首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During migration, birds undergo alternating periods of fasting and re-feeding that are associated with dynamic changes in body mass (m(b)) and in organ size, including that of the digestive tract. After arrival at a migratory stopover site, following a long flight, a bird must restore the tissues of its digestive tract before it can refuel. In the present study we examined how the availability of dietary protein influences refueling of migrating blackcaps (Sylvia atricapilla) during a migratory stopover. We tested the following predictions in blackcaps deprived of food and water for 1-2 days to induce stopover behavior: (1) birds provided with a low-protein diet will gain m(b), lean mass and fat mass, and increase in pectoral muscle size slower than do birds fed a high-protein diet; (2) since stopover time is shorter in spring, birds will gain m(b) and build up fat tissue and lean tissue faster than in autumn; and (3) if low dietary protein limits a bird's ability to gain m(b) and fat reserves, then birds that do not obtain enough protein will initiate migratory restlessness (Zugunruhe) earlier than will birds with adequate dietary protein. These predictions were tested by providing captured migrating blackcaps with semisynthetic isocaloric diets differing only in their protein content. Each day, we measured m(b), and food intake; also lean mass and fat mass were measured using dual energy X-ray absorptiometry. In addition, we monitored nocturnal activity with a video recording system. In both spring and autumn, birds fed diets containing either 3 or 20% protein increased in m(b), lean mass and fat mass at similar rates during the experiment. However, the group receiving 3% protein ate more than did the group receiving 20% protein. In support of our predictions, m(b), lean mass, fat mass, and intake of food all were higher in spring than in autumn. We also found that in spring all birds had higher levels of migratory restlessness, but birds fed 3% protein were less active at night than were birds fed 20% protein, possibly an adaptation conserving energy and protein. We conclude that protein requirements of migrating blackcaps during stopover are lower than expected, and that birds can compensate for low dietary protein by behavioral responses, i.e. hyperphagia and decreased migratory restlessness, that ensure rapid refueling.  相似文献   

2.
To investigate the proximate influence of a changing food availability on the seasonal fattening of migratory birds, garden warblers (Sylvia borin) following postnuptial moult were food restricted once a week. Body mass, food intake, plasma hormone and metabolite levels were measured and compared to birds which always had ad libitum food access. The food-restricted birds increased their body mass significantly earlier than the controls. The accelerated fattening was initially not accompanied by hyperphagia and may be due to either an increased food utilisation efficiency or a reduced metabolic rate. An increase of basal glucagon and corticosterone and a decrease of insulin levels prior to fattening were not significant, however, they resulted in a significant decrease of the insulin:glucagon ratio. This ratio was also lower in food-restricted birds than in control birds and may account for the difference in the fattening progress. We conclude that seasonal fattening may be stimulated by a catabolic impulse which could be imposed in free-living birds by a decrease of food availability and/or by an increase of energy expenditure. A negative energy balance is hypothesised to be a common proximate factor affecting migratory as well as winter fattening. Accepted: 24 August 2000  相似文献   

3.
We investigated whether a climatic change in temperature affected daily food intake in migrating male redheaded buntings. Groups of adult male birds (n = 18) were photoinduced into migratory phenotype under increasing spring daylengths (NDL); as the birds began to exhibit night restlessness, Zugunruhe, these were allocated into groups, either with ambient (NDL, variable daily temperature: maximum – 29–44 °C and minimum – 16–33 °C; for food intake (six birds) and activity recording, six birds) until 2 weeks after they concluded migration or with constant temperature (NDT, 22 ± 1 °C; for food intake (six birds)) conditions. As day length increased March onwards, daily food intake increased (hyperphagia) in NDL and NDT groups. However, hyperphagia was slower in NDT birds as compared to NDL birds, suggesting that altered ambient temperature affects daily food intake in migrating buntings. Another group of 12 birds were held under constant daylengths (12L:12D; EDT and constant temperature 22 ± 1 °C). Although the onset of Zugunruhe was delayed under EDT, the day of onset of Zugunruhe was taken as day 0. Daily food intake and body weight before and during migration of EDT birds were compared with that of NDT and NDL groups. Daily food intake and body weight increased in all migrating birds, but hyperphagia continued post-migration in NDT birds. The study suggests that constantly suboptimal temperature despite increasing daylength, NDT, appeared to affect feeding and body weight of migratory buntings as evident from continued hyperphagia and body weight gain, even after concluding migrating activity.  相似文献   

