首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gel to liquid-crystalline phase transition of aqueous dispersions of phospholipid mixtures was investigated by means of the repartition of the spin label 2,2,6,6-tetramethylpiperidine-I-oxyl between aqueous space and lipid hydrocarbon region. The dimyristoylphosphatidylcholine (DMPC)/dibehenoylphosphatidylcholine (DBPC) and dipalmitoylphosphatidylcholine (DPPC)/DBPC phase diagrams indicate gel phase immiscibility, whereas the distearoylphosphatidylcholine (DSPC)/DBPC phase diagram indicates non-ideal gel phase miscibility at low DBPC molar fractions. Aqueous dispersions of DMPC/DPPC/DBPC ternary mixtures show two distinct phase transitions, the first associated with the melting of a DMPC/DPPC phase and the second with the melting of a DBPC phase. Aqueous dispersions of DMPC/DSPC/DBPC ternary mixtures show to phase transitions at low DSPC molar fractions; the first is probably associated with the melting of a DMPC/DSPC phase, and the second with the melting of a DBPC/DSPC phase. At high DSPC molar fractions, only one phase transition is observed; this suggests that all the lipids are mixed in gel state membranes.  相似文献   

2.
Mixtures of 1,2-dipalmitoyl- and 1,2-O-dihexadecyl-sn-glycero-3-phosphocholine (DPPC and DHPC) in dispersion with excess water were studied by differential scanning calorimetry (DSC) and X-ray diffraction techniques. The transition parameters of the main gel-to-liquid crystalline transition show a monotonous dependence on the composition, indicating ideal miscibility of the two lipids, in keeping with the closely similar structures of the pure, hydrated lipids in the P beta' and L alpha states. The pre-transition shows a depression to a minimum temperature of 23 degrees C occurring around equimolar mixtures. Below the pre-transition temperatures, the L beta' gel phase of DPPC maintains bimolecular structure up to DHPC admixtures of 50 mol%, with adaptations in hydrocarbon chain packing and multilayer periodicity. On the side of DHPC, the interdigitated gel structure shows full solubility for DPPC up to equimolarity without major structural changes. The crystalline Lc-phase of DPPC exhibits immiscibility with DHPC, demonstrated by the fact that the subtransition is abolished already at less than 15 mol% DHPC. DHPC, below its subtransition, can accommodate up to 50 mol% DPPC within an interdigitated layer structure with unperturbed, crystalline hydrocarbon chain packing.  相似文献   

3.
The miscibility properties of ether- and ester-linked phospholipids in two-component, fully hydrated bilayers have been studied by differential scanning calorimetry (DSC) and Raman spectroscopy. Mixtures of 1,2-di-O-hexadecyl-rac-glycero-3-phosphocholine (DHPC) with 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DHPE) and of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) with 1,2-di-O-hexadecyl-sn-glycero-3-phosphoethanolamine (DHPE) have been investigated. The phase diagram for the DPPC/DHPE mixtures indicates that these two phospholipids are miscible in all proportions in the nonrippled bilayer gel phase. In contrast, the DHPC/DPPE mixtures display two regions of gel phase immiscibility between 10 and 30 mol% DPPE. Raman spectroscopic measurements of DHPC/DPPE mixtures in the C-H stretching mode region suggest that this immiscibility arises from the formation of DHPC-rich interdigitated gel phase domains with strong lateral chain packing interactions at temperatures below 27 degrees C. However, in the absence of interdigitation, our findings, and those of others, lead to the conclusion that the miscibility properties of mixtures of ether- and ester-linked phospholipids are determined by the nature of the phospholipid headgroups and are independent of the character of the hydrocarbon chain linkages. Thus it seems unlikely that the ether linkage has any significant effect on the miscibility properties of phospholipids in biological membranes.  相似文献   

