首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The kinetic properties of the [3H]ADP-ATP exchange reaction catalyzed by Na+, K+-dependent ATPase [EC 3.6.1,3] were investigated, using NaI-treated microsomes from bovine brain, and the following results were obtained. 1. The rates of the Na+-dependent exchange reaction in the steady state were measured in a solution containing 45 micronM free Mg2+, 100 mMNaCl, 80 micronM ATP, and 160 micronM ADP at pH 6.5 and 4-5 degrees. The rate and amount of decrease in phosphorylated intermediate on adding ADP, i.e., the amount of ADP-sensitive EP, were measured while varying one of the reaction parameters and fixing the others mentioned above. Plots of the exchange rate and the amount of ADP-sensitive EP against the logarithm of free Mg2+ concentration gave bell-shaped curves with maximum values at 50-60 micronM free Mg2+. Plots of the exchange rate and the amount of ADP-sensitive EP against pH also gave bell-shaped curves with maximum values at pH 6.9-7. They both increased with increase in the concentration of NaCl to maximum values at 150-200 mM NaCl, and then decreased rapidly with increase in the NaCl concentration above 200 mM. The dependences of the exchange rate and the amount of ADP-sensitive EP on the concentration of ADP followed the Michaelis-Menten equation, and the Michaelis constants Km, for both were 43 micronM. The dependence of the exchange rate on the ATP concentration also followed the Michaelis-Menten equation, and the Km value was 30 micronM. The amount of ADP-sensitive EP increased with increase in the ATP concentration, and reached a maximum value at about 5 micronM ATP. 2. The N+-dependent [3H]ADP-ATP exchange reaction was started by adding [3H]ADP to EP at low Mg2+-concentration. The reaction consisted of a rapid initial phase and a slow steady phase. The amount of [3H]ATP formed during the rapid initial phase, i.e. the size of the ATP burst, was equal to that of ADP-sensitive EP, and was proportional to the rate in the steady state. At high Mg2+ concentration, the rate of Na+-dependent exchange in the steady state was almost zero, and EP did not show any ADP sensitivity. However, rapid formation of [3H]ATP was observed in the pre-steady state, and the size of the ATP burst increased with increase in the KCl concentration. From these findings, we concluded that an enzyme-ATP complex (E2ATP) formed at low Mg2+ concentration is in equilibrium with EP + ADP, that the rate-limiting step for the exchange reaction is the release of ATP from the enzyme-ATP complex, that the ADP-insensitive EP (formula: see text) produced at high Mg2+ concentration is in equilibrium with the enzyme-ATP complex, and that the equilibrium shifts towards the enzyme-ATP complex on adding KCl. Actually, the ratio of the size of the ATP burst to the amount of EP was equal to the reciprocal of the equilibrium constant of step (formula: see text), determined by a method previously reported by us.  相似文献   

2.
The species and amounts of intermediates formed by myosin in myofibrils during the ATPase reaction under relaxed conditions were examined. The amount of total nucleotides (ADP + ATP) bound to myofibrils, determined by a centrifugation method or a rapid filtration method, was 0.86 mol/mol myosin head. The amount of bound ADP, determined as the ADP remaining in the mixture after free ADP had been rapidly converted into ATP by an ATP-regenerating system, was found to be 0.67 mol/mol myosin head. We examined the time courses of free-Pi and total-Pi (TCA-Pi) formation after adding ATP to the myofibrils. The amount of Pi bound to myofibrils, calculated by subtracting the burst size of free Pi (0.23 mol/mol myosin head) from that of TCA-Pi (0.60 mol/mol myosin head), was found to be 0.37 mol/mol myosin head. The amount of tightly bound ATP determined by an ATP-quenching method was very low (0.03 mol/mol myosin head). If there is no myosin-phosphate complex, then the amounts of the myosin-phosphate-ADP complex, MADPP, and the tightly bound myosin-ATP complex, M*ATP, are 0.37 and 0.03 mol/mol myosin head, respectively, whereas the amounts of myosin-ADP and loosely bound myosin-ATP complexes are 0.30 and 0.16 mol/mol myosin head, respectively. Thus, half of the myosin heads forms MADPP or M*ATP, and the equilibrium between MADPP and M*ATP shifts to the MADPP side. These results agree with those obtained for myosin in solution (Inoue, A., Takenaka, H., Arata, T., & Tonomura, Y. (1979) Adv. Biophys. 13, 1-194). Therefore, in relaxed myofibrils the active site of myosin does not interact with actin.  相似文献   