4.
Migration is the primary strategy that temperate birds use to avoid overwintering under harsh conditions. As a consequence, migratory birds have evolved specific morphological features in their wings and skeleton. However, in addition to varying in overall shape and size, bone can also change at the microstructural level by, for example, increasing its thickness. Such changes are critical to preventing fracture and damage under repeated loading (fatigue), yet it is not known whether migratory behaviour influences bone microstructure. To address this gap in the literature, we performed micro-computed tomography on skeletons of resident and migrant subspecies of the Dark-eyed Junco Junco hyemalis. We investigated the differences in the major wing bone, the humerus, and the major leg bone, the femur. In each bone, we studied the microarchitecture of the two types of bone tissue: cortical bone, the thick outer layer of bone; and trabecular bone, which is the porous network of bone tissue at the ends of long bones. We used linear models to quantify morphological features with respect to body mass and migratory behaviour. Humeri from migratory birds were thinner, wider and had higher overall geometric stiffness, i.e. a higher polar moment of inertia, relative to humeri from resident birds. These features may help keep their bones stiff to maintain their increased body mass during migration. In contrast, migrant femora were shorter, thinner and had lower geometric stiffness than femora of residents, potentially to reduce total body mass. Tissue mineral density was lower in both the humerus and the femur of migratory birds. In addition, migratory subspecies had less trabecular bone (lower bone volume fraction) due primarily to a loss of trabecular thickness. Migratory behaviour may thus select for improved stiffness and fatigue resistance in the wing bones and reduced mass of leg bones. Our work demonstrates how important insights into morphological adaptation can be obtained by investigating bone microstructure.  相似文献   

5.
To estimate differences in hormonal mechanisms of regulation of spring and autumn migration in European robins Erithacus rubecula, the plasma corticosterone (CORT) concentrations were compared in birds caught during both migratory seasons. A total of 414 blood samples were analyzed. It was found that the baseline and stress-induced CORT concentrations in free-living robins during spring migration were practically twice as high as during autumn passage. Our results demonstrate that autumn and spring migrations are independent stages of the avian annual cycle. Probably, the increase in the CORT concentrations in spring can be considered to be physiological preparation for the breeding season.  相似文献   

6.
Repeated exposure to lipopolysaccharide (LPS) induces desensitization of hypothalamus-pituitary-adrenal axis (HPA) responses and hypophagia. We investigated the interplay between the neural circuitries involved in the control of food intake and HPA axis activity following single or repeated LPS injections. Male Wistar rats received a single or repeated i.p. injection of LPS (100 microg/kg) for 6 days and were subdivided into four groups: 6 saline, 5 saline+1 LPS, 5 LPS+1 saline and 6 LPS. Animals with a single exposure to LPS showed increased plasma levels of ACTH, CORT, PRL, TNF-alpha and also CRF mRNA in the paraventricular nucleus of the hypothalamus. These animals exhibited a reduced food intake and body weight associated with an increase of CART expression in the arcuate nucleus (ARC). Leptin plasma levels were not altered. On the other hand, repeated LPS administration did not alter ACTH, CORT, PRL and TNF-alpha, but it reduced leptin level, compared to single LPS or saline treatment. Furthermore, repeated LPS administration did not increase CRF or CART mRNA expression. Food intake and weight gain after repeated LPS injections were not different from saline-treated animals. There was no change in NPY and POMC mRNA expression in the ARC after single or repeated injections of LPS. In conclusion, desensitization induced by repeated exposure to LPS involves the blockade of HPA axis activation and anorexigenic response, which are both associated with an unresponsiveness of TNF-alpha production and CRF and CART expression in the hypothalamus.  相似文献   

