首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The effects of NaCl on the kinetic properties of desalted phosphoenolpyruvate carboxylase (PEP carboxylase, EC 4.1.1.31) from two halophytes, Suaeda monoica Forssk. ex. J.F. Gmel and Chloris gayana Kunth. were investigated. The tolerance of PEP carboxylase to NaCl in the reaction medium depends on the enzyme pre-conditioning as well as on the concentration of its substrate PEP in the assay medium. Addition of PEP to the extraction and the storage medium, stabilizes the enzyme. Such a pre-treated enzyme is inhibited by NaCl in the presence of low concentrations of PEP in the assay medium but is activated by NaCl in the presence of PEP at concentrations above 1.0 m M . NaCl modifies the nH value, K' and Vmax, and seems to act as an allosteric effector.  相似文献   

2.
Inhibition of phosphoenolpyruvate carboxylase (EC 4.1.1 31) from the C4-halophyte Salsola soda L. by NaCI is compeutive to phosphoenolpyruvate (PEP). Physiological (betaine, glycerol) and synthetic (polyethylene glycol) osmotica and the allosteric activator glucose-6-phosphate (G6P) increase the apparent affinity of the enzyme for PEP and also alleviate the inhibition by NaCl. Physiological osmotica that either increase the Km(PEP) (proline) or are neutral (sorbitol), do not protect the enzyme against NaCI attack. In the absence of cosolutes and, G6P, the enzyme is self-protected when its concentration in the assay medium is increased to more physiological values. In addition, the amount of betaine needed for complete protection is inversely related to native protein concentration in the assay. Exogenous protein (bovine serum albumin or bovine skin gelatin) have no effect on either Km(PEP), or extent of NaCl inhibition. These results can be better explained with the exclusion volume theory and the inferred assumption that both cosolutes and high protein concentration strengthen intrinsic aggregation properties of enzymes. It is suggested that the extremely high phosphoenolpyruvate carboxylase concentration in the cytoplasm and the accumulation of compatible solutes in response to water stress fully protect the enzyme in vivo against the chaotropic effects of NaCI.  相似文献   

3.
Phosphoenolpyruvate carboxylase (PEPC) and pyruvate orthophosphate dikinase (PPDK) cold inactivation was studied in leaf extracts from Atriplex halimus L. Both enzyme activities gradually reduced as the temperature and the total soluble protein decreased. Mg2+ at a concentration of 10 mM stabilized PEPC and PPDK activities against cold inactivation. At low Mg2+ concentration (4 mM), PEPC was strongly protected by phosphoenolpyruvate, glucose-6-phosphate, and, partially, byL-malate, while PPDK was protected by PEP, but not by its substrate, pyruvate. High concentrations of compatible solutes (glycerol, betaine, proline, sorbitol and trehalose) proved to be good protectants for both enzyme activities against cold inactivation. When illuminated leaves were exposed to low temperature, PPDK was partially inactivated, while the activity of PEPC was not altered.  相似文献   

4.
Phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) was purified 56-fold from Vicia faba root nodules to a specific activity of 24.8 units mg-1 protein. Native molecular mass was determined to be 443 kDa by gel permeation chromatography, whereas a molecular mass of 113 kDa was obtained for the subunit by means of SDS-PAGE, indicating that the enzyme is a homotetramer. One peak of activity was obtained by ion-exchange chromatography or gel filtration, and thus there was no evidence of isoenzymes. The effect of pH on PEPC activity was studied, the pH optimum found at 8.25. The effect of substrate (phosphoenolpyruvate, PEP) on the enzyme activity was studied at five different pH values from 6.5 to 9.5. The Km(PEP) at pH 8.25 proved to be 0.064 m M. Inhibition by malate or activation by glucose-6-phosphate was dependent on the pH of the reaction mixture. Malate behaved as a non-competitive mixed-type inhibitor with a Ki of 0.76 m M , a Ki(s) of 1.15 m M and a Ki(i) of 0.72 m M , at pH 7.0 while at pH 8.25 Ki was about 140 m M. Activation by glucose-6-P was 70% with 4 m M PEP at pH 7, whereas no effect was found at pH 8.25. Experiments with mixed effectors at pH 7 and 1 m M PEP, showed that glucose-6-P can reverse the inhibition caused by L-malate on the PEPC activity.  相似文献   

