首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two Gram-negative, nonmotile, coccobacilli, SW-3T and SW-100T, were isolated from sea water of the Yellow Sea in Korea. Strains SW-3T and SW-100T contained ubiquinone-9 (Q-9) as the predominant respiratory lipoquinone and C18:1 omega9c and C16:0 as the major fatty acids. The DNA G+C contents of strains SW-3T and SW-100T were 44.1 mol% and 41.9 mol%, respectively. A neighbor-joining tree based on 16S rRNA gene sequences showed that the two isolates fell within the evolutionary radiation enclosed by the genus Acinetobacter. Strains SW-3T and SW-100T exhibited a 16S rRNA gene similarity value of 95.7% and a mean DNA-DNA relatedness level of 9.2%. Strain SW-3T exhibited 16S rRNA gene sequence similarity levels of 93.5-96.9% to the validly described Acinetobacter species and fifteen Acinetobacter genomic species. Strain SW-100T exhibited 16S rRNA gene sequence similarity levels of less than 97.0% to the other Acinetobacter species except Acinetobacter towneri DSM 14962T (98.0% similarity). Strains SW-3T and SW-100T exhibited mean levels of DNA-DNA relatedness of 7.3-16.7% to the type strains of some phylogenetically related Acinetobacter species. On the basis of phenotypic, phylogenetic, and genetic data, strains SW-3T and SW-100T were classified in the genus Acinetobacter as two distinct novel species, for which the names Acinetobacter marinus sp. nov. (type strain SW-3T=KCTC 12259T=DSM 16312T) and Acinetobacter seohaensis sp. nov. (type strain SW-100T=KCTC 12260T=DSM 16313T) are proposed, respectively.  相似文献   

2.
Seven obligately anaerobic, gram-positive, rod-shaped, spore-forming organisms isolated from human sources were characterized using phenotypic and molecular taxonomic methods. Comparative 16S rRNA gene sequencing showed that the strains were genetically highly related to each other (displaying >99% sequence similarity) and represent a previously unknown sub-line within the Clostridium coccoides rRNA group of organisms. Strains of the unidentified bacterium used carbohydrate as fermentable substrates, producing acetic acid and lactic acid as the major products of glucose metabolism. The closest described species to the novel bacterium corresponded to Clostridium clostridioforme, although a 16S rRNA sequence divergence of 3% demonstrated they represent different species. Genomic DNA-DNA pairing studies confirmed the separateness of the unknown species and Clostridium clostridioforme. Based on phenotypic and phylogenetic evidence, it is therefore proposed that the unknown bacterium, be classified as Clostridium bolteae sp. nov. The type strain of Clostridium bolteae is WAL 16351T (= ATCC(T) = BAA-613T, CCUG(T) = 46953T).  相似文献   

3.
The nirS nitrite reductase genes were studied in two strains (strains 27 and 28) isolated from two denitrifying reactors and characterized as Thauera according to their 16S rRNA gene sequences. Strain 28 contains a single nirS sequence, which is related to the nirS of Thauera mechernichensis, and strain 27 contains two nirS sequences; one is similar to the nirS sequence from Thauera mechernichensis (gene 2), but the second one (gene 8) is from a separate clade with nirS from Pseudomonas stutzeri, Azoarcus species, Alcaligenes faecalis, and other Thauera species. Both genes were expressed, but gene 8 was constitutively expressed while gene 2 was positively regulated by nitrate.  相似文献   

4.
Seven obligately anaerobic, Gram-positive, rod-shaped, spore-forming organisms isolated from human faecal specimens were characterized using phenotypic and molecular taxonomic methods. Strains of the unidentified bacterium used carbohydrates as fermentable substrates, producing acetic acid, isovaleric acid and phenylacetic acid (PAA) as the major products of glucose metabolism, and possessed a G +C content of approximately 29.8 mol%. Comparative 16S rRNA gene sequencing showed that the 7 strains were genetically highly related to each other (displaying >99.5% sequence similarity) and represent a previously unknown sub-line within the Clostridium Cluster XI. The closest described species to the novel bacterium is Clostridium glycolicum, although a 16S rRNA sequence divergence of 4% demonstrates that they represent different species. Genomic DNA-DNA pairing studies confirmed the separateness of the unknown species and C. glycolicum (30.6% similarity between the proposed type strain of the novel species, WAL 16138, and C. glycolicum ATCC 14880(T)). Based on morphologic, phenotypic and phylogenetic evidence, it is therefore proposed that the unknown bacterium be classified as C. bartlettii sp. nov. The type strain of C. bartlettii is WAL 16138(T) (= ATCCBAA-827(T)=CCUG48940(T)).  相似文献   

