首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ovarian, uterine and vaginal blood flow were determined in 22 virgin guinea-pigs by the tracer microsphere technique. Measurements were made during oestrus, when cornified cells appeared in the vaginal smear (Day 1), or during the luteal phase of the cycle (Day 11). The total rate of blood flow to the genital tract was 0-58 ml.min-1 on Day 11 and 2-92 ml.min-1 on Day 1. This difference was largely due to an 8-fold increase in uterine blood flow from 0-26 to 2-01 ml.min-1. Although uterine weight increased over the same period, there was a significant increase in uterine tissue perfusion from 0-32 to 1-18 ml.min-1.g-1. The vagina exhibited a similar pattern, including a significant increase in tissue perfusion. Ovarian blood flow decreased from a value of 0-19 ml.min-1 during the luteal phase to 0-10 ml.min-1 at oestrus. Perfusion of the ovarian tissue was considerably greater on Day 11 than on Day 1 (2-86 versus 1-39 ml.min-1.g-1).  相似文献   

2.
Concentrations of progesterone, oxytocin and PGFM (pulmonary metabolite of PGF-2 alpha) were measured in plasma from peripheral blood samples collected from 5 fallow does every hour or 2 h for 12-h periods on Days 15-20 inclusive of the oestrous cycle (i.e. luteolysis). For 3 does that exhibited oestrus on Day 21, plasma progesterone concentrations fluctuated between 3 and 10 ng/ml on Days 15-18 inclusive. Thereafter, values declined progressively to attain minimum concentrations of less than 0.05 ng/ml on Day 20. Basal concentrations of plasma oxytocin and PGFM fluctuated between 5 and 20 pg/ml and 10 and 100 pg/ml respectively. Episodic pulses of plasma oxytocin (greater than 300 pg/ml) occurred on Days 15 and 16, whereas pulses of plasma PGFM (greater than 400 pg/ml) occurred on Days 19 and 20. There was little apparent correlation between episodic pulses of the two hormones. For 2 does that exhibited oestrus on Day 22, plasma progesterone concentrations declined to minimum values of 1.0-1.5 ng/ml by Day 20. One of these does showed very high levels of oxytocin secretion throughout the sampling period while the other showed an apparent paucity of oxytocin secretory periods. Two does hysterectomized on Day 13 of their second oestrous cycle failed to exhibit further oestrous cycles. Continual elevation of plasma progesterone concentrations (2-6 ng/ml) for an 8-month period indicated persistence of the corpus luteum after hysterectomy. It is concluded that luteolysis in fallow deer involves episodic secretion of both oxytocin and PGF-2 alpha.  相似文献   

3.
Two experiments were conducted to study the in vitro effects of prostaglandins F2 alpha (PGF2 alpha), E2 (PGE2), and luteinizing hormone (LH) on oxytocin (OT) release from bovine luteal tissue. Luteal concentration of OT at different stages of the estrous cycle was also determined. In Experiment 1, sixteen beef heifers were assigned randomly in equal numbers (N = 4) to be killed on Days 4, 8, 12, and 16 of the estrous cycle (Day 0 = day of estrus). Corpora lutea were collected, an aliquot of each was removed for determination of initial OT concentration, and the remainder was sliced and incubated with vehicle (control) or with PGF2 alpha (10 ng/ml), PGE2 (10 ng/ml), or LH (5 ng/ml). Luteal tissue from heifers on Day 4 was sufficient only for determination of initial OT levels. Luteal OT concentrations (ng/g) increased from 414 +/- 84 on Day 4 to 2019 +/- 330 on Day 8 and then declined to 589 +/- 101 on Day 12 and 81 +/- 5 on Day 16. Prostaglandin F2 alpha induced a significant in vitro release of luteal OT (ng.g-1.2h-1) on Day 8 (2257 +/- 167 vs. control 1702 +/- 126) but not on Days 12 or 16 of the cycle. Prostaglandin E2 and LH did not affect OT release at any stage of the cycle studied. In Experiment 2, six heifers were used to investigate the in vitro dose-response relationship of 10, 20, and 40 ng PGF2 alpha/ml of medium on OT release from Day 8 luteal tissue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Jugular vein blood was collected daily from four mature ewes throughout anoestrus and the first oestrous cycle of the breeding season until 4 days after the second oestrus. The levels of oestrogen, progesterone and LH were determined by radioimmunoassay. There were fluctuations in the LH level throughout most of the observed anoestrous period with a mean plus or minus S.E. value of 2-3 plus or minus 0-9 ng/ml. High LH values of 20-0, 41-2 and 137-5 ng/ml were observed in three ewes on Day - 24 of anoestrus. A brief minor rise in progesterone level was also observed around this period. Progesterone levels were consistently low (0.11 plus or minus 0-01 ng/ml) before Day - 25 of anoestrus. A major rise occurred on Day - 12 of anoestrous and this was followed by patterns similar to those that have been previously reported for the oestrous cycle of the ewe. Random fluctuations of oestrogens deviating from a mean level of 4-40 plus or minus 0-1 pg/ml were observed during anoestrus and the mean level during the period from the first to the second oestrus was 5-2 plus or minus 0-3 pg/ml. A well-defined peak of 13-3 plus or minus 0-7 pg/ml was seen in all ewes on the day of the second oestrus. Results of the present study suggest that episodic releases of LH occur during anoestrus and periods of low luteal activity. The fluctuations in LH levels, as observed during the period of low luteal activity, i.e. before Day - 25 of anoestrus, were less pronounced during the periods of high luteal activity. The view that luteal activity precedes the first behavioural oestrus of the breeding season is supported.  相似文献   