5.
Maize (Zea mays L.) leaf phosphoenopyruvate (PEP) carboxylase activity at subsaturating levels of PEP was increased by the inclusion of glycerol (20%, v/v) in the assay medium. The extent of activation was dependent on H+ concentration, being more marked at pH 7 (with activities 100% higher than in aqueous medium) than at pH 8 (20% activation). The determination of the substrate concentration necessary to achieve half-maximal enzyme activity (S0.5) (PEP) and maximal velocity (V) between pH 6.9 and 8.2 showed a uniform decrease in S0.5 in the presence of glycerol over the entire pH range tested, and only a slight decrease in V at pH values near 8. Including NaCl (100 millimolar) in the glycerol containing assay medium resulted in additional activation, mainly due to an increase in V over the entire range of pH. Glucose-6-phosphate (5 millimolar) activated both the native and the glycerol-treated enzyme almost to the same extent, at pH 7 and 1 millimolar PEP. Inhibition by 5 millimolar malate at pH 7 and subsaturating PEP was considerably lower in the presence of glycerol than in an aqueous medium (8% against 25%, respectively). Size-exclusion high performance liquid chromatography in aqueous buffer revealed the existence of an equilibrium between the tetrameric and dimeric enzyme forms, which is displaced to the tetramer as the pH was increased from 7 to 8. In the presence of glycerol, only the 400 kilodalton tetrameric form was observed at pH 7 or 8. However, dissociation into dimers by NaCl could not be prevented by the polyol. We conclude that the control of the aggregation state by the metabolic status of the cell could be one regulatory mechanism of PEP carboxylase.  相似文献   

6.
The compatibility of osmotica in cyanobacteria   总被引:3,自引:1,他引:2  
Abstract. The solutes accumulated by cyanobacteria in response to hyper-osmotic stress include Na+, K+, sucrose, trehalose, glucosyl-glycerol, glyeine betaine and glutamate betaine. The compatibility of several of these solutes with glutamine synthetase activity has been examined using cell-free extracts from a range of freshwater, marine and halotolerant cyanobacteria. All of the solutes tested were compatible with (i.e. non-inhibitory to) enzymic activity at physiological concentrations and the results demonstrate a rank order of compatibility which correlates with the concentrations at which the organic solutes occur in cyanobacteria, i.e. glycine betaine > polyol-derivatives > disaccharides and with the upper salinity limit for growth. The protection against inhibition by NaCl (halo-protection) afforded by these solutes to enzymic activity was also examined. Only glycine betaine was found to exert a significant halo-protective effect and this may be explained by differences in the mechanism of compatible solute function between small charged molecules and sugars/polyols.  相似文献   

7.
Activities of phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) were measured in leaf extracts of field grown Amaranthus paniculatus L. (C4) during a natural diurnal irradiance and temperature pattern. Enzyme assays were run at both fixed (30°C) and the corresponding leaf temperature at the time of harvest. Light activation of PEP carboxylase (PEPCase) at fixed assay temperatures was expressed as a decrease in S0–5 (PEP) after a threshold (> 330 μmol m–2 s–1) photon fluence rate was surpassed at noon. Earlier in the morning, increase in apparent enzyme affinity for PEP was observed when the assay was run at leaf temperature, indicating a physiologically meaningfull effect of temperature on S0.5 (PEP). The 3.3-fold increase in PEPCase activity at low PEP and fixed assay temperature between the minimal and maximal irradiance and temperature hours of the day, became 12.8-, 11.5- and 7.4-fold when assays were run at the corresponding leaf temperature during three diurnal cycles with respective temperature differences (max minus min) of 9.0, 8.3 and 7.4°C. The extent of malate inhibition was the same for both day and night forms of PEPCase assayed at 35°C, but increased considerably with night enzyme at 25°C. The results indicate that light increases the apparent affinity of PEPCase for PEP and that at lower temperatures malate becomes more inhibitory. Pyruvate orthophosphate dikinase activity started to increase immediately after sunrise and the 10-fold increase at fixed temperature became 14.8-, 14.2- and 13.1-fold when assays were run at the above leaf temperatures. This indicates that the light effect predominates with pyruvate, orthophosphate dikinase, while with phosphoenolpyravate carboxylase, light and temperature co-operate to increase the day enzyme activities.  相似文献   

8.
Activity and properties of sugar beet ( Beta vulgaris var. Polyrave) leaf ribulose-1,5-bisphosphate (RuBP) carboxylase were investigated following the exposure of plants to NaCl in the range of 45 to 270 m M for 7 days. An enhancement in RuBP carboxylase activity was found both in crude extracts and in purified preparations following plant exposure to 180 m M NaCl. Kinetic properties of the enzyme were significantly affected by salinity as determined by a 4.5 fold increase in Km [HCO-3] and Km [CO2], and a Vmax increase of 50%. Data based on polyacrylamide-gel-electrophoresis suggest that the molecular weight of the small subunit of RuBP carboxylase was reduced from 15,500 to 12,500 in plants grown under salinity. The large subunit was much less affected and no change was found in the whole enzyme. The enzyme isolated from plants exposed to salinity contained about 50% fewer titratable SH groups as compared with the control. The results indicate that in this plant, mild salt concentrations induced conformational changes in RuBP carboxylase which may be responsible for its tolerance to semi-salinity.  相似文献   