5.
Unidentified lactic acid bacterium (LAB) isolates which had mainly been detected in spoiled, marinated, modified atmosphere packaged (MAP) broiler meat products during two previous studies, were identified and analyzed for their phenotypic properties and the capability to produce biogenic amines. To establish the taxonomic position of these isolates, 16S rRNA gene sequence analysis, numerical analysis of ribopatterns, and DNA-DNA hybridization experiments were done. Unexpectedly for a meat-spoilage-associated LAB, the strains utilized glucose very weakly. According to the API 50 CHL test, arabinose and xylose were the only carbohydrates strongly fermented. None of the six strains tested for production of histamine, tyramine, tryptamine, phenylethylamine, putrescine, and cadaverine were able to produce these main meat-associated biogenic amines in vitro. The polyphasic taxonomy approach showed that these strains represent a new Lactobacillus species. The six isolates sequenced for the 16S rRNA encoding genes shared the highest similarity (95.0 to 96.3%) with the sequence of the Lactobacillus durianis type strain. In the phylogenetic tree, these isolates formed a distinct cluster within the Lactobacillus reuteri group, which also includes L. durianis. Numerical analyses of HindIII-EcoRI ribotypes placed all isolates together in a cluster with seven subclusters well separated from the L. reuteri group reference strains. The DNA-DNA hybridization levels between Lactobacillus sp. nov. isolates varied from 67 to 96%, and low hybridization levels (3 to 15%) were obtained with the L. durianis type strain confirming that these isolates belong to the same species different from L. durianis. The name Lactobacillus oligofermentans sp. nov. is proposed, with strain LMG 22743T (also known as DSM 15707T or AMKR18T) as the type strain.  相似文献   

6.
Eighteen rod-shaped homofermentatives, six heterofermentatives, and a coccal homofermentative lactic acid bacteria were isolated from fermented tea leaves (miang) produced in the northern part of Thailand. The isolates were placed in a monophyletic cluster consisting of Lactobacillus and Pediococcus species. They were divided into seven groups by phenotypic and chemotaxonomic characteristics, DNA-DNA similarity, and 16S rRNA gene sequences. Groups I to VI belonged to Lactobacillus and Group VII to Pediococcus. All of the strains tested produced DL-lactic acid but those in Group IV produced L-lactic acid. The strains tested in Groups I, II and V had meso-diaminopimelic acid in the cell wall. Six strains in Group I were identified as Lactobacillus pantheris; five strains in Group II as Lactobacillus pentosus; and four strains in Group V as Lactobacillus suebicus. Two strains in Group VI showed high DNA-DNA similarity for each other and MCH4-2 was closest to Lactobacillus fermentum CECT 562(T) with 99.5% of 16S rRNA gene sequence similarity. Five strains in Group III are proposed as Lactobacillus thailandensis sp. nov., and MCH5-2(T) (BCC 21235(T)=JCM 13996(T)=NRIC 0671(T)=PCU 272(T)) is the type strain which has 49 mol% G+C of DNA. Two strains in Group IV are proposed as Lactobacillus camelliae sp. nov., and the type strain is MCH3-1(T) (BCC 21233(T)=JCM 13995(T)=NRIC 0672(T)=PCU 273(T)) which has 51.9 mol% G+C of DNA. One strain in Group VII is proposed as Pediococcus siamensis sp. nov., and MCH3-2(T) (BCC 21234(T)=JCM 13997(T)=NRIC 0675(T)=PCU 274(T)) is the type strain which has 42 mol% G+C of DNA.  相似文献   

