首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G. Pesole  M. Lotti  L. Alberghina    C. Saccone 《Genetics》1995,141(3):903-907
CUG, a universal leucine codon, has been reported to be read as serine in various yeast species belonging to the genus Candida. To gain a deeper insight into the origin of this deviation from the universal genetic code, we carried out a phylogenetic analysis based on the small-subunit ribosomal RNA genes from some Candida and other related Hemiascomycetes. Furthermore, we determined the phylogenetic relationships between the tRNA(Ser)CAG, responsible for the translation of CUG, from some Candida species and the other serine and leucine isoacceptor tRNAs in C. cylindracea. We demonstrate that the group of Candida showing the genetic code deviation is monophiletic and that this deviation could have been originated more than 150 million years ago. We also describe how phylogenetic analysis can be used for genetic code predictions.  相似文献   

2.
M A Santos  V M Perreau    M F Tuite 《The EMBO journal》1996,15(18):5060-5068
The human pathogenic yeast Candida albicans and a number of other Candida species translate the standard leucine CUG codon as serine. This is the latest addition to an increasing number of alterations to the standard genetic code which invalidate the theory that the code is frozen and universal. The unexpected finding that some organisms evolved alternative genetic codes raises two important questions: how have these alternative codes evolved and what evolutionary advantages could they create to allow for their selection? To address these questions in the context of serine CUG translation in C.albicans, we have searched for unique structural features in seryl-tRNA(CAG), which translates the leucine CUG codon as serine, and attempted to reconstruct the early stages of this genetic code switch in the closely related yeast species Saccharomyces cerevisiae. We show that a purine at position 33 (G33) in the C.albicans Ser-tRNA(CAG) anticodon loop, which replaces a conserved pyrimidine found in all other tRNAs, is a key structural element in the reassignment of the CUG codon from leucine to serine in that it decreases the decoding efficiency of the tRNA, thereby allowing cells to survive low level serine CUG translation. Expression of this tRNA in S.cerevisiae induces the stress response which allows cells to acquire thermotolerance. We argue that acquisition of thermotolerance may represent a positive selection for this genetic code change by allowing yeasts to adapt to sudden changes in environmental conditions and therefore colonize new ecological niches.  相似文献   

3.
M A Santos  G Keith    M F Tuite 《The EMBO journal》1993,12(2):607-616
From in vitro translation studies we have previously demonstrated the existence of an apparent efficient UAG (amber) suppressor tRNA in the dimorphic fungus Candida albicans (Santos et al., 1990). Using an in vitro assay for termination codon readthrough the tRNA responsible was purified to homogeneity from C.albicans cells. The determined sequence of the purified tRNA predicts a 5'-CAG-3' anticodon that should decode the leucine codon CUG and not the UAG termination codon as originally hypothesized. However, the tRNA(CAG) sequence shows greater nucleotide homology with seryl-tRNAs from the closely related yeast Saccharomyces cerevisiae than with leucyl-tRNAs from the same species. In vitro tRNA-charging studies demonstrated that the purified tRNA(CAG) is charged with Ser. The gene encoding the tRNA was cloned from C.albicans by a PCR-based strategy and DNA sequence analysis confirmed both the structure of the tRNA(CAG) and the absence of any introns in the tRNA gene. The copy number of the tRNA(CAG) gene (1-2 genes per haploid genome) is in agreement with the relatively low abundance (< 0.5% total tRNA) of this tRNA. In vitro translation studies revealed that the purified tRNA(CAG) could induce apparent translational bypass of all three termination codons. However, peptide mapping of in vitro translation products demonstrated that the tRNA(CAG) induces translational misreading in the amino-terminal region of two RNA templates employed, namely the rabbit alpha- and beta-globin mRNAs. These results suggest that the C.albicans tRNA(CAG) is not an 'omnipotent' suppressor tRNA but rather may mediate a novel non-standard translational event in vitro during the translation of the CUG codon. The possible nature of this non-standard translation event is discussed in the context of both the unusual structural features of the tRNA(CAG) and its in vitro behaviour.  相似文献   