3.
Previously, we proposed the following reaction machanism for the transport ATPase (EC 3.6.1.3) reaction in the presence of high concentrations of Mg2+ and Na+:(see article). Some kinetic and thermodynamic properties of steps 3 and 4 were investigated, and the following results were obtained. 1. When the reaction was started by adding ATP to the enzyme in the presence of 50 mM Na+ and 0.5 mM K+ or in the presence of 50mM Na+ and 0.5mM Rb+, the amount of E ADP P increased with time and maintained a constant level after reaching a maximum. We could not observe the initial burst of EP formation, which was observed by Post er al. in the presence of 8 mM Na+ and 0.01 mM Rb+. 2. The existence of quasi-equilibrium between E2ATP and E ADP P in the presence of low concentrations of Na+ was suggested by the fact that the values of the reciprocal of the equilibrium constant, K3 of step 3 obtained by the following three methods were almost the same. a) The value of 1+K3 was estimated from the ratio of vo/[EP] to kd, where vo is the rate of ATP hydrolysis in the steady state, [EP] the concentration of EP, and kd the first-order rate constant of EP disappearance after stopping EP formation. b) This value was also calculated from the ratio of the amount of P1 liberated to that of decrease in EP after stopping EP formation. c) The value of K3 was also calculated from the initial rapid decrease in EP on adding K+ and EDTA, assuming that the rapid decrease was due to a shift of the equilibrium toward E2ATP on adding K+. For example, the value of K3 with 10mM NaCL and 0.5mM KCL was 7--11. Although ATP formation due to a shift of the equilibrium toward E2ATP by a K+ jump in the presence of a low concentration of Na+ was observed at 0 degrees, the amount of ATP formed by a K+ jump at 15 degrees was less than the value expected from the shift of the equilibrium. 3. The values of delta H degrees and delta S degrees of step 3 were estimated in the presence of a sufficient amount of Na+ and in the absence of K+. They were +4--+5 kcal mole minus 1 and +15--+16 entropy units mole minus1, respectively. On the basis of kinetic studies of the elementary steps and the overall reaction of Na+-K+-dependent ATPase [EC 3.6.1.3], we (1--4) showed that a phosphorylated intermediate, EP, is formed via two kinds of enzyme-substrate complex, E1ATP and E2ATP, that the EP is in K+-dependent quasi-equilibrium with E2ATP, and that in the presence of high concentration of Mg2+, EP is in a high-energy state and contains bound ADP, E ADP P.(see article).  相似文献   

4.
ATP-dependent calcium uptake by isolated sarcoplasmic reticulum vesicles is inhibited by concentrations of free thapsigargin as low as 10(-10) M. This effect is due to primary inhibition of the Ca(2+)-dependent ATPase which is coupled to active transport. When binding of calcium to the activating sites of the enzyme is measured under equilibrium conditions in the absence of ATP, addition of thapsigargin produces strong inhibition. On the other hand, if [tau-32P]ATP is added to ATPase preincubated with Ca2+ under favorable conditions, significant levels of 32P-phosphorylated intermediate are still formed transiently, even in the presence of thapsigargin. The phosphoenzyme, however, decays rapidly as the calcium-enzyme complex is destabilized as a consequence of ATP utilization, and formation of the thapsigargin-enzyme complex is favored. Formation of the thapsigargin-enzyme complex is also favored by Ca2+ chelation with EGTA, with consequent inhibition of the enzyme reactivity to Pi (i.e. reverse of the ATPase hydrolytic reaction). Neither the Ca(2+)- and ATP-induced Ca2+ release from junctional sarcoplasmic reticulum nor the Ca(2+)- and calmodulin-dependent ATPase of plasma membranes (erythrocyte ghosts) were found to be altered by thapsigargin at such low concentrations.  相似文献   

