首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Haas NB  Grabowski JM  North J  Moran JV  Kazazian HH  Burch JB 《Gene》2001,265(1-2):175-183
CR1 elements and CR1-related (CR1-like) elements are a novel family of non-LTR retrotransposons that are found in all vertebrates (reptilia, amphibia, fish, and mammals), whereas more distantly related elements are found in several invertebrate species. CR1 elements have several features that distinguish them from other non-LTR retrotransposons. Most notably, their 3' termini lack a polyadenylic acid (poly A) tail and instead contain 2-4 copies of a unique 8 bp repeat. CR1 elements are present at approximately 100,000 copies in the chicken genome. The vast majority of these elements are severely 5' truncated and mutated; however, six subfamilies (CR1-A through CR1-F) are resolved by sequence comparisons. One of these subfamilies (i.e. CR1-B) previously was analyzed in detail. In the present study, we identified several full-length elements from the CR1-F subfamily. Although regions within the open reading frames and 3' untranslated regions of CR1-F and CR1-B elements are well conserved, their respective 5' untranslated regions are unrelated. Thus, our results suggest that new CR1 subfamilies form when elements with intact open reading frames acquire new 5' UTRs, which could, in principle, function as promoters.  相似文献   

10.
11.
12.
13.
Platt RN  Ray DA 《Gene》2012,500(1):47-53
The typical mammalian genome is dominated by two types of transposable elements (TEs), the autonomous and non-autonomous non-LTR retrotransposons, i.e. LINEs and SINEs, and with few exceptions there is a sole active LINE family (L1). During an ongoing investigation of TEs in rodents we determined that overall transposon activity has been steadily declining in Spermophilus tridecemlineatus. More specifically, the typically ubiquitous L1 activity of mammals has decreased drastically within the last 26MY. Indeed, only three L1 insertions with intact ORF1 sequences were readily identifiable and no intact ORF2 sequences were identified. The last L1 and SINE insertions date to ~5.3MYA and 4MYA, respectively. Based on our inability to computationally identify recently inserted L1 elements we suggest that S. tridecemlineatus is experiencing a quiescence or extinction of non-LTR retrotransposon activity. Such a finding represents only the fourth instance of a loss of non-LTR retrotransposon activity identified in mammals and, as such, represents an important additional data point to guide our understanding of LINE dynamics in eutherians.  相似文献   

14.
15.
16.
17.
18.
19.
The Tx1L elements constitute a family of site-specific non-LTR retrotransposons found in the genome of the frog Xenopus laevis . The elements have two open reading frames (ORFs) with homology to proteins of retroviruses and other retroelements. This study demonstrates an expected activity of one of the element-encoded proteins. The RNA binding properties of ORF1p, the product of the first ORF of Tx1L, were examined after expression from RNA injected into Xenopus oocytes. Using sucrose gradient sedimentation and non-denaturing gel electrophoresis, we show that ORF1p associates with RNA in cytoplasmic ribonucleoprotein (RNP) particles. Discrete RNPs are formed with well-defined mobilities. The ORF1p RNPs are distinct from endogenous RNPs that contain stored oocyte mRNAs and two specific endogenous mRNAs do not become associated with ORF1p. ORF1p appears to be capable of associating with its own mRNA and with other injected RNAs, independent of specific recognition sequences. Although nuclear localization of ORF1p was anticipated, based both on the supposed mechanism of transposition and on the presence of a potential nuclear localization signal, no significant fraction of the protein was found in the oocyte nucleus. Nonetheless, the RNA binding capability of ORF1p is consistent with the proposed model for transposition of non-LTR retrotransposons.  相似文献   

20.
Malik HS  Eickbush TH 《Genetics》2000,154(1):193-203
Phylogenetic analyses of non-LTR retrotransposons suggest that all elements can be divided into 11 lineages. The 3 oldest lineages show target site specificity for unique locations in the genome and encode an endonuclease with an active site similar to certain restriction enzymes. The more "modern" non-LTR lineages possess an apurinic endonuclease-like domain and generally lack site specificity. The genome sequence of Caenorhabditis elegans reveals the presence of a non-LTR retrotransposon that resembles the older elements, in that it contains a single open reading frame with a carboxyl-terminal restriction-like endonuclease domain. Located near the N-terminal end of the ORF is a cysteine protease domain not found in any other non-LTR element. The N2 strain of C. elegans appears to contain only one full-length and several 5' truncated copies of this element. The elements specifically insert in the Spliced leader-1 genes; hence the element has been named NeSL-1 (Nematode Spliced Leader-1). Phylogenetic analysis confirms that NeSL-1 branches very early in the non-LTR lineage and that it represents a 12th lineage of non-LTR elements. The target specificity of NeSL-1 for the spliced leader exons and the similarity of its structure to that of R2 elements leads to a simple model for its expression and retrotransposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号