4.
A number of yeasts of the genus Candida translate the standard leucine-CUG codon as serine. This unique genetic code change is the only known alteration to the universal genetic code in cytoplasmic mRNAs, of either eukaryotes or prokaryotes, which involves reassignment of a sense codon. Translation of CUG as serine in these species is mediated by a novel serine-tRNA (ser-tRNACAG), which uniquely has a guanosine at position 33, 5' to the anticodon, a position that is almost invariably occupied by a pyrimidine (uridine in general) in all other tRNAs. We propose that G-33 has two important functions: lowering the decoding efficiency of the ser-tRNACAG and preventing binding of the leucyl-tRNA synthetase. This implicates this nucleotide as a key player in the evolutionary reassignment of the CUG codon. In addition, the novel ser-tRNACAG has 1-methylguanosine (m1G-37) at position 37, 3' to the anticodon, which is characteristic of leucine, but not serine tRNAs. Remarkably, m1G-37 causes leucylation of the ser-tRNACAG both in vitro and in vivo , making the CUG codon an ambiguous codon: the polysemous codon. This indicates that some Candida species tolerate ambiguous decoding and suggests either that (i) the genetic code change has not yet been fully established and is evolving at different rates in different Candida species; or (ii) CUG ambiguity is advantageous and represents the final stage of the reassignment. We propose that such dual specificity indicates that reassignment of the CUG codon evolved through a mechanism that required codon ambiguity and that ambiguous decoding evolved to generate genetic diversity and allow for rapid adaptation to environmental challenges.  相似文献   

5.
Class II transfer RNAs (tRNAs), including tRNA(Leu) and tRNA(Ser), have an additional stem and loop structure, the long variable arm (V-arm). Here, we describe Class II tRNAs with a unique anticodon corresponding to neither leucine nor serine. Because these tRNAs are specifically conserved among the nematodes, we have called them 'nematode-specific V-arm-containing tRNAs' (nev-tRNAs). The expression of nev-tRNA genes in Caenorhabditis elegans was confirmed experimentally. A comparative sequence analysis suggested that the nev-tRNAs derived phylogenetically from tRNA(Leu). In vitro aminoacylation assays showed that nev-tRNA(Gly) and nev-tRNA(Ile) are only charged with leucine, which is inconsistent with their anticodons. Furthermore, the deletion and mutation of crucial determinants for leucylation in nev-tRNA led to a marked loss of activity. An in vitro translation analysis showed that nev-tRNA(Gly) decodes GGG as leucine instead of the universal glycine code, indicating that nev-tRNAs can be incorporated into ribosomes and participate in protein biosynthesis. Our findings provide the first example of unexpected tRNAs that do not consistently obey the general translation rules for higher eukaryotes.  相似文献   

6.
Previous studies have shown that the yeast Candida albicans encodes a unique seryl-tRNA(CAG) that should decode the leucine codon CUG as serine. However, in vitro translation of several different CUG-containing mRNAs in the presence of this unusual seryl-tRNA(CAG) result in an apparent increase in the molecular weight of the encoded polypeptides as judged by SDS-PAGE even though the molecular weight of serine is lower than that of leucine. A possible explanation for this altered electrophoretic mobility is that the CUG codon is decoded as modified serine in vitro. To elucidate the nature of CUG decoding in vivo, a reporter system based on the C. albicans gene (RBP1) encoding rapamycin-binding protein (RBP), coupled to the promoter of the C. albicans TEF3 gene, was utilized. Sequencing and mass-spectrometry analysis of the recombinant RBP expressed in C. albicans demonstrated that the CUG codon was decoded exclusively as serine while the related CUU codon was translated as leucine. A database search revealed that 32 out of the 65 C. albicans gene sequences available have CUG codons in their open reading frames. The CUG-containing genes do not belong to any particular gene family. Thus the amino acid specified by the CUG codon has been reassigned within the mRNAs of C. albicans. We argue here that this unique genetic code change in cellular mRNAs cannot be explained by the 'Codon Reassignment Theory'.  相似文献   