5.
The extent of oxygen exchange between phosphate and water has been measured for the calcium-regulated magnesium-dependent ATPase activity of chemically skinned fibers from rabbit skeletal muscle. The oxygen exchange was determined for isometrically held fibers by measuring with a mass spectrometer the distribution of 18O atoms in the product inorganic phosphate when ATP hydrolysis was carried out in H2(18)O. The extent of exchange was much greater in relaxed muscle (free Ca2+ less than 10(-8) M) than in calcium-activated muscle (free Ca2+ approximately equal to 3 X 10(-5) M). Activated fibers had an ATPase activity at least 30-fold greater than the relaxed fibers. These results correlate well with the extents of oxygen exchange accompanying magnesium-dependent myosin and unregulated actomyosin ATPase activities, respectively. In relaxed fibers, comparison of the amount of exchange with the ATPase activity suggests that the rate constant for the reformation of myosin-bound ATP from the myosin products complex is about 10 s-1 at 20 degrees C and pH 7.1. In each experiment the distribution of 18O in the Pi formed was incompatible with a single pathway for ATP hydrolysis. In the case of the calcium-activated fibers, the multiple pathways for ATP hydrolysis appeared to be an intrinsic property of the actomyosin ATPase in the fiber. These results indicate that in muscle fibers, as in isolated actomyosin, cleavage of protein-bound ATP is readily reversible and that association of the myosin products complex with actin promotes Pi release.  相似文献   

6.
The inhibition by light of chloroplast coupling factor ATPase is not due simply to competing photophosphorylation. This inhibition is only partially relieved by either an arsenate-pool trap for released phosphate, or a pyruvate kinase/phosphoenolpyruvate trap for ADP. Moreover, the amount of product return that does occur in the absence of trapping systems, ascertained by incorporation of 32Pi or [2-3H]ADP back into ATP during the hydrolysis reaction, is insufficient to account for the observed activity decrease. In intermediate pi:H2O oxygen exchange studies, the number of water oxygens incorporated into each molecule of Pi produced does not vary with light intensity during the ATPase assay. This indicates that the light-induced change in ATPase activity is not due to an alteration of rat constants involved in the forward and reverse partitioning of the E.ADP.Pi complex. In contrast, ammonium chloride, an uncoupler of photophosphorylation which stimulates membrane-bound coupling factor ATPase when added after light activation, causes a shift in the pattern of intermediate Pi:H2O oxygen exchange toward a lower number of water oxygens incorporated per Pi formed. The effect of NH4+ consistent with ATPase activity stimulation caused by enhanced partitioning forward of the E.products complex. These observations suggest the operation of two mechanisms of regulation of ATP ase activity during chloroplast de-energization. However, a direct effect of NH4+ on the coupling factor itself, independent of the membrane energization effect, cannot be ruled out by the present studies. Additional oxygen exchange experiments lead to the conclusion that the binding of ATP at a site catalyzing extensive ATP:H2O back exchange in the native chloroplast system ( Wimmer, M. J., and Rose, I. A. (1977) J. Biol. Chem. 252, 6769-6775) is different from the binding of ATP for net hydrolysis in the system activated for ATPase.  相似文献   