7.
Two Gram-positive strains isolated from cysts of the brine shrimp Artemia franciscana were subjected to a polyphasic taxonomic analysis. Based on 16S rRNA gene sequence comparison and composition of isoprenoid quinones, peptidoglycan and fatty acids, these organisms are members of the genus Exiguobacterium. Both strains showed 95.9% 16S rRNA gene sequence similarity to one another. The 16S rRNA gene sequences of strain 8N(T) and 9AN(T) were 97.5% and 98.9% similar to those of Exiguobacterium aurantiacum DSM 6208(T) and Exiguobacterium undae DSM 14481(T), respectively. Based on differences in chemotaxonomic and physiological characteristics, results of DNA-DNA hybridization and automated riboprinting, two novel species of the genus Exiguobacterium are proposed, Exiguobacterium mexicanum sp. nov. (type strain 8N(T)=DSM 16483(T)=CIP 108859(T)) and Exiguobacterium artemiae sp. nov. (type strain 9AN(T)=DSM 16484(T)=CIP 108858(T)).  相似文献   

8.
In this study, we tried to isolate legionellae from nine Legionella DNA-positive soil samples collected from four different sites contaminated with industrial wastes in Japan. Using culture methods with or without Acanthamoeba culbertsoni, a total of 22 isolates of legionellae were obtained from five of the nine samples. Identification of species and/or serogroups (SGs), performed by DNA-DNA hybridization and agglutination tests, revealed that the 22 isolates consisted of ten isolates of Legionella pneumophila including five SGs, five Legionella feeleii, and one each of Legionella dumoffii, Legionella longbeachae, and Legionella jamestownensis. The species of the remaining four isolates (strains OA1-1, -2, -3, and -4) could not be determined, suggesting that these isolates may belong to new species. The 16S rDNA sequences (1476-1488bp) of the isolates had similarities of less than 95.0% compared to other Legionella species. A phylogenetic tree created by analysis of the 16S rRNA (1270bp) genes demonstrated that the isolates formed distinct clusters within the genus Legionella. Quantitative DNA-DNA hybridization tests on the OA1 strains indicated that OA1-1 should be categorized as a new taxon, whereas OA1-2, -3, and -4 were also genetically independent in another taxon. Based on the evaluated phenotypic and phylogenetic characteristics, it is proposed that one of these isolates from the soils, OA1-1, be classified as a novel species, Legionella impletisoli sp. nov.; the type strain is strain OA1-1(T) (=JCM 13919(T)=DSMZ 18493(T)). The remaining three isolates belong to another novel Legionella species, Legionella yabuuchiae sp. nov.; the type strain is strain OA1-2(T) (=JCM 14148(T)=DSMZ 18492(T)). This is the first report on the isolation of legionellae from soils contaminated with industrial wastes.  相似文献   

9.
Seven Pseudomonas fulva strains obtained from culture collections were taxonomically studied. The seven strains were separated into three clusters (Clusters I to III) on the basis of 16S rRNA gene sequences, and located phylogenetically in the genus Pseudomonas sensu stricto. Further, the strains were classified into 4 groups (Groups I to IV) on the basis of DNA-DNA similarity. As a result, Cluster I was split into Groups I and II. Group I included the type strain of P. fulva and two strains, and levels of DNA-DNA similarity ranged from 88 to 100% among the strains. Group II contained two strains, and the level between the two strains ranged from 91 to 100%. Group III consisted of one strain. Group IV included one strain, and this strain showed a high level of DNA-DNA similarity with the type strain of Pseudomonas straminea NRIC 0164(T). Clusters II and III corresponded to Groups III and IV, respectively. The four groups were separated from one another and from related Pseudomonas species at the level from 3 to 45% of DNA-DNA similarity. The strains of Groups I, II, and III had ubiquinone 9 as the major quinone. According to numerical analysis by the use of 133 phenotypic characteristics, the seven P. fulva strains were split into four phenons (Phenons I to IV). The groups by DNA-DNA similarity corresponded well with the phenons produced by numerical taxonomy, and differential characteristics were recognized. Consequently, Group I was regarded as P. fulva because the type strain (NRIC 0180(T)) of this species was included in this group. Strains in Group II were identified as a new species, Pseudomonas parafulva sp. nov., and the type strain is AJ 2129 (=IFO 16636=JCM 11244=NRIC 0501). NRIC 0181 in Group III was identified as a new species, Pseudomonas cremoricolorata sp. nov., and the type strain is NRIC 0181 (=IFO 16634=JCM 11246). NRIC 0182 in Group IV was identified as P. straminea on the basis of the high level of DNA-DNA similarity with the type strain of this species.  相似文献   