5.
In Exp. I infusions of prolactin (0.5 mg in 2 ml sterile saline) were repeated every 2 h for 36 h on Days 12-13 of the cycle. In Exp. II infusions of prolactin were administered from Days 17 to 19 (60 h) at 2-h intervals. Control gilts were given 2 ml sterile saline at similar intervals during the same period. Basal prolactin concentrations before initiation of infusions ranged from 1.3 +/- 0.1 to 5.6 +/- 2.2 ng/ml in both experiments. By 5 min after a prolactin infusion, mean plasma prolactin concentration ranged from 74.9 +/- 5.8 to 113.0 +/- 9.5 ng/ml, but then declined to approximately equal to 10 ng/ml just before the next infusion of prolactin. Administration of prolactin during the luteal phase of the oestrous cycle of the gilts had no effect on basal levels of progesterone, oestradiol or LH. During the follicular phase there were no differences (P greater than 0.05) between control and prolactin-treated gilt progesterone and LH concentrations, but oestradiol plasma values were decreased (P less than 0.05) on the 2nd and 3rd day of prolactin treatment. Our results would indicate that prolactin does not play a major role in the regulation of the oestrous cycle of the pig.  相似文献   

6.
Heifers slaughtered on Day 18/19 of pregnancy had significantly higher (P less than 0.001) concentrations of PGE-2 (measured as its methyl oxime) in uterine flushings than did animals slaughtered on Days 6 or 12 of pregnancy, or on Days 6 or 12 of the oestrous cycle. In addition, concentrations were higher in the uterine horn ipsilateral to the corpus lueum on Days 12 (P less than 0.05) and 18/19 (P less than 0.01) than in the contralateral horn. Incubation of dispersed luteal cells for 3 h with LH (0.1 or 100 ng/ml) and/or PGE-2 (0.01-1000 ng/ml) in vitro showed no differences in basal progesterone production or in the responses to exogenous hormones between pregnant and non-pregnant cattle. However, low doses of PGE-2 (0.01-10 ng/ml) inhibited the stimulation of progesterone secretion by the lower dose of LH. These findings indicate that although PGE-2 can stimulate progesterone synthesis by luteal cells it may also have inhibitory effects, and therefore its role in pregnancy requires further definition.  相似文献   