7.
CUG, a universal leucine codon, was reported to be read as serine in 10 species of the genus Candida. We used an in vitro cell-free translation system to identify the amino acid assignment of codon CUG in 78 species and 7 varieties of galactose-lacking Candida species equipped with Q9 as the major ubiquinone. Of these, only 11 species used codon CUG as a leucine codon. The remaining species decoded CUG as serine. Their small subunit ribosomal DNA sequences were also determined and analyzed using both Neighbor-Joining and Maximum Likelihood methods. The species decoding CUG as serine and leucine formed distinct clusters on both molecular phylogenetic trees. Our result suggests that non-universal decoding is not a rare event, and that it is widely distributed in the genus Candida.  相似文献   

8.
9.
O'Sullivan JM  Mihr MJ  Santos MA  Tuite MF 《Gene》2001,275(1):133-140
In a number of Candida species the 'universal' leucine codon CUG is decoded as serine. To help understand the evolution of such a codon reassignment we have analyzed the Candida albicans leucyl-tRNA synthetase (CaLeuRS) gene (CaCDC60). The predicted CaLeuRS sequence shows a significant level of amino acid identity to LeuRS from other organisms. A mitochondrial LeuRS (ScNAM2) homologue, which shared low identity with the CaLeuRS, was also identified in C. albicans. Antigenically-related LeuRSs were identified in a range of Candida species decoding the CUG codon as both serine and leucine, using an antibody raised against the N-terminal 15 amino acids of the CaLeuRS. Complementation experiments demonstrated that the CaLeuRS was able to functionally complement a Saccharomyces cerevisiae cdc60::kanMX null mutation. We conclude that there is no alteration in tRNA recognition and aminoacylation by the C. albicans LeuRS, which argues against it having a role in codon reassignment. The nucleotide sequences of the CaCDC60 and CaNAM2 genes were deposited at GenBank under Accession numbers AF293346 and AF352020, respectively.  相似文献   

10.
Genetic code alterations discovered over the last 40 years in bacteria and eukaryotes invalidate the hypothesis that the code is universal and frozen. Mitochondria of various yeast species translate the UGA stop codon as tryptophan (Trp) and leucine (Leu) CUN codons (N = any nucleotide) as threonine (Thr) and fungal CTG clade species reassigned Leu CUG codons to serine and translate them ambiguously in their cytoplasms. This unique sense-to-sense genetic code alteration is mediated by a Ser-tRNA containing a Leu 5'-CAG-3'anticodon (ser-tRNA(CAG)), which is recognized and charged with Ser (~97%) by the seryl-tRNA synthetase (SerRS) and with Leu (~3%) by the leucyl-tRNA synthetase (LeuRS). This unusual tRNA appeared 272 ± 25 million years ago and had a profound impact on the evolution of the CTG clade species. Here, we review the most recent results and concepts arising from the study of this codon reassignment and we highlight how its study is changing our views of the evolution of the genetic code.  相似文献   

11.
Animal mitochondrial translation systems contain two serine tRNAs, corresponding to the codons AGY (Y = U and C) and UCN (N = U, C, A, and G), each possessing an unusual secondary structure; tRNA(GCU)(Ser) (for AGY) lacks the entire D arm, whereas tRNA(UGA)(Ser) (for UCN) has an unusual cloverleaf configuration. We previously demonstrated that a single bovine mitochondrial seryl-tRNA synthetase (mt SerRS) recognizes these topologically distinct isoacceptors having no common sequence or structure. Recombinant mt SerRS clearly footprinted at the TPsiC loop of each isoacceptor, and kinetic studies revealed that mt SerRS specifically recognized the TPsiC loop sequence in each isoacceptor. However, in the case of tRNA(UGA)(Ser), TPsiC loop-D loop interaction was further required for recognition, suggesting that mt SerRS recognizes the two substrates by distinct mechanisms. mt SerRS could slightly but significantly misacylate mitochondrial tRNA(Gln), which has the same TPsiC loop sequence as tRNA(UGA)(Ser), implying that the fidelity of mitochondrial translation is maintained by kinetic discrimination of tRNAs in the network of aminoacyl-tRNA synthetases.  相似文献   