4.
Mixtures of stearic, arachic, oleic and linoleic acids with dimyristoylphosphatidylcholine (DMPC) and distearylphosphatidylcholine (DSPC) have been studied by means of differential scanning calorimetry (DSC). The mixtures of stearic (SA) and arachic acids (AA) with DMPC and DSPC show phase diagrams of the peritectic type, with a region of solid phase immiscibility from 0 to 28.5 mol% of fatty acid. A pure component, with a stoichiometry fatty acid/phospholipid (2:1) seems to be formed except for the system AA/DSPC. The mixtures of oleic (OA) and linoleic acids (LA) show complex phase diagrams. In the case of OA, different regions where a phase separation exists can be observed and for the mixture of OA with DMPC, a pure component seems to be formed with a stoichiometry OA/DMPC (1:2). LA shows different behaviour in the mixtures with DMPC and with DSPC. For the mixture, LA/DMPC, a fluid phase immiscibility region is observed over the same range of concentration as for the mixture with OA, however, the mixture with DSPC shows a solid phase immiscibility for the samples containing 45 mol% or more of LA. The interaction of the different free fatty acids with equimolar mixtures of DMPC and DSPC, showing monotectic behaviour, has also been analyzed. From our results it can be clearly concluded that saturated fatty acids partition preferentially into solid-like domains, while cis-unsaturated fatty acids partition preferentially into fluid-like domains.  相似文献   

5.
S Ali  D Zakim 《Biophysical journal》1993,65(1):101-105
The thermotropic properties of multilamellar vesicles of dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), and distearoylphosphatidylcholine (DSPC), as a function of the concentration of bilirubin in the range of 0.1 to 1 mol%, were measured. The exact effects of bilirubin depended on the chain length of the polymethylene chains. But the general effects of bilirubin were the same in all systems. At the lowest concentrations tested (0.1 mol bilirubin/100 mol phospholipid (0.1 mol%)), bilirubin broadened and shifted to higher temperatures the main phase transitions of all bilayers. For DPPC and DSPC, but not DMPC, this concentration of bilirubin was associated with a new transition at 25 degrees C (DPPC) or 34 degrees C (DSPC). Bilirubin at 0.2 mol% was required for the detection of a similar transition (at 13.7 degrees C) in DMPC. Higher concentrations of bilirubin (> 0.2 mol%) suppressed completely the main phase transitions in all bilayers but increased the enthalpy of the new transition. Maximal values of delta H for these transitions were reached at 0.5, 0.25, and 0.2 mol% bilirubin in DMPC, DPPC, and DSPC, respectively. Values of delta H and delta S for these transitions were far larger than for the corresponding gel-to-liquid crystal transitions in pure lipid bilayers but were equal to those expected for a transition between crystalline and liquid crystalline phases.  相似文献   

6.
High sensitivity differential scanning calorimetry (DSC) was used to investigate the thermotropic phase properties of binary mixtures of disaturated phosphocholines (PCs) and alpha-bromoacyl taxane derivatives. The alpha-bromoacyl taxanes were synthesized as hydrolyzable hydrophobic prodrugs of paclitaxel. The PCs used were 1, 2-dimyristoyl-sn-glycero-3-phosphatidyl-choline (DMPC), 1, 2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and 1, 2-distearoyl-sn-glycero-3-phosphatidylcholine (DSPC). The bromoacyl chain lengths of the taxane prodrugs were varied from 6 to 12 or 16 carbons. For comparison, paclitaxel and PC mixtures were also examined. DSC data from DPPC and bromoacyl taxane mixtures showed a complete abolition of the pretransition and significant broadening of the main phase transition with increasing amounts of bromoacyl taxane prodrugs. The effects were more pronounced with the long-chain compared to the short-chain prodrugs. Under equivalent DSC conditions, the short-chain DMPC showed greater changes in thermotropic phase behavior than with DPPC on taxane addition, suggesting an enhanced degree of association with the fluid-type bilayers. Under similar conditions, the long-chain DSPC bilayers showed a far less significant change in phase behavior on taxane addition than DPPC. These changes were also chain length-dependent for both the PCs and the taxane prodrugs. In contrast, PC and paclitaxel (lacking the acyl chain) mixtures under similar conditions showed insignificant changes in the endotherms, suggesting only slight insertion of the molecule into the PC bilayers. From the DSC data it is apparent that taxane prodrugs solvated in DMPC bilayers more than in DPPC and DSPC bilayers, and taxane prodrugs with longer acyl chains were able to associate with PCs better than those with shorter chain prodrugs. DSC data also suggest that paclitaxel was poorly associated with any of the PCs. In general, the amount of taxane association with bilayers decreased in order: DMPC > DPPC > DSPC. In contrast, the transition enthalpy (DeltaH) of DMPC, DPPC, and DSPC mixtures with paclitaxel showed significantly lower enthalpies than with taxane prodrugs. Taken together, the DSC data suggest that the acyl chains of paclitaxel prodrugs have some access into the bilayers via alignment with the acyl chain of the PC component.  相似文献   