9.
Penicillium fellutanum is osmotolerant and xerotolerant when cultured in a low-phosphate medium containing 3 M NaCl. Glycerol and erythritol accumulated in cultures with NaCl concentrations up to 2 M; glycerol was the only detectable polyol in cultures containing 3 M NaCl. In cultures with 3 M NaCl, the intracellular levels of glycine betaine and choline-O-sulfate were 22- and 2.6-fold greater (70 and 46 mM), respectively, than those of cultures without added NaCl. The levels of glycine betaine and glycerol decreased in mycelia transferred from a medium containing 3 M NaCl into a fresh medium without added NaCl. NaCl at 3 M inhibited mycelial mass accumulation; this inhibition was partially corrected by supplementation of cultures with glycine betaine (2 mM) or choline-O-sulfate (10 mM). The presence of exogenous choline chloride (2 mM) in plate cultures protected the cells from stress from 3 M NaCl. The data suggest that glycine betaine and choline-O-sulfate are secondary osmoprotectants which are effective at the point that the cell is incapable of synthesizing more glycerol.  相似文献   

10.
Abstract The addition of 1 mM glycine betaine to the growth medium of Chromatium sp. NCIMB 8379 relieved growth inhibition caused by exposure to supra-optimal Nad concentrations. Intracellular glycine betaine concentrations were dependent upon the NaCl concentration of the growth medium up to 3 M exogenous Nad. Kinetic data for the accumulation of [methyl-14C]-glycine betaine demonstrated that Chromatium sp. NCIMB 8379 possesses a constitutively expressed active transport system for glycine betaine. The transport system was saturable with respect to glycine betaine concentration and exhibited typical Michaelis-Menten type kinetics: K m= 24 μ M, V max= 306 nmol min−1 mg protein−1 at an external NaCl concentration of 1 M. The rate of glycine betaine transport decreased progressively with increasing growth medium NaCl concentration. This transport system may represent an adaptive response to growth in high osmolarity environments in this halotolerant isolate, allowing accumulation of glycine betaine from the external cell environment or recycling synthesised glycine betaine which has passively diffused from the cell.  相似文献   

11.
Abstract A glycerol:NADP+ 2-oxidoreductase was purified to homogeneity from Phycomyces blakesleeanus sporangiospores. The enzyme had an M r of 34 000–39 000 and consisted of a single polypeptide. It had a pH optimum between 6–6.5 and a K m of 3.9 mM for dihydroxyacetone. The reverse reaction had a pH optimum of 9.4 and a K m for glycerol of more than 2 M. The enzyme was completely specific for NADPH ( K m= 0.01 mM) or NADP+ ( K m= 0.17 mM) and greatly preferred dihydroxyacetone over glyceraldehyde as substrate. Besides glycerol, l -arabitol and mesoerythritol were also oxidized by the enzyme. It was inhibited by ionic strengths in excess of 100 mM and is probably involved in the synthesis of glycerol during early spore germination.  相似文献   

12.
Among 30 plant species examined, the PPi-phosphofructokinase (EC 2.7.1.90) was found in leaves of 21 plants. Some of the plants exhibit no activity of ATP-dependent phosphofructokinase but display only activity of PPi-phosphofructokinase. A partly purified preparation of PPi-phosphofructokinase with specific activity of 8.4 Hmol (mg protein)−1 min−1 was obtained from Sanseviera trifasciata leaves. The enzyme is restricted to the cytoplasm, it exhibits pronounced substrate specifity, requires Mg2+ ions, is inhibited by AMP, PEP, methylenediphosphonate and stabilized by mercaptoethanol. At pH 7.8 with 1.5 m M MgCl2 the following KM values were observed: pyrophosphate, 0.58 m M ; fructose 6-phosphate, 0.8 m M . The KM values for substrates of reverse reaction (pH 7.3; 2 m M MgCl2) are of the same order of magnitude: 0.83 m M for fructose 1,6-diphosphate, and 0.14 m M for orthophosphate. The molecular weight of the studied enzyme is about 125 000 dalton as estimated by gel filtration.  相似文献   