7.
P A Fortes 《Biochemistry》1977,16(3):531-540
Anthroylouabain (AO) was synthesized by reaction of anthracene-9-carboxylic chloride with ouabain. Nuclear magnetic resonance spectroscopy of AO suggests that the anthracene is esterfied to the rhamnose in the glycoside. AO inhibits Na-K ATPase from human red cells, eel electroplax and rabbit and dog kidney with a KI less than 1muM. AO bound to rabbit or dog kidney Na-K ATPase shows enhanced fluorescence and characteristic spectral shifts. AO binding requires Mg and is optimum in the presence of Mg + Pi or MgATP + Na; ouabain prevents AO binding and fluorescence enhancement if added before AO or reverses it if added after AO is bound. Na inhibits AO binding in the presence of Mg + Pi and K inhibits it in the presence of MgATP + Na. AO binding and dissociation rate constants measured by fluorescence agree qualitatively with reported measurements for ouabain, using other methods, although AO shows faster kinetics than ouabain. Dissociation constants obtained from kinetic measurements are 1.5 X 10(-7) and 1.8 X 10(-7) M for the MgATP + Na complex and Mg + Pi complex, respectively. KD from fluorescence titrations is 2.3 X 10(-7) M for the latter. The enzyme has 2-2.5 nmol of AO binding sites/mg of protein. No differences in the fluorescence parameters of the Mg + Pi or MgATP + Na complexes were observed, suggesting that the same enzyme conformation binds AO under both ligand conditions. Comparison of the AO fluorescence parameters in the enzyme with those of model systems suggests that the binding site is hydrophobic and/or viscous and shielded from H2O. The results indicate that AO is a specific fluorescent probe of the cardiac glycoside receptor of the Na-K ATPase. Possible applications are discussed.  相似文献   

8.
The effects of Na+ and K+ ions on the elementary steps in the reaction of Na+-K+-dependent ATPase (EC 3.6.1.3) were investigated in 0.5-600mM NaCL and 0-10mM KCL, at a fixed concentration (1mM) OF MgCL2, AT PH 8.5 and at 15 degrees. The data were analyzed on the basis of the reaction mechanism in which a phosphorylated intermediate, E ADP P (abbreviated as EP), is formed via two kinds of enzyme-substrate comples, E1ATP and E2ATP, and EP is in equilibrium with E2ATP, and is hydrolyzed to produce P1 and ADP. The following results were obtained: 1. The rate od E2ATP-formation, vf, increased with increase in the Na+ concentration, reached a maximum level, and then decreased with further increase in the Na+ concentration at various K+ concentrations. The value of vf was given as (see article). 2. The reciprocal of the equilibrium constants, K2, of the step E1ATPEQUILIBRIUM E ADP P in the presence of low concentrations of Na+ was larger than that in the presence of high concrntrations of Na+, indicating that the equilibrium shifted markedly toward E2ATP at low concentrations of Na+. The relation of K3 with Na concentration was rather complicated on varying the concentration of K+. However, generally speaking, it increased with increase in the K+ concentration. 3. The decomposition of EP was markedly activated by even low concentrations of K+, and inhibited by high concentrations of Na+. The inhibition by Na+ was partially suppressed by K+. The rate constant of EP-decomposition, vo/(EP), was given by (see article) where (vo/(EP) K+EQUALS0 was the value of vo/[EP] in the absence of K+.  相似文献   

9.
Kato K  Lukas A  Chapman DC  Dhalla NS 《Life sciences》2000,67(10):1175-1183
Previous studies have shown that cardiac Na+ -K+ ATPase activity in the UM-X7.1 hamster strain is decreased at an early stage of genetic cardiomyopathy and remains depressed; however, the mechanism for this decrease is unknown. The objective of the present study was to assess whether changes in the expression of cardiac Na+-K+ ATPase subunits in control and UM-X7.1 cardiomyopathic hamsters are associated with alterations in the enzyme activity. Accordingly, we examined sarcolemmal Na+-K+ ATPase activity as well as protein content and mRNA levels for the alpha1, alpha2, alpha3 and beta1-subunit of the Na+-K+ ATPase in 250-day-old UM-X7.1 and age-matched, control Syrian hamsters; this age corresponds to the severe stage of heart failure in the UM-X7.1 hamster. Na+-K+ ATPase activity in UM-X7.1 hearts was decreased compared to controls (9.0 +/- 0.8 versus 5.6 +/- 0.8 micromol Pi/mg protein/hr). Western blot analysis revealed that the protein content of Na+-K+ ATPase alpha1- and beta1-subunits were increased to 164 +/- 27% and 146 +/- 22% in UM-X7.1 hearts respectively, whereas that of the alpha2- and alpha3-subunits were decreased to 82 +/- 5% and 69 +/- 11% of control values. The results of Northern blot analysis for mRNA levels were consistent with the protein levels; mRNA levels for the alpha1- and beta1-subunits in UM-X7.1 hearts were elevated to 165 +/- 14% and 151 +/- 10%, but the alpha2-subunit was decreased to 60 +/- 8% of the control value. We were unable to detect mRNA for the alpha3-subunit in either UM-X7. 1 or control hearts. These data suggest that the marked depression of Na+-K+ ATPase activity in UM-X7.1 cardiomyopathic hearts may be due to changes in the expression of subunits for this enzyme.  相似文献   