7.
Glucocorticoids promote the mobilization of energy stores and they may facilitate the expression of energetically expensive functions. Early arrival on the breeding grounds in migratory species and territorial competition are energetically demanding activities that may be supported by elevated baseline glucocorticoid levels. Here, we evaluated the associations between the baseline levels of excreted corticosterone (CORT) metabolites of male Pied Flycatchers (Ficedula hypoleuca) just after arriving on their breeding area and timing of arrival, considering ornamental traits indicative of social status, like forehead patch size and black plumage coloration, as well as heat shock protein levels (HSP60). We observed a positive association of CORT metabolites with HSP60 levels, which are synthesized under several environmental challenges affecting cell homeostasis. Our data showed a negative association between arrival date and CORT metabolite levels, possibly as a result of the higher energetic demands imposed by the hard environmental conditions experienced at the time of an early arrival after migration. We observed a negative relationship of forehead patch dimensions and CORT metabolite levels, suggesting that dominance is associated with low baseline CORT metabolites. Also, males that expressed a higher degree of territorial behaviour when exposed to a playback song of a conspecific at their nest-box showed higher CORT metabolites upon arrival than males that expressed a lower degree of territorial behavior. This may indicate that elevated baseline CORT metabolite levels may facilitate an intense territorial competition in males. Thus, male–male competition may be a factor affecting observed baseline glucocorticoid levels in migratory birds.  相似文献   

8.
The dorsomedial hypothalamus (DMH) plays an important role in coordinating physiological and behavioral responses to stress-related stimuli. In vertebrates, DMH serotonin (5-HT) concentrations increase rapidly in response to acute stressors or corticosterone (CORT). Recent studies suggest that CORT inhibits postsynaptic clearance of 5-HT from the extracellular fluid in the DMH by blocking organic cation transporter 3 (OCT3), a polyspecific CORT-sensitive transport protein. Because OCTs are low-affinity, high-capacity transporters, we hypothesized that CORT effects on extracellular 5-HT are most pronounced in the presence of elevated 5-HT release. We predicted that local application of CORT into the DMH would potentiate the effects of d-fenfluramine, a 5-HT-releasing agent, on extracellular 5-HT. These experiments were conducted using in vivo microdialysis in freely-moving male Sprague-Dawley rats implanted with a microdialysis probe into the medial hypothalamus (MH), which includes the DMH. In Experiment 1, rats simultaneously received intraperitoneal (i.p.) injections of 1 mg/kg d-fenfluramine or saline and either 200 ng/mL CORT or dilute ethanol (EtOH) vehicle delivered to the MH by reverse-dialysis for 40 min. In Experiment 2, 5 μM d-fenfluramine and either 200 ng/mL CORT or EtOH vehicle were concurrently delivered to the MH for 40 min using reverse-dialysis. CORT potentiated the increases in extracellular 5-HT concentrations induced by either i.p. or intra-MH administration of d-fenfluramine. Furthermore, CORT and d-fenfluramine interacted to alter home cage behaviors. Our results support the hypothesis that CORT inhibition of OCT3-mediated 5-HT clearance from the extracellular fluid contributes to stress-induced increases in extracellular 5-HT and 5-HT signaling.  相似文献   

9.
This study tested whether an ethologically relevant stressor, a three-week period of food restriction where food was unavailable for four hours a day, caused chronic stress in molting and non-molting captive European starlings. Although all birds increased weight during the Food Restriction period, only non-molting birds increased food intake. Morning baseline heart rates increased during the Food Restriction period and all birds showed a decrease in heart rate when food was absent from the cage. In non-molting birds, there were no differences in either baseline or stress-induced corticosterone (CORT) concentrations, whereas molting birds showed attenuated baseline CORT, stress-induced CORT, and fecal glucocorticoid metabolite levels over the Food Restriction period. Although several parameters, such as increased morning heart rate, are consistent with chronic stress, the majority of these data suggest that restricting food availability is not chronically stressful. Furthermore, making the timing of food removal less predictable by randomizing when food was removed during the day did not enhance any of the above responses, but did alter the frequency of maintenance and feeding behaviors. In conclusion, starlings appear resistant to developing symptoms of chronic stress from repeated food restriction.  相似文献   