7.
Corpora lutea (CL) from naturally cycling Corriedale ewes were obtained in the mid- and late luteal phases of the oestrous cycle (Days 9 and 13; 5 ewes per group). The cellular composition of these CL was compared by ultrastructural morphometry to determine whether there were changes in numbers of large and small luteal cells consistent with differentiation of some small luteal cells to large luteal cells during the last part of the luteal phase. No differences between Days 9 and 13 were detected in luteal volume, plasma progesterone concentration, or volume density of any component of the luteal tissue. Large luteal cell numbers (mean +/- s.e.m.) were lower per unit volume of luteal tissue on Day 13 than on Day 9 (14.1 +/- 0.5 vs 18.4 +/- 1.3 X 10(3)/mm3, P less than 0.05). Mean volume of the individual large luteal cells was greater on Day 13 than on Day 9 (19.65 +/- 0.72 vs' 15.60 +/- 1.34 micrograms 3 X 10(3), P less than 0.05). However, there were no significant differences in numbers or volumes of small luteal cells between Days 9 and 13, and total numbers of large luteal cells per CL were not different between these two days. These results provide no support for the hypothesis that small luteal cells differentiate into large luteal cells during the oestrous cycle of the sheep.  相似文献   

8.
Corpora lutea were collected from sheep on Days 6, 10, and 15 of the oestrous cycle and Day 25 of pregnancy and dissociated into single cell suspensions. Purified preparations of large and small luteal cells were prepared by elutriation on all days except Day 6. Basal progesterone production by large cells was 6-8-fold higher than by small cells (36-65 vs 6-9 fg/cell/min). Oxytocin secretion was maximal on Day 6 (1.0 fg/cell/min) and declined thereafter. The number of receptors for LH increased between Day 6 and Day 10 and the two cell types had an equal number of receptors on Days 10 and 15 (19,000-23,000). Large cells on Day 25 of pregnancy had fewer receptors (12,000) than did small cells (26,000). Progesterone secretion by small luteal cells from all days examined was stimulated by LH (0.01-1000 ng/ml) in a dose-dependent manner; maximum sensitivity to LH occurred on Day 10. Despite the presence of receptors for LH on large cells, LH failed to stimulate progesterone production. Basal production of progesterone by large and small cells, and the response of small cells to LH, was not influenced by day examined. Re-combinations of large and small cells from Day 10 synergized to increase progesterone secretion. Prostaglandin E-2 (0.1-1000 ng/ml) did not stimulate progesterone secretion by large or small cells.  相似文献   

9.
Basal adenylate cyclase values for corpora lutea (CL) removed from cyclic gilts on Days 3, 8, 13 and 18 were 178 +/- 61, 450 +/- 46, 220 +/- 25 and 208 +/- 18 pmol cAMP formed/min/mg protein, respectively. Basal activity was significantly elevated on Day 8 (P less than 0.001). LH-stimulatable adenylate cyclase values for CL from Days 3, 8, 13 and 18 were 242 +/- 83, 598 +/- 84, 261 +/- 27 and 205 +/- 17 pmol cAMP formed/min/mg protein respectively. Serum progesterone concentrations of 12 gilts bled every 2 days through one complete oestrous cycle ranged from 1.1 to 26.9 ng/ml with highest values between Days 8 and 12. The decline in serum progesterone concentrations was coincident with the decrease in basal adenylate cyclase activity. There was no LH-stimulatable adenylate cyclase activity present in the CL at the specific times of the oestrous cycle examined. We conclude that progesterone secretion by the pig CL is apparently dependent on basal activity of adenylate cyclase.  相似文献   

10.
The effects of fasting between Days 8 and 16 of the estrous cycle on plasma concentrations of luteinizing hormone (LH), progesterone, cortisol, glucose and insulin were determined in 4 fasted and 4 control heifers during an estrous cycle of fasting and in the subsequent cycle after fasting. Cortisol levels were unaffected by fasting. Concentrations of insulin and glucose, however, were decreased (p less than 0.05) by 12 and 36 h, respectively, after fasting was begun and did not return to control values until 12 h (insulin) and 4 to 7 days (glucose) after fasting ended. Concentrations of progesterone were greater (p less than 0.05) in fasted than in control heifers from Day 10 to 15 of the estrous cycle during fasting, while LH levels were lower (p less than 0.01) in fasted than in control heifers during the last 24 h of fasting. Concentrations of LH increased (p less than 0.01) abruptly in fasted heifers in the first 4 h after they were refed on Day 16 of the fasted cycle. Concentrations (means +/- SEM) of LH also were greater (p less than 0.05) in fasted (11.2 +/- 2.6 ng/ml) than in control (4.7 +/- 1.2 ng/ml) heifers during estrus of the cycle after fasting; this elevated LH was preceded by a rebound response in insulin levels in the fasted-refed heifers, with insulin increasing from 176 +/- 35 pg/ml to 1302 +/- 280 pg/ml between refeeding and estrus of the cycle after fasting. Concentrations of LH, glucose and insulin were similar in both groups after Day 2 of the postfasting cycle. Concentrations of progesterone in two fasted heifers and controls were similar during the cycle after fasting, whereas concentrations in the other fasted heifers were less than 1 ng/ml until Day 10, indicating delayed ovulation and (or) reduced luteal function. Thus, aberrant pituitary and luteal functions in fasted heifers were associated with concurrent fasting-induced changes in insulin and glucose metabolism.  相似文献   