10.
A bacterium (strain G5G6) that grows anaerobically with toluene was isolated from a polluted aquifer (Banisveld, the Netherlands). The bacterium uses Fe(III), Mn(IV) and nitrate as terminal electron acceptors for growth on aromatic compounds. The bacterium does not grow on sugars, lactate or acetate. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain G5G6 belonged to the Betaproteobacteria . Its closest, but only distantly related, cultured relative is Sterolibacterium denitrificans Chol-1ST (94.6% similarity of the 16S rRNA genes), a cholesterol-oxidizing, denitrifying bacterium. Strain G5G6 possesses the benzylsuccinate synthase A ( bssA ) gene encoding the α-subunit of Bss, which catalyzes the first step in anaerobic toluene degradation. The deduced BssA amino acid sequence is closely related to those of Azoarcus and Thauera species, which also belong to the Betaproteobacteria . Strain G5G6 is the first toluene-degrading, iron-reducing bacterium that does not belong to the Geobacteraceae within the Deltaproteobacteria . Based on phylogenetic and physiological comparison, strain G5G6 could not be assigned to a described species. Therefore, strain G5G6 (DSMZ 19032T=JCM 14632T) is a novel taxon of the Betaproteobacteria . We propose the name Georgfuchsia toluolica gen. nov., sp. nov.  相似文献   

11.
Unidentified lactic acid bacterium (LAB) isolates which had mainly been detected in spoiled, marinated, modified atmosphere packaged (MAP) broiler meat products during two previous studies, were identified and analyzed for their phenotypic properties and the capability to produce biogenic amines. To establish the taxonomic position of these isolates, 16S rRNA gene sequence analysis, numerical analysis of ribopatterns, and DNA-DNA hybridization experiments were done. Unexpectedly for a meat-spoilage-associated LAB, the strains utilized glucose very weakly. According to the API 50 CHL test, arabinose and xylose were the only carbohydrates strongly fermented. None of the six strains tested for production of histamine, tyramine, tryptamine, phenylethylamine, putrescine, and cadaverine were able to produce these main meat-associated biogenic amines in vitro. The polyphasic taxonomy approach showed that these strains represent a new Lactobacillus species. The six isolates sequenced for the 16S rRNA encoding genes shared the highest similarity (95.0 to 96.3%) with the sequence of the Lactobacillus durianis type strain. In the phylogenetic tree, these isolates formed a distinct cluster within the Lactobacillus reuteri group, which also includes L. durianis. Numerical analyses of HindIII-EcoRI ribotypes placed all isolates together in a cluster with seven subclusters well separated from the L. reuteri group reference strains. The DNA-DNA hybridization levels between Lactobacillus sp. nov. isolates varied from 67 to 96%, and low hybridization levels (3 to 15%) were obtained with the L. durianis type strain confirming that these isolates belong to the same species different from L. durianis. The name Lactobacillus oligofermentans sp. nov. is proposed, with strain LMG 22743T (also known as DSM 15707T or AMKR18T) as the type strain.  相似文献   