7.
Priest's phenomenological model (Mol. Cryst. Liq. Cryst. 60 (1980) 167.) on one- and two-component PC bilayers is extended here. We constructed a new excess free energy term in the state function to describe the thermodynamic properties of the two-component phospholipid bilayers where the chain lengths and the polar heads of the components can be different simultaneously. By means of this generalized state function, we can calculate the phase diagrams of DPPC/DPPE, DMPC/DMPE, DMPC/DPPE, DPPC/DMPE and DSPC/DMPE mixtures. We obtained complete miscibility both in the liquid crystalline and in the gel phase if the chain lengths of the components were the same. If the chain length of the PE component was longer than that of the PC component, we obtained a peritectic system. A eutectic system was obtained in the reverse case. The results of the model were compared with the experimental data available. Applying the quasichemical approximation, we determined the molecular meaning of the phenomenological model parameters. Namely, sigma and gamma are proportional to the sublimation heat of the CH2 group in the long-chain alkanes and to the hydrogen-bonding energy between the polar heads of the ethanolamines; otherwise the model resulted in--1.94 kcal/mol per CH2 for the sublimation heat and --1.4 kcal/mol for the hydrogen-bond energy.  相似文献   

8.
The lecithins 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) have been synthesized by reacylation of the appropriate lysolecithins with fatty acid anhydrides. These lecithins have been used to make model membranes in mixtures with dipalmitoyllecithin (DPPC), and phase diagrams of the two bilayer systems have been constructed. These diagrams show that there is essentially no gel-state miscibility in the POPC-DPPC bilayers at any composition, and that SOPC-DPPC bilayers show gel-state immiscibility at DPPC concentrations of less than 50 mol%, and partial miscibility above 50 mol% DPPC. Analysis of the POPC-DPPC phase diagram on the assumption of athermal solution in the liquid-crystalline phase shows that the two lipids mix nearly randomly above the phase transition. The liquidus curve of SOPC-DPPC bilayers showed deviations from calculated ideal behaviour, which indicated that there is a small excess tendency for the formation of pairs of like molecules in SOPC-DPPC bilayers in the liquid-crystalline phase. Thus, in the liquid-crystalline phase, SOPC and DPPC do not pack quite as well as do POPC and DPPC.  相似文献   