11.
Menchaca A  Rubianes E 《Theriogenology》2002,57(5):1411-1419
We studied the relationship between progesterone (P4) concentrations early in the estrus cycle and follicular dynamics in dairy goats. We used seven untreated goats (control group) and six progesterone treated goats (P group) with a controlled internal drug release device from Days 0 to 5 (Day 0: day of ovulation). We performed daily ultrasonograph during the interovulatory interval to determine ovarian change and took daily blood samples to determine serum estradiol 17beta (E2) and P4 concentrations by RIA. We divided the control goats into 3- (n = 4) and 4-wave goats (n = 3), according to the number of follicular waves recorded during the ovulatory cycle. Mean progesterone concentrations between Days I and 5 were higher and mean estradiol concentrations between Days 3 and 5 were lower in 4-wave goats (P4: 3.8+/-0.2 ng/ml; E2: 1.6+/-0.2 pg/ml) than in 3-wave goats (P4: 2.0+/-0.5 ng/ml, P < 0.05; E2: 4.4+/-0.9 pg/ml, P < 0.05). Wave 2 emerged earlier in 4-wave (Day 4.2+/-0.3) than in 3-wave goats (Day 7.3+/-0.3, P < 0.05). Three out of six of the progesterone-treated goats had short cycles (mean 8.0+/-0.0 days) and ovulated from Wave 1. The other three goats had shorter cycles (mean 18.3+/-0.3 days) than the control group (20.0+/-0.2 days; P < 0.05), although they were within the normal range of control cycles (shortened cycles). In the three treated goats with shortened cycles (two with four waves, one with three waves), mean progesterone concentrations between Days I and 5 were higher (4.7+/-0.6 ng/ml) than in the 3-wave control goats. In these goats, Wave 2 emerged at Day 4.3+/-0.3, similar to the time observed in 4-wave goats but earlier (P < or = 0.05) than in 3-wave control goats. Overall results confirm a relationship between the progesterone levels and the follicular wave turnover during the early luteal phase in the goat. Higher progesterone concentrations may accelerate follicular turnover probably by an early decline of the negative feedback action of the largest follicle of Wave 1. This is followed by an early emergence of Wave 2.  相似文献   

12.
Blood flow in the corpus luteum of the pseudopregnant rabbit was measured with tracer-labelled microspheres before and at 1 and 3 h after saline treatment (N = 8) or after inhibition of progesterone synthesis with aminoglutethimide (N = 10). Before treatment luteal blood flow (29.5 +/- 3.9 ml/min.g-1 (mean +/- s.e.m.] was much higher than blood flow to other tissues (ovarian stroma = 2.9 +/- 0.6; uterus = 0.5 +/- 0.1; adrenal gland = 2.6 +/- 0.2 ml/min.g-1). Aminoglutethimide reduced serum progesterone by 60% within 1 h but luteal blood flow was unchanged (26.2 +/- 3.5 ml/min.g-1). At 3 h after aminoglutethimide, serum progesterone remained low and luteal blood flow was slightly reduced to 22.5 +/- 3.4 ml/min.g-1. This reduction was associated with a significant decline in mean arterial blood pressure which resulted in luteal vascular resistance being unaltered by aminoglutethimide treatment. Further analysis of these data indicated that serum progesterone concentration was not significantly correlated with blood flow to the corpora lutea or with blood flow to other tissues. In contrast, mean arterial blood pressure was highly correlated with blood flow to the corpus luteum (r = 0.80; P less than 0.001) but not to the ovarian stroma (r = 0.04), or adrenal gland (r = 0.06). These results indicate that luteal blood flow is not acutely responsive to changes in luteal progesterone production and suggest that luteal blood flow changes passively with changes in arterial blood pressure.  相似文献   