10.
The sugars in fleshy fruits provide a rich source of energy to frugivorous animals. However, these carbohydrates also serve as a substrate for alcoholic fermentation by yeasts, ethanol being the main by-product of this process. Ethanol ingestion via frugivory thus occurs in a diverse assemblage of invertebrate and vertebrate taxa, including numerous species of birds. We tested the roles of ethanol as an odor cue for resource location by adult yellow-vented bulbuls (Pycnonotus xanthopygos) and as a possible appetite stimulant in feeding trials with artificial food. We hypothesized (1) that the odor of ethanol does not serve as a food-locating cue in diurnal frugivorous passerine birds, and predicted that the choice of food source and the mass of food eaten by such birds will not be influenced by the odor of ethanol. We further hypothesized (2) that food intake in passerine birds is affected by ingestion of ethanol according to its concentration [EtOH], and predicted that food intake will follow a bell-shaped curve in relation to [EtOH]. In accord with hypothesis (1) and its prediction, we found that the odor of ethanol did not affect food preferences, in either ethanol-naïve or ethanol-experienced yellow-vented bulbuls, when presented at concentrations found in naturally ripe fruit (0.0–1.0%); this suggests that the odor of ethanol is not a food-locating cue for the bulbuls. Hypothesis (2) was partially supported, namely at low [EtOH] (0–3%), food intake was constant and at high [EtOH] (3%) food intake decreased, following only the right half of the predicted bell-shaped response. Ethanol-naïve birds showed no preference towards any [EtOH] presented in two-way choice trials. However, daily food intake in ethanol-experienced bulbuls in single option trials decreased by an average of 36% when the artificial food contained the highest tested concentration of ethanol (3.0%). We suggest that decreasing food intake when food ethanol concentration is relatively high may be a means of avoiding intoxication and is related to the ethanol-metabolizing ability of the bird.  相似文献   

11.
Thyroid hormone regulates food intake. We previously reported that rats with triiodothyronine (T3)-induced thyrotoxicosis display hyperphagia associated with suppressed circulating leptin levels, increased hypothalamic neuropeptide Y (NPY) mRNA and decreased hypothalamic pro-opiomelanocortin (POMC) mRNA. AMP-activated kinase (AMPK) is a serine/threonine protein kinase that is activated when cellular energy is depleted. We hypothesized that T3 causes an increase in hypothalamic AMPK activity, which in turn contributes to the development of T3-induced hyperphagia. Rats that were given s.c. injections of T3 (4.5 nmol/kg) had increased food intake 2 h later without alterations in NPY and POMC mRNA levels, but with increased hypothalamic phosphorylated AMPK (169%) and phosphorylated acetyl-CoA carboxylase (194%). To determine the more chronic effects of T3, rats were given 6 daily s.c. injection of T3 or the vehicle. Food intake was significantly increased. Multiple T3 injections increased hypothalamic phosphorylated AMPK (278%) and phosphorylated acetyl-CoA carboxylase (335%) compared to the controls. Intracerebroventricular administration of compound C, an AMPK inhibitor, blocked the food intake induced by a single or multiple injections of T3. Taken together, these results suggest that enhanced hypothalamic AMPK phosphorylation contributes to T3-induced hyperphagia. Hypothalamic AMPK plays an important role in the regulation of food intake and body weight.  相似文献   