13.
Dionisio-Sese  M.L.  Shono  M.  Tobita  S. 《Photosynthetica》2000,36(4):557-563
Activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) in heated crude extracts from seedlings of the rice cultivars Hitomebore and IR28 was investigated in the presence of proline and betaine. Both solutes retarded the inactivation of the enzyme extracted from the leaves of both cultivars at temperature-stress from 35 to 45 °C. At 50 °C, however, betaine was effective in both cultivars. Stabilization of RuBPCO activity was independent of the added solute from 1 to 2 M concentration.  相似文献   

14.
A tomato ( Lycopersicon esculentum Mill. cv. Pera) callus culture tolerant to NaCl was obtained by successive subcultures of NaCl-sensitive calli in medium supplemented with 50 m M NaCl. NaCl-tolerant calli grew better than NaCl-sensitive calli in media supplemented with 50 and 100 m M NaCl. Analysis of callus ion content showed a strong increase in Na+ and Cl both in NaCl-tolerant and -sensitive calli grown in media containing NaCl for one subculture. Cells from NaCl-tolerant calli showed a higher H+ extrusion activity than those from NaCl-sensitive calli grown for one subculture in the presence of NaCl. The inhibition of H+ extrusion by NaCl-sensitive cells was correlated with an inhibition of microsomal vanadate-sensitive H+-ATPase (EC 3.6.1.35) and ATP-dependent H+ transport, while the stimulation of H+ extrusion by cells tolerant to 50 m M NaCl was correlated with an increase in plasma membrane ATP-dependent H+ transport. The increase of ATP-dependent H+ extrusion in plasma membranes isolated from 50 m M NaCl-tolerant calli was not a result of stimulation of a vanadate-sensitive ATP hydrolytic activity or an increase in passive permeability to H+. Relative to NaCl-sensitive calli, plasma membrane H+-ATPase from calli tolerant to 50 m M NaCl showed a lower Km for Mg2+-ATP. Our results indicate that tolerance of tomato calli to 50 m M NaCl increases the affinity of plasma membrane H+-ATPase for the substrate ATP and stimulates the H+-pumping activity of this enzyme without modifying its phosphohydrolytic activity.  相似文献   

15.
Abstract The effect of osmotic stress, given as decreased water activity (aw), on growth and the accumulation of potassium and the compatible solute betaine by Pseudomonas putida S12 was investigated. Reduced aw was imposed by addition of sodium chloride, sucrose, glycerol or polyethylene glycol to the growth medium. Accumulation of potassium and betaine was established when sodium chloride and sucrose were used to cause osmotic stress. No accumulation of these solutes was found in the presence of glycerol. Addition of polyethylene glycol to the medium strongly decreased the growth rate in comparison with the other osmolytes tested at the corresponding aw. Although polyethylene glycol did decrease the aw, neither potassium nor betaine was accumulated by the cells.  相似文献   

16.
Abstract. In the natural habitat plants of Mesembryanthemum crystallinum are induced to perform Crassulacean acid metabolism (CAM) after 3 months, and reproductive growth begins after 5 months (Winter, Liittge & Winter, 1978, Oecologia (Berlin), 34, 225-237). The life cycle of M. crystallinum and the extent of growth required prior to induction of enzymes of Crassulacean acid metabolism (CAM) are dramatically shortened by growing seedlings with a long photoperiod (3=16h/8h light/dark). Reproductive growth begins as soon as five weeks after germination when plants are grown in continuous light (under 600μmol quanta m−2 s−1, 30°C). In plants grown under well-watered conditions, the activities of PEP carboxylase and NADP-malic enzyme begin increasing markedly 2 weeks after germination, with plants grown under longer photoperiods having higher enzyme activities. After 3 weeks of growth, leaves accumulated a large amount of malate, but the microequivalents of malate present were up to nine times greater than the total titratable acidities. Interestingly, plants from a 24h/0h or a 20h/4h photo-period showed no diurnal fluctuation of malate, but did produce malate in the light as a major photosynthetic end product. That is, under these environmental conditions, principal enzymes of CAM can be induced without the plants performing CAM. However, plants grown in a 16h/8h photoperiod did exhibit nocturnal accumulation of malate after 3 weeks of growth. In plants of all three growth conditions, the activities of NADP-malic enzyme and PEP carboxylase were further increased two- to live-fold by irrigating 3-week-old-plants with 350mol m−3 NaCl. Such early enhancement of these enzymes by salt and the shortened life cycle may be due to an accelerated development under the long photoperiods.  相似文献   