13.
Catheters were placed in the carotid artery via a facial artery (n = 12) and in the ovarian vein (n = 12), and, in conjunction, electromagnetic flow meters were placed around the ovarian artery (n = 6) in cyclic beef cows. Androstenedione was quantitatively the highest and dehydroepiandrosterone the lowest of the ovarian androgens measured. Ovarian androgens were correlated positively with each other (P less than 0.05) but not with ovarian blood flow or day of the cycle. There was a trend for spikes of androgen release (ovarian vein concentration x ovarian blood flow) from the ovary to be greatest during the period of decreasing progesterone and CL regression. However, only with testosterone were spikes of release different (Days--13 to--9 less than Days -8 to -4; P less than 0.05; Day 0 = oestrus). The dynamic changes in ovarian androgens noted in this study were compatible with the concept of continuous follicular development and atresia throughout the oestrous cycle.  相似文献   

14.
Oxytocin was administered to Dorset and Shropshire ewes in one experiment and to Dorset ewes in a further 4 experiments. In Exp. 1, concentrations of plasma progesterone and lengths of the oestrous cycle in ewes given oxytocin subcutaneously twice a day on Days 0-3, 2-5, 4-7, 6-9, 8-11, 10-13, 12-15 or 14-17 were similar to those of control ewes. In Exp. 2, intraluteal infusions of oxytocin from Day 2 to Day 9 after oestrus had no effect on concentration of progesterone, weight of CL collected on Day 9 or length of the oestrous cycle. In Exp. 3, intraluteal infusions of oxytocin on Days 10-15 after oestrus had no effect on weight of CL collected on Day 15. In Exp. 4, s.c. injections of oxytocin on Days 3-6 after oestrus had no effect on weight of CL collected on Day 9, concentrations of progesterone or length of the oestrous cycle. In Exp. 5, s.c. injections of oxytocin twice a day did not affect the maintenance and outcome of pregnancy in lactating and nonlactating ewes. Exogenous oxytocin, therefore, does not appear to affect luteal function at any stage of the ovine oestrous cycle although oxytocin has been reported by others to alter ovine CL function.  相似文献   

15.
The experimental objective was to evaluate how continuous infusion of oxytocin during the anticipated period of luteolysis in cattle would influence secretion of progesterone, oestradiol and 13,14-dihydro-15-keto-prostaglandin F-2 alpha (PGFM). In Exp. I, 6 non-lactating Holstein cows were infused with saline or oxytocin (20 IU/h, i.v.) from Day 13 to Day 20 of an oestrous cycle in a cross-over experimental design (Day 0 = oestrus). During saline cycles, concentrations of progesterone decreased from 11.0 +/- 2.0 ng/ml on Day 14 to 2.0 +/- 1.3 ng/ml on Day 23; however, during oxytocin cycles, luteolysis was delayed and progesterone secretion remained near 11 ng/ml until after Day 22 (P less than 0.05). Interoestrous interval was 1.6 days longer in oxytocin than in saline cycles (P = 0.07). Baseline PGFM and amplitude and frequency of PGFM peaks in blood samples collected hourly on Day 18 did not differ between saline and oxytocin cycles. In Exp. II, 7 non-lactating Holstein cows were infused with saline or oxytocin from Day 13 to Day 25 after oestrus in a cross-over experimental design. Secretion of progesterone decreased from 6.8 +/- 0.7 ng/ml on Day 16 to less than 2 ng/ml on Day 22 of saline cycles; however, during oxytocin cycles, luteolysis did not occur until after Day 25 (P less than 0.05). Interoestrous interval was 5.9 days longer for oxytocin than for saline cycles (P less than 0.05). In blood samples taken every 2 h from Day 17 to Day 23, PGFM peak amplitude was higher (P less than 0.05) in saline (142.1 +/- 25.1 pg/ml) than in oxytocin cycles (109.8 +/- 15.2 pg/ml). Nevertheless, pulsatile secretion of PGFM was detected during 6 of 7 oxytocin cycles. In both experiments, the anticipated rise in serum oestradiol concentrations before oestrus, around Days 18-20, was observed during saline cycles, but during oxytocin cycles, concentrations of oestradiol remained at basal levels until after oxytocin infusion was discontinued. We concluded that continuous infusion of oxytocin caused extended oestrous cycles, prolonged the secretion of progesterone, and reduced the amplitude of PGFM pulses. Moreover, when oxytocin was infused, pulsatile secretion of PGFM was not abolished, but oestrogen secretion did not increase until oxytocin infusion stopped.  相似文献   