12.
Eight adult, Yorkshire-Landrace crossbred boars were used to evaluate the effects of the synthetic glucocorticoid, dexamethasone (DXM) on the secretion of luteinizing hormone (LH) and testosterone. Four treatments of 4 d each were administered: 1) 2 ml i.m. of 0.9% (w/v) NaCl solution (control); 2) DXM (2 ml i.m. as a dose of 50 mug/kg body weight, every 12 h); 3) DXM plus gonadotropin releasing hormone (GnRH; 50 mug in 1 ml i.m. every 6 h); 4) 2 ml NaCl solution i.m. plus a single dose of 50 mug i.v. GnRH. Blood samples were collected twice daily from an indwelling jugular vein catheter for 3 d and at 15 min intervals for 12 h on the fourth day. DXM treatment resulted in lower (P M0.01) testosterone values in samples collected twice daily. More frequent sampling on Day 4 revealed that DXM reduced (P<0.01) the number of pulsatile increases of LH in plasma, although the individual mean pulse areas did not fiffer between the NaCl- and DXM-treated groups. This was associated with a decreased pulse frequency of testosterone (P<0.05). GnRH plus DXM treatment caused a significant elevation (P<0.05) in mean values as well as in the mean pulse area and in the total of the individual pulse areas of LH. Pulse area and mean concentrations of testosterone were also increased (P<0.01) when GnRH was given concurrently with DXM. Comparison of a single injection of GnRH when NaCl was being administered (Treatment 4) to one of the injections of GnRH (Day 4, 0800 h, Treatment 3) revealed a subsequently greater (P<0.01) pulse area in LH above base-line during DXM treatment (7.67 +/- 1.17 ng/ml) than during the NaCl (4.17 +/- 0.73 ng/ml) treatment period. This was reflected in a greater (P<0.01) pulse increase of testosterone following the LH pulse in boars treated with DXM. It is concluded that DXM treatment in the boar can reduce the pulse frequency of LH secretion, presumably by affecting GnRH secretion, but it has less effect directly on pituitary LH synthesis and release.  相似文献   

13.
Garden warblers (Sylvia borin) were subjected to starvation trials during their autumnal migratory phase in order to simulate a period of non-stop migration. Before, during and after this treatment the energy expenditure, activity, food intake and body mass of the subjects were monitored. Assimilation efficiency was constant throughout the experiments. The catabolized (during starvation) and deposited body tissue (during recovery) consisted of 73% fat. Basal metabolic rate was decreased during the starvation period and tended to a gradual increase during the recovery period. The reduced basal metabolic rate can possibly be attributed to a reduced size/function of the digestive system, which is consistent with the sub-maximal food intake immediately after resuming the supply of food to the experimental birds. The observed reductions in basal metabolic rate during starvation and activity during recovery can be viewed as adaptations contributing to a higher economization of energy supplies. The experimental birds were unable to eat large quantities of food directly after a period of starvation leading to a comparatively low, or no increase in body mass. Such a slow mass increase is in agreement with observations of migratory birds on arrival at stop-over sites.Abbreviations BM body mass - BMR basal metabolic rate - LBM lean body mass - RQ respiratory quotient  相似文献   

14.
Despite the hyperphagia, the food intake of the lactating rat showed marked diurnal changes which paralleled those of virgin rats. The major difference was that lactating rats consumed a higher proportion (35%) of their diet during the light period than did virgin rats (14%). The peak rate of lipogenesis in the lactating mammary gland occurred around midnight, and this decreased by 67% to reach a nadir around mid-afternoon; this corresponded with the period of lowest food intake. The diurnal variations in hepatic lipogenesis in lactating rats were much less marked. The changes in hepatic glycogen over 24 h suggest that it acts to supply carbon for lipogenesis during the period of decreased food intake. The activation state of acetyl-CoA carboxylase in mammary gland altered during 24 h, but the changes did not always correlate with alterations in the rate of lipogenesis. The changes in plasma insulin concentration tended to parallel the food intake in the lactating rats, but they did not appear to be sufficient to explain the large alterations in lipogenic rate in the mammary gland.  相似文献   

15.
Current research in birds suggests that a conflict should exist during reproduction for the role of the glucocorticoid corticosterone (CORT). While elevated levels have been correlated with the increased energetic demand of raising offspring, elevated CORT levels have traditionally been implicated in reproductive abandonment. We examined the relationship between CORT and nest desertion in breeding wild female European starlings (Sturnus vulgaris) incorporating analyses of both total circulating levels and 'free', unbound CORT through analysis of corticosteroid-binding globulin (CBG). Free baseline CORT levels of nest-abandoning birds were significantly higher than nonabandoning birds within each stage, with chick-rearing birds exhibiting the highest free baseline CORT levels, while concurrently remaining the most resistant stage to nest desertion. Elevated free baseline CORT levels in chick-rearing birds were not due to increased total CORT secretion, but rather to a decrease in CBG levels. Overall, our results suggest that CORT and CBG interact to play a role in mediating the increased energetic demand of offspring, while minimizing the chances of nest desertion, thereby alleviating any potential behavioral conflict for CORT during reproduction. Furthermore, these results demonstrate that the traditional view of the role of CORT during reproduction is much more complex than previously appreciated. Together with mounting evidence, we suggest that elevated corticosteroid levels are an inherent and necessary part of reproduction in nonmammalian tetrapods.  相似文献   