10.
The possibility that H+ might substitute for Na+ at Na+ sites of Na+,K+-ATPase was studied. Na+,K+-ATPase purified from pig kidney showed ouabain-sensitive K+-dependent ATPase activity in the absence of Na+ at acid pH (H+,K+-ATPase). The specific activity was 1.1 mumol Pi/mg/min at pH 5.7, whereas the specific activity of Na+,K+-ATPase was 14 mumol Pi/mg/min at pH 7.5. The enzyme was phosphorylated from ATP in the absence of Na+ at the acid pH. The initial rate of the phosphorylation was also accelerated at the acid pH in the absence of Na+, and the maximal rate obtained at pH 5.5 without Na+ was 9% of the rate at pH 7.0 with Na+. The phosphoenzyme was sensitive to K+ but almost insensitive to ADP. The phosphoenzyme was sensitive to hydroxylamine treatment and the alpha-subunit of the enzyme was found to be phosphorylated. H+,K+-ATPase was inhibited as effectively as Na+,K+-ATPase by N-ethylmaleimide but was less inhibited by oligomycin or dimethyl sulfoxide. These results indicate that protons have an Na+-like effect on the Na+ sites of Na+,K+-ATPase and suggest that protons can be transported by the sodium pump in place of Na+.  相似文献   

11.
Effects of Na+, K+, and nucleotides on Mg2+-dependent phosphorylation of (Na+ + K+)-dependent adenosine triphosphatase by Pi were studied under equilibrium conditions. Na+ was a linear competitive inhibitor with respect to Mg2+ and a mixed inhibitor with respect to Pi. K+ was a partial inhibitor; it interacted with positive cooperativity and induced negative cooperativities in the interactions of Mg2+ and Pi with the enzyme. Adenyl-5'-yl (beta, gamma-methylene)diphosphonate, a nonhydrolyzable analog of ATP, interacted with negative cooperativity to inhibit phosphorylation in competition with Pi. ATP was also a competitive inhibitor. Na+ and K+ acted antagonistically, Na+ and nucleotides inhibited synergistically, and K+ and nucleotides were mutually exclusive. In the presence of ouabain, when nucleotides were excluded from the site inhibiting phosphorylation, a low affinity regulatory site for nucleotides became apparent, the occupation of which reduced the rate of dephosphorylation and the initial rate of phosphorylation of the enzyme without affecting the equilibrium constant of the reaction of Pi with the ouabain-complexed enzyme. The regulatory site was also detected in the absence of ouabain. The data suggest that catalytic and transport functions of the oligomeric enzyme may be regulated by homotropic and heterotropic site-site interactions, ligand-induced slow isomerizations, and distinct catalytic and regulatory sites for ATP.  相似文献   