16.
The effect of fasting during oestrous cycle on the occurrence of oestrous and concentration of leptin and steroid hormones was investigated in goats. Sixteen Ardi goats of 10-12 month of age were split into two groups (control and fasting). Oestrous was synchronized with intravaginal progesterone sponges and detected 24h after sponge removal. Blood samples were collected at the days 5, 10, 15 of each cycle. Fasting of mature goats twice for 4 days starting on day 10 of two successive oestrous cycles inhibited oestrous behaviour and resulted in reduced concentration of leptin, progesterone and testosterone with different timing. Day 5 of the second cycle showed significant decrease in the plasma level of leptin (1.6+/-0.15 ng/ml) and progesterone (1.6+/-0.1 ng/ml) as compared to control group (3.2+/-0.15 ng/ml and 4.1+/-0.2 ng/ml, respectively). Testosterone started to decrease from day 10 of the second cycle (35.0+/-12.0 pg/ml) as compared to control group (65.0+/-15.0 pg/ml); the decrease in this hormone was significant in day 15 of the second cycle (65.0+/-16.0 pg/ml) as compared to the control (320.0+/-50.0 pg/ml). These data suggest that fasting-induced inadequate corpus luteum function, hence, lowering progesterone plasma level may partly be more leptin-dependent than the following decrease in plasma level of testosterone.  相似文献   

17.
A total of 101 sows was used to examine postpartum progesterone levels and litter performance following administration of 15 mg prostaglandins F(2alpha) (PGF(2alpha) n = 48) given within 12 h after farrowing. Daily blood samples and rectal temperatures were taken from all sows during the first 3 d post partum. Plasma progesterone (P(4)) concentrations were determined by radioimmunoassay (RIA). Regardless of treatment, plasma P(4) levels for all sows decreased in a similar fashion over the 3 d sampled. Mean (+/- SEM) P(4) on Day 2 (0.55 +/- 0.06 ng/ml) and Day 3 (0.38 +/- 0.04 ng/ml) were lower (P<0.01) than on Day 1 (0.98 +/- 0.08 ng/ml). Rectal temperature did not differ between PGF(2alpha) treated and nontreated sows nor was it different over the days measured. Litter characteristics, including survival rates on Day 7 and at weaning, and body weight on Days 3 and 35, were not affected by treatment. It was concluded that PGF(2alpha) administration to sows within 12 h post farrowing had no affect on the rate of luteal regression, as determined by P(4) concentration, nor on subsequent litter performance.  相似文献   

18.
Prostaglandin F(2alpha) (PGF(2alpha)) plays a role in the regression of the corpus luteum (CL) in a number of placental mammals. However, the mechanism of luteal regression has not been extensively studied in marsupials. The objectives of this study were to characterize changes in concentrations of PGF(2alpha) within utero-ovarian (UO) tissue/venous plasma during the luteal phase of the estrous cycle in Virginia opossums, to correlate these changes with those of plasma progesterone (P(4)), and to characterize the peripheral pattern of 13,14-dihydro-15-keto-PGF(2alpha) (PGFM) in parturient opossums. Ovaries, uteri, UO venous plasma and peripheral plasma were collected on Days 5, 9 and 12 after induced ovulation (n = 3 to 4 opossums/group). In addition, concentrations of PGFM were measured in peripheral plasma collected from two opossums during late gestation (Days 7,9,11 and 12) and at parturition (Day 13). Concentrations of P(4), PGFM and PGF(2alpha) in tissue homogenates and plasma samples were estimated by radioimmunoassay. In nonpregnant opossums, peripheral P(4) levels were highest on Day 5 (38.8 +/- 11.1 ng/ml, x +/- SEM) declined on Day 9 (22.6 +/- 7.4 ng/ml), and were at basal levels by Day 12 (2.4 +/- 0.7 ng/ml). Endometrial concentrations of PGF(2alpha) increased (P = 0.056) from Day 5 (15.7 +/- 4.1 ng/g) to Day 9 (92.1 +/- 61.0 ng/g) and were maintained to Day 12 (97.2 +/- 25.7 ng/g). Prostaglandin F(2alpha) concentrations in UO plasma increased (P < 0.01) from Day 5 (143.1 +/- 32.7 pg/ml) to Day 12 (333.0 +/- 32.4 pg/ml). Prostaglandin F(2alpha) concentrations in ovarian tissue followed a similar pattern and were correlated with UO concentrations (r = 0.708, P < 0.05). In pregnant opossums, the highest levels of peripheral PGFM were recorded in the peripartum period, when luteal regression would also be expected to occur. The negative temporal relationship between peripheral concentrations of P(4) and concentrations of PGF(2alpha) in UO tissue/venous plasma observed in this preliminary study is consistent with the notion that PGF(2alpha) from the ovary and/or uterus may play a role in CL regression in the opossum.  相似文献   