12.
13.
Development of a transformation system in the n-alkane-assimilating diploid yeast Candida tropicalis requires an antibiotic resistance gene in order to establish a selectable marker. The resistance gene for hygromycin B has often been used as a selectable marker in yeast transformation. However, C. tropicalis harboring the hygromycin resistance gene (HYG) was as sensitive to hygromycin B as the wild-type strain. Nine CTG codons were found in the ORF of the HYG gene. This codon has been reported to be translated as serine rather than leucine in Candida species. Analysis of the tRNA gene in C. tropicalis with the anticodon CAG [tRNA(CAG) gene], which is complementary to the codon CTG, showed that the sequence was highly similar to that of the C. maltosa tRNA(CAG) gene. In C. maltosa, the codon CTG is read as serine and not leucine. These results suggested that the HYG gene was not functional due to the nonuniversal usage of the CTG codon. Each of the nine CTG codons in the ORF of the HYG gene was changed to a CTC codon, which is read as leucine, by site-directed mutagenesis. When a plasmid containing the mutated HYG gene (HYG#) was constructed and introduced into C. tropicalis, hygromycin-resistant transformants were successfully obtained. This mutated hygromycin resistance gene may be useful for direct selection of C. tropicalis transformants.  相似文献   

14.
15.
Codon CUG is used for serine instead of for leucine, its usual assignment, in several yeasts of the genusCandida. We propose a series of steps for the reassignment, including disappearance of leucine CUG and its anticodon CAG, formation of a new serine tRNA, with anticodon CAG, from a duplication of the gene for serine tRNA (IGA), and then production of CUG codons by mutation at sites that are mostly nonessential.  相似文献   

16.
Mitochondrial (mt) tRNA(Trp), tRNA(Ile), tRNA(Met), tRNA(Ser)GCU, tRNA(Asn)and tRNA(Lys)were purified from Drosophila melanogaster (fruit fly) and their nucleotide sequences were determined. tRNA(Lys)corresponding to both AAA and AAG lysine codons was found to contain the anticodon CUU, C34 at the wobble position being unmodified. tRNA(Met)corresponding to both AUA and AUG methionine codons was found to contain 5-formylcytidine (f(5)C) at the wobble position, although the extent of modification is partial. These results suggest that both C and f(5)C as the wobble bases at the anticodon first position (position 34) can recognize A at the codon third position (position 3) in the fruit fly mt translation system. tRNA(Ser)GCU corresponding to AGU, AGC and AGA serine codons was found to contain unmodified G at the anticodon wobble position, suggesting the utilization of an unconventional G34-A3 base pair during translation. When these tRNA anticodon sequences are compared with those of other animal counterparts, it is concluded that either unmodified C or G at the wobble position can recognize A at the codon third position and that modification from A to t(6)A at position 37, 3'-adjacent to the anticodon, seems to be important for tRNA possessing C34 to recognize A3 in the mRNA in the fruit fly mt translation system.  相似文献   