12.
Two kinds of ATP binding sites were found on the ATPase molecule in deoxycholic acid-treated sarcoplasmic reticulum. One was the catalytic site (1 mol/mol active site) and its affinity was high. Upon addition of Ca2+, all the ATP bound to the catalytic site disappeared at 75 mM KCl, while a significant amount of ATP remained bound to the site at 0–2 mM KCl. The latter binding was found to be due to the formation of a slowly exchanging enzyme-ATP complex, which is in equilibrium with phosphoenzyme + ADP. The other binding site was the regulatory one (1 mol/mol active site) and its affinity was low, changing only insignificantly upon addition of Ca2+. The ATP binding to the regulatory site shifted the equilibrium between the slowly exchanging complex and EP toward EP.  相似文献   

13.
The Mg2+-dependent ATPase (adenosine 5'-triphosphatase) mechanism of myosin and subfragment 1 prepared from frog leg muscle was investigated by transient kinetic technique. The results show that in general terms the mechanism is similar to that of the rabbit skeletal-muscle myosin ATPase. During subfragment-1 ATPase activity at 0-5 degrees C pH 7.0 and I0.15, the predominant component of the steady-state intermediate is a subfragment-1-products complex (E.ADP.Pi). Binary subfragment-1-ATP (E.ATP) and subfragment-1-ADP (E.ADP) complexes are the other main components of the steady-state intermediate, the relative concentrations of the three components E.ATP, E.ADP.Pi and E.ADP being 5.5:92.5:2.0 respectively. The frog myosin ATPase mechanism is distinguished from that of the rabbit at 0-5 degrees C by the low steady-state concentrations of E.ATP and E.ADP relative to that of E.ADP.Pi and can be described by: E + ATP k' + 1 in equilibrium k' - 1 E.ATP k' + 2 in equilibrium k' - 2 E.ADP.Pi k' + 3 in equilibrium k' - 3 E.ADP + Pi k' + 4 in equilibrium k' - 4 E + ADP. In the above conditions successive forward rate constants have values: k' + 1, 1.1 X 10(5)M-1.S-1; k' + 2 greater than 5s-1; k' + 3, 0.011 s-1; k' + 4, 0.5 s-1; k'-1 is probably less than 0.006s-1. The observed second-order rate constants of the association of actin to subfragment 1 and of ATP-induced dissociation of the actin-subfragment-1 complex are 5.5 X 10(4) M-1.S-1 and 7.4 X 10(5) M-1.S-1 respectively at 2-5 degrees C and pH 7.0. The physiological implications of these results are discussed.  相似文献   

14.
Inhibition of (Na+ + K+)-dependent adenosine triphosphatase phosphatase by vanadate is thought to occur through the tight binding of vanadate to the same site from which Pi is released. To see if ATP binds to [48V] vanadate-enzyme complex, just as it does to the phosphoenzyme, the effects of Na+, K+, and ATP on the dissociation rate of the complex at 10 degrees C were studied. The rate constant was increased by Na+, and this increase was blocked by K+, indicating that either Na+ or K+ binds to the complex. ATP alone, or in combination with K+, had no effect on the rate constant. In the presence of Na+, however, ATP caused a further increase in the rate constant. The value of K0.5 of Na+ was the same in the presence or absence of ATP; K0.5 of ATP (0.2 mM) did not seem to change significantly when Na+ concentration was varied, and K0.5 of K+, at a constant Na+ concentration, was the same in the presence or absence of ATP. The data indicate that ATP binds to the enzyme-vanadate complex regardless of the presence or absence of Na+ or K+, but it affects the dissociation rate only when Na+ is bound simultaneously. The value of K0.5 of Na+ decreased as pH was increased in the range of 6.5-7.8, but K0.5 of ATP was independent of pH. Demonstration of ATP binding to the enzyme-vanadate complex provides further support for the suggestion that the oligomeric enzyme contains a low-affinity regulatory site for ATP that is distinct from the interacting high-affinity catalytic sites.  相似文献   