19.
Bovine luteal cells from Days 4, 8, 14 and 18 of the estrous cycle were incubated for 2 h (1 x 10(5) cells/ml) in serum-free media with one or a combination of treatments [control (no hormone), prostaglandin F2 alpha (PGF), oxytocin (OT), estradiol-17 beta (E) or luteinizing hormone (LH)]. Luteal cell conditioned media were then assayed by RIA for progesterone (P), PGF, and OT. Basal secretion of PGF on Days 4, 8, 14 and 18 was 173.8 +/- 66.2, 111.1 +/- 37.8, 57.7 +/- 15.4 and 124.3 +/- 29.9 pg/ml, respectively. Basal release of OT and P was greater on Day 4 (P less than 0.01) than on Day 8, 14 and 18 (OT: 17.5 +/- 2.6 versus 5.6 +/- 0.7, 6.0 +/- 1.4 and 3.1 +/- 0.4 pg/ml; P: 138.9 +/- 19.5 versus 23.2 +/- 7.5, 35.4 +/- 6.5 and 43.6 +/- 8.1 ng/ml, respectively). Oxytocin increased (P less than 0.01) PGF release by luteal cells compared with control cultures irrespective of day of estrous cycle. Estradiol-17 beta stimulated (P less than 0.05) PGF secretion on Days 8, 14 and 18, and LH increased (P less than 0.01) PGF production only on Day 14. Prostaglandin F2 alpha, E and LH had no effect on OT release by luteal cells from any day. Luteinizing hormone alone or in combination with PGF, OT or E increased (P less than 0.01) P secretion by cells from Days 8, 14 and 18. However on Day 8, a combination of PGF + OT and PGF + E decreased (P less than 0.05) LH-stimulated P secretion. These data demonstrate that OT stimulates PGF secretion by bovine luteal cells in vitro. In addition, LH and E also stimulate PGF release but effects may vary with stage of estrous cycle.  相似文献   

20.
Reproductive cycles were studied in a group of tame Père David's deer hinds. The non-pregnant hind is seasonally polyoestrous and, in animals studied over 2 years, the breeding season began in early August (2 August +/- 3.3 days; s.e.m., N = 9) and ended in mid-December (18 December +/- 5.7 days; N = 8) and early January (6 January +/- 3.2 days; N = 11) in consecutive years. During the anoestrous period, plasma progesterone concentrations were low (0.2 +/- 0.01 ng/ml) or non-detectable. There was a small, transient increase in progesterone values before the onset of the first cycle of the breeding season. In daily samples taken during an oestrous cycle in which hinds were mated by a marked vasectomized stag, progesterone concentrations remained low (less than 0.5 ng/ml) for a period of about 6 days around the time of oestrus, showed a significant increase above oestrous levels by Day 4 (Day 0 = day of oestrus) and then continued to increase for 18 +/- 2.8 days to reach mean maximum luteal levels of 3.5 +/- 0.6 ng/ml. The plasma progesterone profiles from a number of animals indicated that marking of the hinds by the vasectomized stag did not occur at each ovulation during the breeding season and therefore an estimate of the cycle length could not be determined by this method. In the following year, detection of oestrus in 5 hinds was based on behavioural observations made in the absence of the stag. A total of 19 oestrous cycles with a mean length of 19.5 +/- 0.6 days was observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号