17.
In Salmonella enterica serovar Typhimurium a mutation in the purF gene encoding the first enzyme in the purine pathway blocks, besides the synthesis of purine, the synthesis of thiamine when glucose is used as the carbon source. On carbon sources other than glucose, a purF mutant does not require thiamine, since the alternative pyrimidine biosynthetic (APB) pathway is activated. This pathway feeds into the purine pathway just after the PurF biosynthetic step and upstream of the intermediate 4-aminoimidazolribotide, which is the common intermediate in purine and thiamine synthesis. The activity of this pathway is also influenced by externally added pantothenate. tRNAs from S. enterica specific for leucine, proline, and arginine contain 1-methylguanosine (m(1)G37) adjacent to and 3' of the anticodon (position 37). The formation of m(1)G37 is catalyzed by the enzyme tRNA(m(1)G37)methyltransferase, which is encoded by the trmD gene. Mutations in this gene, which result in an m(1)G37 deficiency in the tRNA, in a purF mutant mediate PurF-independent thiamine synthesis. This phenotype is specifically dependent on the m(1)G37 deficiency, since several other mutations which also affect translation fidelity and induce slow growth did not cause PurF-independent thiamine synthesis. Some antibiotics that are known to reduce the efficiency of translation also induce PurF-independent thiamine synthesis. We suggest that a slow decoding event at a codon(s) read by a tRNA(s) normally containing m(1)G37 is responsible for the PurF-independent thiamine synthesis and that this event causes a changed flux in the APB pathway.  相似文献   

18.
The infectious yeast Candida albicans progresses through two developmental programs which involve differential gene expression, the bud-hypha transition and high-frequency phenotypic switching. To understand how differentially expressed genes are regulated in this organism, the promoters of phase-specific genes must be functionally characterized, and a bioluminescent reporter system would facilitate such characterization. However, C. albicans has adopted a nontraditional codon strategy that involves a tRNA with a CAG anticodon to decode the codon CUG as serine rather than leucine. Since the luciferase gene of the sea pansy Renilla reinformis contains no CUGs, we have used it to develop a highly sensitive bioluminescent reporter system for C. albicans. When fused to the galactose-inducible promoter of GAL1, luciferase activity is inducible; when fused to the constitutive EF1 alpha 2 promoter, luciferase activity is constitutive; and when fused to the promoter of the white-phase-specific gene WH11 or the opaque-phase-specific gene OP4, luciferase activity is phase specific. The Renilla luciferase system can, therefore, be used as a bioluminescent reporter to analyze the strength and developmental regulation of C. albicans promoters.  相似文献   

19.
Aminoacylated (charged) transfer RNA isoacceptors read different messenger RNA codons for the same amino acid. The concentration of an isoacceptor and its charged fraction are principal determinants of the translation rate of its codons. A recent theoretical model predicts that amino-acid starvation results in 'selective charging' where the charging levels of some tRNA isoacceptors will be low and those of others will remain high. Here, we developed a microarray for the analysis of charged fractions of tRNAs and measured charging for all Escherichia coli tRNAs before and during leucine, threonine or arginine starvation. Before starvation, most tRNAs were fully charged. During starvation, the isoacceptors in the leucine, threonine or arginine families showed selective charging when cells were starved for their cognate amino acid, directly confirming the theoretical prediction. Codons read by isoacceptors that retain high charging can be used for efficient translation of genes that are essential during amino-acid starvation. Selective charging can explain anomalous patterns of codon usage in the genes for different families of proteins.  相似文献   

20.
Transfer RNA (tRNA) identify is maintained by the highly specific interaction of a few defined nucleotides or groups of nucleotides, called identity elements, with the cognate aminoacyl-tRNA synthetase, and by nonproductive interactions with the other 19 aminoacyl-tRNA synthetases. Most tRNAs have a set of identity elements in at least two locations, commonly in the anticodon loop or in the acceptor stem, and at the discriminator base position 73. We have used T7 RNA polymerase transcribed tRNAs to demonstrate that the sole replacement of the discriminator base A73 of human tRNA(Leu) with the tRNA(Ser)-specific G generates a complete identity switch to serine acceptance. The reverse experiment, the exchange of G73 in human tRNA(Ser) for the tRNA(Leu-specific A, causes a total loss of serine specificity without creating any leucine acceptance. These results suggest that the discriminator base A73 of human tRNA(Leu) alone protects this tRNA against serylation by seryl-tRNA synthetase. This is the first report of a complete identity switch caused by an exchange of the discriminator base alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号