15.
The ATP-dependent phosphoenzyme formation and its reversal were studied at 0 degrees C and pH 7.0 in the ATPase of sarcoplasmic reticulum. Addition of KCl or several other salts (approximately 100 mM) decreased the maximum rate of ADP-induced dephosphorylation of phosphoenzyme as well as the apparent affinity of the phosphoenzyme toward ADP. High ATP had a similar effect on the latter, whereas it had little effect on the former. In contrast, high KCl or a considerable change in the ionic strength had little effect on the initial rate of phosphoenzyme formation at saturating ATP concentrations. During steady state phosphorylation at 1.0 mM MgCl2 and 5.0 mM CaCl2 in the absence of added KCl, a significant amount of [gamma-32P]ATP remained bound to the enzyme even when the enzyme concentration was much in excess over that of [gamma-32P]ATP. Evidence is presented that this enzyme-ATP complex represents a precursor to the phosphoenzyme. ATP dissociated slowly (0.20 s-1) from this enzyme-ATP complex and addition of high KCl or other salts accelerated its dissociation. In contrast, when the enzyme was complexed with adenyl-5'-yl (beta, gamma-methylene)diphosphonate in the absence of added KCl under these conditions, dissociation of the nucleotide from the complex as estimated in the displacement experiment with [gamma-32P]ATP, was found to be much faster than that of ATP.  相似文献   

16.
Y Kuriki  J Halsey  R Biltonen  E Racker 《Biochemistry》1976,15(23):4956-4961
The phosphorylation of (Na+, K+)ATPase from the electric organ of the electric eel is dependent on Mg2+. The amount of phosphoenzyme formed was increased by K+ and decreased by Na+. Kinetic analyses indicate that a ternary complex of ATPase, Pi and Mg2+ is formed prior to phosphorylation of the protein. Calorimetric studies revealed extraordinarily large enthalpy changes associated with the binding of Mg2+ (-49 kcal/mol) and of Pi (-42 kcal/mol), indicating a thermodynamically significant conformational change in the enzyme. The dissociation constant for the binding of Mg2+ and Pi derived from calorimetric measurements is in good agreement with the value obtained from the kinetic studies. These results indicate that ion binding induces a conformational change in the enzyme which is a prerequisite for phosphorylation by Pi.  相似文献   

17.
Sarcoplasmic reticulum (SR) membranes from rabbit skeletal muscle were solubilized with a high concentration of dodecyl octaethyleneglycol monoether (C12E8) and the kinetic properties of the Ca2+,Mg2+-dependent ATPase [EC 3.6.1.3] were studied. The following results were obtained: 1. SR ATPase solubilized in C12E8 retains high ability to form phosphoenzyme ([EP] = 4--5 mol/10(6) g protein) for at least two days in the presence of 5 mM Ca2+, 0.5 M KCl, and 20% glycerol at pH 7.55. 2. The ATPase activity was dependent on both Mg2+ and Ca2+. However, the rate of E32P decay after the addition of unlabeled ATP was independent of Mg2+. 3. Most of the EP formed in the absence of Mg2+ was capable of reacting with ADP to form ATP in the backward reaction. However, in the presence of 5 mM Mg2+, the amount of ATP formed was markedly reduced without loss of the reactivity of the EP with ADP. 4. The removal of C12E8 from the ATPase by the use of Bio-Beads resulted in the full restoration of the Mg2+ dependency of the EP decomposition. 5. These results strongly suggest that in the case of SR solubilized with a high concentration of C12E8 the decomposition of phosphoenzyme is Mg2+ independent and ATP is mainly hydrolyzed through Mg2+-dependent decomposition of an enzyme-ATP complex, which is in equilibrium with phosphoenzyme and ADP.  相似文献   