12.
Five strains of bifidobacteria were isolated from faeces of a common marmoset (Callithrix jacchus) and a red-handed tamarin (Saguinus midas). The five isolates clustered inside the phylogenetic group of the genus Bifidobacterium but did not show high sequence similarities between the isolates and to known species in the genus by phylogenetic analysis based on 16S rRNA gene sequences. Sequence analyses of dnaJ1 and hsp60 also indicated their independent phylogenetic positions to each other in the Bifidobacterium cluster. DNA G+C contents of the species ranged from 57.3 to 66.3 mol%, which is within the values recorded for Bifidobacterium species. All isolates showed fructose-6-phosphate phosphoketolase activity. Based on the data provided, the five isolates represent five novel species, for which the names Bifidobacterium reuteri sp. nov. (type strain: AFB22-1(T) = JCM 17295(T) = DSM 23975(T)), Bifidobacterium callitrichos sp. nov. (type strain: AFB22-5(T) = JCM 17296(T) = DSM 23973(T)), Bifidobacterium saguini sp. nov. (type strain: AFB23-1(T) = JCM 17297(T) = DSM 23967(T)), Bifidobacterium stellenboschense sp. nov. (type strain: AFB23-3(T) = JCM 17298(T) = DSM 23968(T)) and Bifidobacterium biavatii sp. nov. (type strain: AFB23-4(T) = JCM 17299(T) = DSM 23969(T)) are proposed.  相似文献   

13.
Two Pseudomonas-like yellow-orange-pigmented non-fluorescent denitrifying strains KMM 235 and KMM 1447T were isolated from marine ascidian specimens and investigated by a polyphasic approach to clarify their taxonomic status. On the basis of 16S rDNA gene sequence data the new isolates clustered with the Pseudomonas stutzeri species group with sequence similarities of >98%. The results of DNA-DNA hybridization and biochemical characterization showed genetic and phenotypic distinction between strains KMM 235 and KMM 1447T and from the other validly described Pseudomonas species. Strain KMM 235 was found to be closely related to the type strain of Pseudomonas stutzeri in their phenotypic and genetic characteristics and represented, probably, a new P. stutzeri genomovar. It is proposed that strain KMM 1447T be classified as a new species of the genus Pseudomonas, Pseudomonas xanthomarina sp. nov., with the type strain KMM 1447T (=JCM 12468T=NRIC 0617T=CCUG 46543T).  相似文献   

14.
Two new species of aerobic, gram-negative, peritrichously flagellated or nonmotile marine bacteria usually forming star-shaped aggregates were isolated from northeastern Atlantic Ocean bottom sediments. These organisms resembled eight star-shaped-aggregate-forming bacterial species from the Baltic Sea originally ascribed to the genus Agrobacterium but not included on the Approved Lists of Bacterial Names because of their questionable relationships to true agrobacteria. These two sets of star-shaped-aggregate-forming bacteria were compared by means of phenotypic data, DNA base compositions, DNA-DNA relatedness, and one-dimensional electrophoretic analysis of low-molecular-weight RNAs (5S rRNA and tRNA). According to the results of genotyping, the northeastern Atlantic Ocean isolates and three of the Baltic Sea species formed a group of closely related bacteria that could not be excluded from the genus Agrobacterium with certainty. Until more genotypic data are available, these five marine species are regarded as a distinct subdivision of the genus Agrobacterium consisting of Agrobacterium atlanticum sp. nov. (type strain, 1480T = DSM 5823T), A. meteori sp. nov. (type strain, 1513T = DSM 5824T), A. ferrugineum sp. nov. nom. rev. emend. (type strain, ATCC 25652T), A. gelatinovorum sp. nov. nom. rev. emend. (type strain, ATCC 25655T), and A. stellulatum sp. nov. nom. rev. emend. (type strain, ATCC 15215T). "A. aggregatum" proved to be a later subjective synonym of A. stellulatum, which had priority. The remaining four Baltic Sea species, "A. agile," "A. kieliense," "A. luteum," and "A. sanguineum," could not be placed in the new subdivision of Agrobacterium.  相似文献   