16.
Fasting is part of penguin's breeding constraints. During prolonged fasting, three metabolic phases occur successively. Below a threshold in body reserves, birds enter phase III (PIII), which is characterized by hormonal and metabolic shifts. These changes are concomitant with egg abandonment in the wild and increased locomotor activity in captivity. Because corticosterone (CORT) enhances foraging activity, we investigated the variations of endogenous CORT, and the effects of exogenous CORT on the behavioral, hormonal, and metabolic responses of failed breeder Adélie penguins. Untreated and treated captive male birds were regularly weighed and sampled for blood while fasting, and locomotor activity was recorded daily. Treated birds were implanted with various doses of CORT during phase II. Untreated penguins entering PIII had increased CORT (3.5-fold) and uric acid (4-fold; reflecting protein catabolism) levels, concomitantly with a rise in locomotor activity (2-fold), while prolactin (involved in parental care in birds) levels declined by 33%. In CORT-treated birds, an inverted-U relationship was obtained between CORT levels and locomotor activity. The greatest increase in locomotor activity was observed in birds implanted with a high dose of CORT (C100), locomotor activity showing a 2.5-fold increase, 4 days after implantation to a level similar to that of birds in PIII. Moreover, uric acid levels increased three-fold in C100-birds, while prolactin levels declined by 30%. The experimentally induced rise in CORT levels mimicked metabolic, hormonal, and behavioral changes, characterizing late fasting, thus supporting a role for this hormone in the enhanced drive for refeeding occurring in long-term fasting birds.  相似文献   

17.
Fledging is a major life transition for birds, when juveniles move from the safety of a nest into an environment where they must find food and avoid predators. The timing of fledging within a season can have significant effects on future survival and breeding success. Proximate triggers of fledging are unknown: though wing development is likely a primary factor, other physiological changes, such as elevated plasma corticosterone (CORT), may affect fledging behavior. Laysan Albatross (Phoebastria immutabilis) chicks have an extended post−hatching period during which they reach 150% of adult mass. However, approaching fledging, chicks fast for days to weeks and lose mass while still putting energy into feather growth. We evaluated chick morphology and physiology to elucidate proximate triggers of fledging. As in some other species, CORT increased as chicks fasted and lost body mass. At the same time, corticosteroid binding globulin (CBG) declined, thus amplifying free CORT prior to fledging. Once chicks reached a morphological threshold, free CORT levels predicted how long they stayed at the colony: chicks with higher free CORT fledged sooner. To perturb the relationship between body condition, endocrine physiology, and fledging behavior, we supplementally fed chicks for the month before fledging. Fed birds had a slower decrease in body mass, slower decrease in CBG, slower increase in free CORT, and stayed at the colony longer after reaching a morphological threshold. Our study suggests that as chicks lose mass, free CORT acts as a signal of energetic or nutritional state to adjust the timing of fledging.  相似文献   