18.
We have measured the rate constant for ATP release from myosin heads of Ca2+-activated, demembranated muscle fibers using the technique of phosphate-water oxygen exchange. Single rabbit psoas fibers were held in an activating solution in [18O]water ([MgATP] = 8 mM, ionic strength = 0.2 M, pH = 7.0, 24 degrees C). After about 20% hydrolysis of ATP, product Pi and remaining ATP were isolated, and the distribution of 18O in both molecules was analyzed using a mass spectrometer. The exchange in Pi was similar to that previously reported (Hibberd, M. G., Webb, M. R., Goldman, Y. E., and Trentham, D. R. (1985) J. Biol. Chem. 260, 3496-3501). The amount of 18O in ATP gave a rate constant of about 4 s-1 for ATP release, if it is assumed that each rate constant in the pathway of ATP hydrolysis has the same value for all myosin ATPase sites. However, the distribution of 18O in both released Pi and ATP is not well explained by a single pathway for ATP hydrolysis. We present a model that indicates how such distributions could arise from a range of values for the rate constants for Pi and ATP release from actomyosin, and this range is determined by differences in the amounts of strain in attached crossbridges. The kinetic information obtained from these isotope exchange experiments is compared to show that they give a compatible set of rate constants for actomyosin in fibers.  相似文献   

19.
The phosphorylation of sarcoplasmic reticulum ATPase with Pi in the absence of Ca2+ was studied by equilibrium and kinetic experimentation. The combination of these measurements was then subjected to analysis without assumptions on the stoichiometry of the reactive sites. The analysis indicates that the species undergoing covalent interaction is the tertiary complex E X Pi X Mg formed by independent interaction of the two ligands with the enzyme. The binding constant of Pi or Mg2+ to either free or partially associated enzyme is approximately equal to 10(2) M-1, and no significant synergistic effect is produced by one ligand on the binding of the other; the equilibrium constant (Keq) for the covalent reaction E X Pi X Mg E-P X Mg is approximately equal to 16, with kphosph = 53 s-1, and khyd = 3-4 s-1 (25 degrees C, pH 6.0, no K+). The phosphorylation reaction of sarcoplasmic reticulum ATPase with Pi is highly H+ dependent. Such a pH dependence involves the affinity of enzyme for different ionization states of Pi, as well as protonation of two protein residues per enzyme unit in order to obtain optimal phosphorylation. The experimental data can then be fitted satisfactorily assuming pK values of 5.7 and 8.5 for the two residues in the nonphosphorylated enzyme (changing to 7.7 for one of the two residues, following phosphorylation) and values of 50.0 and 0.58 for the equilibrium constants of the H2(E X HPO4) in equilibrium with H(E-PO3) + H2O and H(E X HPO4) in equilibrium with E-PO3 + H2O reactions, respectively. In addition to the interdependence of H+ and phosphorylation sites, an interdependence of Ca2+ and phosphorylation sites is revealed by total inhibition of the Pi reaction when two high affinity calcium sites per enzyme unit are occupied by calcium. Conversely, occupancy of the phosphate site by vanadate (a stable transition state analogue of phosphate) inhibits high affinity calcium binding. The known binding competition between the two cations and their opposite effects on the phosphorylation reaction suggest that interdependence of phosphorylation site, H+ sites, and Ca2+ sites is a basic mechanistic feature of enzyme catalysis and cation transport.  相似文献   

20.
When human erythrocyte membranes are phosphorylated with a very low concentration of [gamma-32P]ATP (0.02 muM) at 0 degrees, and then EDTA is added, rapid disappearance of the phosphoenzyme intermediate of Na+ATPase is observed. The initial rapid phase of phosphoenzyme disappearance is, for the most part, not associated with P1 release and its rate constant, kD, is severalfold greater than the ratio of Na+ATPase activity to phosphoenzyme intermediate, v:EP, at steady state. It is concluded that this rapid disappearance of phosphoenzyme is due to resynthesis of ATP via reversal of phosphorylation. In contrast, rapid reversal is not observed when excess nonradioactive ATP is added to reduce E32P formation, provided Mg2+ is present; however, K+ added with the ATP stimulates reversal. Rapid reversal following EDTA addition is unlikely also when higher ATP concentrations (greater than or equal to 10(-6) M) are used to phosphorylate the enzyme since, at higher ATP, kD congruent to v:EP. The results are compatible with the concept that the Na+ATPase enzyme is composed of two or more catalytic subunits, in which ATP at one catalytic site can regulate the reactivity at another site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号