15.
Forty-six strains of acetic acid bacteria newly isolated from flowers, fruits, and fermented foods collected in Indonesia were taxonomically studied. They were Gram-negative rods, produced acetic acid from ethanol, oxidized acetate and lactate to CO(2) and H(2)O, and had Q-9 as the major ubiquinone system. On the basis of DNA-DNA similarity, all strains studied, including type strains and reference strains of the genus Acetobacter, were separated into eleven groups (Groups I to XI). Of the 46 isolates, two isolates were included in Group II and identified as Acetobacter pasteurianus, five in Group IV as A. orleanensis, 16 in Group V as A. lovaniensis, five in Group VII as A. indonesiensis, and three in Group VIII as A. tropicalis. The remaining 15 isolates constituted three new groups based on DNA-DNA similarity; four isolates were included in Group IX, two in Group X, and nine in Group XI. No isolates were identified as A. aceti (Group I), A. peroxydans (Group III), and A. estunensis (Group VI). Phylogenetic analysis based on 16S rDNA sequences of representative strains of the Groups indicated belonging to the strains of the genus Acetobacter. On the basis of DNA base composition, DNA-DNA similarity, and 16S rDNA sequences, three new species of the genus Acetobacter are proposed: Acetobacter syzygii sp. nov. for Group IX, Acetobacter cibinongensis sp. nov. for Group X, and Acetobacter orientalis sp. nov. for Group XI. The distribution of Acetobacter strains in Indonesia is discussed in light of isolation sources.  相似文献   

16.
Gram-negative, facultatively anaerobic bacterial strains were consistently isolated from oak trees displaying symptoms of extensive stem bleeding. In Britain, this disorder is called Acute Oak Decline (AOD). A similar condition has been noted on species of Mediterranean oak in Spain. The identity of bacterial isolates from symptomatic trees in both countries was investigated using molecular techniques and phenotypic assays. 16S rRNA gene sequencing indicated that the strains were most closely related to the genera Serratia, Kluyvera, Klebsiella and Raoultella (all>97%). Phylogenetic analysis revealed that the strains formed a distinct lineage within the family Enterobacteriaceae, which was confirmed by both gyrB- and rpoB-gene sequencing. DNA-DNA hybridization confirmed that the strains belonged to a single taxon which could also be differentiated phenotypically from its closest phylogenetic neighbours. The phylogenetic and phenotypic data both demonstrated that the strains isolated from oak represented a novel genus and species within the family Enterobacteriaceae for which the name Gibbsiella quercinecans gen. nov., sp. nov. (type strain=FRB 97(T)=LMG 25500(T)=NCPPB 4470(T)) is proposed.  相似文献   

17.
18.
The taxonomic affiliation was determined for four Xenorhabdus strains isolated from four Steinernema hosts from different countries. As compared to the five validly described Xenorhabdus species, i.e., X. nematophila, X. japonica, X. beddingii, X. bovienii and X. poinarii, these isolates represented novel species on the basis of 16S rRNA gene sequences and riboprint patterns, as well as by physiological and metabolic properties. They were named Xenorhabdus budapestensis sp. nov., type strain DSM 16342T, isolated from Steinernema bicornutum; Xenorhabdus ehlersii sp. nov., type strain DSM 16337T, isolated from Steinernema serratum; Xenorhabdus innexi sp. nov., type strain DSM 16336T isolated from Steinernema scapterisci; and Xenorhabdus szentirmaii sp. nov., type strain DSM 16338T, isolated from Steinernema rarum.  相似文献   

19.
The taxonomic positions of two novel strains isolated from a soil sample collected in Japan using Glucose-Peptone-Meat extract (GPM) agar plates supplemented with superoxide dismutase or superoxide dismutase plus catalase were investigated based on the results of chemotaxonomic, phenotypic and genotypic characteristics. Strains were Gram-positive, catalase-positive, non-motile bacteria with L-ornithine as a diagnostic diamino acid of the peptidoglycan. The acyl type of the peptidoglycan was N-glycolyl. The major menaquinones were MK-12 and 13. Mycolic acids were not detected. The G+C content of the DNA was 70 mol%. Comparative 16S rRNA studies on the two isolated strains revealed that they belong to the genus Microbacterium. DNA-DNA relatedness data revealed that KV-448(T) and KV-769 are a new species of the genus Microbacterium. From these results, we propose that these bacteria should be classified in the genus Microbacterium as Microbacterium terricolae sp. nov. The type strain of Microbacterium terricolae is KV-448(T) (=NRRL B-24468(T), NBRC 101801(T)).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号