically after five days in culture (DIV) at physiological concentrations of potassium (5 mM; K5). When CGC are depolarized (K25) or treated with NMDA (150 M) cell survival is increased. CGC changed from K25 to K5 die after 24–48 h. It is known that heat shock protein (HSP) may protect from cell death. Here, we found that cells in K5 showed an increase in HSP-70 levels after 3 DIV. Similarly, in cells changed from K25 to K5, HSP-70 levels were increased after 6 h. Neither NMDA nor K25 treatment affected HSP-70 levels from 2–7 DIV. Ethanol or thermal stress induced HSP-70, but cell survival was not affected in K5 medium. These results suggest that HSP, particularly HSP-70, are not involved in the mechanisms by which NMDA and KCl promote cell survival.  相似文献   

19.
When HeLa S3 cells were subjected to 45 degrees C hyperthermia, DNA lesions were detected by the use of the alkaline unwinding/hydroxylapatite method. The number of lesions formed was not affected when the cells were made thermotolerant by either an acute (15 min 44 degrees C + 5 h 37 degrees C) or a chronic (5 h 42 degrees C) pretreatment before 45 degrees C hyperthermia. The presence of 10 mM procaine (heat sensitizer) or 0.5 M erythritol (heat protector) during hyperthermia also had no effect on the rate of formation of heat-induced alkali labile DNA lesions. These observations do not support a concept where DNA lesions are considered to be the ultimate cause of hyperthermic cell killing. Both drugs, however, influenced the rate of repair of radiation-induced strand breaks when present during preirradiation heat treatment. We conclude that the initial number of heat-induced alkali labile DNA lesions is not directly related to cell survival. It cannot be excluded, however, that differences in posthyperthermic repair of these lesions may lead to a positive correlation between residual DNA damage and survival after the different experimental conditions.  相似文献   

20.
BCNU-induced sister chromatid exchanges are increased by X irradiation   总被引:1,自引:0,他引:1  
We have studied the effect on sister chromatid exchange (SCE) induction in 9L rat brain tumor cells caused by combination treatment with BCNU and X rays. Over the dose and concentration ranges used in these experiments, BCNU induced relatively large numbers of SCEs, while X rays induced few SCEs. When cells were X irradiated immediately after BCNU treatment, the number of SCEs induced was greater than the number of SCEs expected by adding the number of SCEs induced by each agent alone; the number of SCEs induced as a result of this BCNU-X-ray interaction increased as the concentration of BCNU and/or dose of X rays increased. When the addition of bromodeoxyuridine was delayed from 0 to 16 hr after BCNU treatment, the number of SCEs induced declined to control levels by 16 hr. If X irradiation was delayed for up to 16 hr after BCNU treatment the same pattern of decrease was observed; the number of SCEs induced at each time point, however, was greater than that induced by BCNU and X rays alone. X irradiation from 0-16 hr before BCNU treatment produced the same number of SCEs as that produced by BCNU alone. Thus the SCE assay is capable of detecting a drug-X-ray interaction in mammalian cells and provides a sensitive means of studying the sequencing and timing that leads to the interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号