18.
Plasma corticosterone increases in association with migratory flight in the red knot Calidris canutus islandica, suggesting that corticosterone may promote migratory activity and/or energy mobilization in this species. This hypothesis is supported by general effects of glucocorticoids, which include stimulation of locomotion and the mobilization of energy depots. We experimentally examined the role of elevated corticosterone levels in the migratory red knot by comparing foraging behavior, flight frequency, and plasma metabolites between vehicle-injected controls and birds treated with RU486, an antagonist to the genomic low-affinity glucocorticoid receptor (GR). We predicted that RU486 treatment would interfere with energy mobilization. However, we expected no effects on flight activity because recent studies suggest that glucocorticoids affect locomotion through a nongenomic receptor. Finally, because glucocorticoids exert permissive effects on food intake, we postulated that RU486 treatment in the red knot would interfere with feeding. Results were consistent with the latter prediction, suggesting that the GR participates in the promotion of hyperphagia, the intense feeding state that is characteristic of the migratory condition. RU486 treatment did not affect flight frequency, suggesting that corticosterone may support migratory activity through a receptor other than the GR. Energy metabolism (as determined through plasma metabolites) was also unaffected by RU486, possibly because energetic demands experienced by captive birds were low.  相似文献   

19.
The dark-eyed junco (junco hyemalis) exhibits differential migration in autumn that, in general, results in females overwintering south of males, and young within each sex overwintering north of older birds. Individuals overwintering at higher latitudes face less predictable and more challenging environmental conditions. Rapid increases in circulating levels of the energy-regulating glucocorticosteroid, corticosterone, occur in response to environmental stressors. To establish whether the strength of acute corticosterone secretion was correlated with the probability of encountering poor environmental conditions, we compared the corticosterone stress response (e.g. initial plasma concentrations at the time of capture and 30 min later) in dark-eyed juncos overwintering in Mississippi (MS), USA, near the southern limit of their wintering range, with juncos overwintering in New York (NY), USA, near the northern limit of their wintering range. During two winters, 22 males and one female were sampled in NY; 13 males, 12 females and one bird of undetermined sex were sampled in MS. Not unexpectedly, NY birds carried greater fat reserves that resulted in a significantly higher value of energetic condition (mass corrected for wing cord cubed). There was no difference between the two winters sampled at either site, nor was there an effect of sex on patterns of corticosterone secretion in MS birds. With sexes pooled, MS and NY birds had similar baseline corticosterone levels. However, as predicted, NY birds exhibited significantly higher corticosterone concentrations 30 min after capture. These results support the hypothesis that birds wintering in less predictable, more extreme environments show a higher amplitude corticosterone response, which may enable them to adjust their behaviour and physiology more rapidly in response to environmental stressors such as storms. Adrenocortical sensitivity may be a part of the physiological milieu associated with differential migration in juncos; whether it results from endogenous differences in the migratory programmes of individuals or from acclimatization to local environmental conditions remains to be determined.  相似文献   

20.
Glucocorticoids inhibit cell proliferation by inducing cell cycle lengthening. In this report, we have analyzed, in normal peripheral blood lymphocytes, the involvement of p27Kip1 in this slowing of proliferation. Following dexamethasone (DXM) treatment, p27Kip1 expression and regulation varied differently with the level of lymphocyte stimulation. In quiescent cells, DXM inhibited p27Kip1 protein expression by decreasing its rate of synthesis, whereas its half-life and mRNA steady state remained constant. In contrast, in stimulated lymphocytes, DXM increased p27Kip1 expression by enhancing its mRNA steady state. This increase is not only a consequence of the DXM-induced interleukin 2 inhibition: we also found an increase in p27Kip1 mRNA stability that was not observed in quiescent lymphocytes. Cyclin/cyclin-dependent kinase (CDK) complexes immunoprecipitated with p27Kip1 are differentially modified by DXM addition: (a) G1 kinasic complexes (cyclin D/CDK4 or CDK6) associated with p27Kip1 are strongly decreased by DXM, (b) S-phase complexes (CDK2/cyclin E and A) remained stable or increased, and (c) the association of p27Kip1 with the phosphorylated forms of CDK1 is increased by DXM. In addition, CDK2 kinase activity was decreased in DXM-treated cells: we suggest that p27Kip1 might participate in inhibiting its catalytic activity. These results indicated that, in normal lymphoid cells, p27Kip1 may be involved in DXM antiproliferative effects. The increase of p27Kip1 expression and a decrease in G1 mitogenic factors, together with the redistribution of p27Kip1 to S/G2-M regulatory complexes, may explain the lengthening of G1 and S/G2 after DXM treatment in lymphocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号