17.
The presence of betaine, a quaternary ammonium compound, at a concentration (0.5 molar) reported to accumulate inside Aphanothece halophytica in response to increasing external salinity, slightly promoted ribulose-1,5-bisphosphate (RuBP) carboxylase activity. KCl at 0.25 molar inhibited RuBP carboxylase about 55%. Betaine relieved the inhibition by 0.25 m KCl and the original uninhibited activity was restored at 1 m betaine. Other osmoregulatory solutes such as sucrose and glycerol also reduced KCl inhibition, though to a lesser extent than betaine. Proline had no effect. The protective effect of betaine against KCl inhibition of RuBP carboxylase activity was also observed in other cyanobacteria, i.e. Synechococcus ACMM 323, Plectonema boryanum, and Anabaena variabilis, and in the photosynthetic bacterium Rhodospirillum rubrum but not in Chromatium vinosum. Apart from betaine, other quaternary ammonium compounds, i.e. sarcosine and trimethylamine-N-oxide (TMAO), but not glycine, also protected the enzyme against KCl inhibition and the effectiveness of such compounds appeared to correlate with the extent of N-methylation. Heat and cold inactivation of the enzyme could be protected by either betaine or KCl. However, best protection occurred when both betaine and KCl were present together. The Km (CO2) was not altered by either betaine or KCl, nor when they were present together. However, the Km (RuBP) was increased about 5-fold by KCl, but was unaffected by betaine. The presence of betaine together with KCl lowered the KCl-raised Km (RuBP) by about half. The extent of the dissociation of the enzyme molecule under the condition of low ionic strength was reduced by either betaine or KCl alone and more so when they were present together. Glycine, sarcosine, and TMAO were more effective than betaine or KCl in lowering the extent of the dissociation of the enzyme molecule.  相似文献   

18.
Activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) in heated crude extracts from seedlings of the rice cultivars Hitomebore and IR28 was investigated in the presence of proline and betaine. Both solutes retarded the inactivation of the enzyme extracted from the leaves of both cultivars at temperature-stress from 35 to 45 °C. At 50 °C, however, betaine was effective in both cultivars. Stabilization of RuBPCO activity was independent of the added solute from 1 to 2 M concentration. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Abstract. Purified and crude phosphoenolpyruvate carboxylase from the CAM plant Kalanchoë daigremontiana Hamet et Perrier ( Bryophyllum diagremontianum ) was assayed at temperatures between 10 and 45° C. The optimum temperature of the enzyme activity changed with substrate availability and effector concentration in the assay. l -malate inhibited the enzyme activity and lowered the optimum temperature. Glucose-6-phosphate raised the optimum temperature to 43°C. K m values for phosphoenolpyruvate increased with assay temperature from 0.12 mol m-3 at 15° C to 0.36 molm−3 at 35° C. Inhibition by malate increased with temperature and acidity of the assay. In the crude enzyme 50% of control activity was inhibited by 1.65 mol m-3 malate at 15° C and by 0.5 mol m-3 at 35° C (at pH 7.0). With purification malate sensitivity was lost ( K i values for malate at least 10 times higher). The shift in optimum temperatures for PEP-carboxylase activity thus results from changes in the kinetic parameters with temperature and allosteric effectors. The often low optimum temperatures for CO2 fixation observed in nature may thus be the result of substrate and effector concentrations in the cytoplasm and the antagonistic effect of temperature on substrate affinity and effector efficiency on phosphoenolpyruvate carboxylase.  相似文献   

20.
Isolated intact mesophyll protoplasts from Zea mays L. were used as an enzyme source for studying properties of phosphoenolpyruvate (PEP) carboxylase (EC 4.1 1 31) just after release from cells into the reaction medium. After the injection of protoplasts into the assay mixture, an initial lag of activity was observed, mainly due to the time necessary for complete disruption of protoplasts by the osmotic shock. The final specific activity obtained was ca 18 μmol mg-1 of liberated protein min-1, a value comparable to that usually achieved after arduous purification. Under the assay conditions employed, the chloroplasts were not disrupted and the retention of their proteins, together with the use of purified mesophyll protoplasts, were obviously the reasons for the high specific activity obtained. The activity and properties of phosphoenolpyruvate carboxylase stored in isolated protoplasts were stable for at least 24 h at 5°C. The main difference between the protoplast-derived and the routinely extracted enzyme was the sensitivity to malate inhibition, which was partially lost in the extracted phosphoenolpyruvate carboxylase; no difference was found in the Km(PEP). The stress imposed by the protoplast isolation procedure diminished the sensitivity of the enzyme to malate inhibition, so that it can be inferred that the real malate sensitivity of pbosphocnolpyruvale carboxylase is even greater and that it is grossly underestimated with routinely extracted enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号