9.
The lateral distribution of 1-palmitoyl-2-[10-(1-pyrenyl)decanoyl]phosphatidylcholine (PyrPC) was studied in small unilamellar vesicles of 1,2-dipalmitoyl-, 1,2-dimyristoyl-, and 1-palmitoyl-2-oleoyl-phosphatidylcholine (DPPC, DMPC, and POPC, respectively) under anaerobic conditions. The DPPC and DMPC experiments were carried out over temperature ranges above and below the matrix phospholipid phase transition temperature (Tm). The excimer to monomer fluorescence intensity ratio (E/M) was determined as a function of temperature for the three PyrPC/lipid mixtures. Phase and modulation data were used to determine the temperature dependence of pyrene fluorescence rate parameters in gel and in liquid-crystalline bilayers. These parameters were then used to provide information about excited-state fluorescence in phospholipid bilayers, calculate the concentration of the probe within liquid-crystalline and gel domains in the phase transition region of PyrPC in DPPC, and simulate E/M vs. temperature curves for three systems whose phase diagrams are different. From the simulated curves we could determine the relationship between the shape of the three simulated E/M vs. temperature curves and the lateral distribution of the probe. This information was then used to interpret the three experimentally derived E/M vs. temperature curves. Our results indicate that PyrPC is randomly distributed in pure gel and fluid phosphatidylcholine bilayers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
V Schram  H N Lin    T E Thompson 《Biophysical journal》1996,71(4):1811-1822
The influence of the lipid mixing properties on the lateral organization in a two-component, two-phase phosphatidylcholine bilayer was investigated using both an experimental (fluorescence recovery after photobleaching (FRAP)) and a simulated (Monte Carlo) approach. With the FRAP technique, we have examined binary mixtures of 1-stearoyl-2-capryl-phosphatidylcholine/1,2-distearoyl-phosphat idylcholine (C18C10PC/DSPC), and 1-stearoyl-2-capryl-phosphatidylcholine/1,2-dipalmitoyl-phospha tid ylcholine (C18C10PC/DPPC). Comparison with the 1,2-dimyristoyl-phosphatidylcholine/1,2-distearoyl-phosphatidylcholine (DMPC/DSPC) previously investigated by FRAP by Vaz and co-workers (Biophys. J., 1989, 56:869-876) shows that the gel phase domains become more effective in restricting the diffusion coefficient when the ideality of the mixture increases (i.e., in the order C18C10PC/DSPC-->C18C10PC/DPPC-->DMPC/DSPC). However, an increased lipid miscibility is accompanied by an increasing compositional dependence: the higher the proportion of the high-temperature melting component, the less efficient the gel phase is in compartmentalizing the diffusion plane, a trend that is best accounted for by a variation of the gel phase domain shape rather than size. Computer-simulated fluorescence recoveries obtained in a matrix obstructed with obstacle aggregates of various fractal dimension demonstrate that: 1) for a given obstacle size and area fraction, the relative diffusion coefficient increases linearly with the obstacle fractal dimension and 2) aggregates with a lower fractal dimension are more efficient in compartmentalizing the diffusion plane. Comparison of the simulated with the experimental mobile fractions strongly suggests that the fractal dimension of the gel phase domains increases with the proportion of high-temperature melting component in DMPC/DSPC and (slightly) in C18C10PC/DPPC.  相似文献   

11.
By use of neutron diffraction for structural analysis, the temperature-pressure phase diagrams of several fully hydrated single-component phospholipid bilayers have been explored up to hydrostatic pressures of 2 kbars. The gel to liquid-crystalline phase transition temperature Tm increases linearly with pressure over a 10(-3)-2 kbar range in accordance with the Clausius-Clapeyron relationship giving dTm/dP values of 23.0 degrees C/kbar for 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and 28.0 degrees C/kbar for 1,2-distearoyl-sn-glycero-3-phosphatidylcholine (DSPC). The so-called pretransition was not observed in the isothermal pressure experiments, suggesting that no appreciable volume change occurs at this transition. These results are in good agreement with those reported using other techniques. In addition, at pressures higher than the isothermal liquid-crystalline to gel transition pressure, a new pressure-induced phase transition was observed for DPPC and DSPC in which the hydrocarbon chains from apposing monolayers become interdigitated with the chains occupying a cross-sectional area approximately equal to 5% less than in the gel phase. The temperature-pressure phase diagrams show the gel-interdigitated phase boundaries to be highly curved and the minimum pressure at which interdigitation occurs to decrease with increasing hydrocarbon chain length.  相似文献   

12.
Giant unilamellar vesicles (GUVs) composed of different phospholipid binary mixtures were studied at different temperatures, by a method combining the sectioning capability of the two-photon excitation fluorescence microscope and the partition and spectral properties of 6-dodecanoyl-2-dimethylamino-naphthalene (Laurdan) and Lissamine rhodamine B 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (N-Rh-DPPE). We analyzed and compared fluorescence images of GUVs composed of 1,2-dilauroyl-sn-glycero-3-phosphocholine/1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (DLPC/DPPC), 1, 2-dilauroyl-sn-glycero-3-phosphocholine/1, 2-distearoyl-sn-glycero-3-phosphocholine (DLPC/DSPC), 1, 2-dilauroyl-sn-glycero-3-phosphocholine/1, 2-diarachidoyl-sn-glycero-3-phosphocholine (DLPC/DAPC), 1, 2-dimyristoyl-sn-glycero-3-phosphocholine/1, 2-distearoyl-sn-glycero-3-phosphocholine (DMPC/DSPC) (1:1 mol/mol in all cases), and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine/1, 2-dimyristoyl-sn-glycero-3-phosphocholine (DMPE/DMPC) (7:3 mol/mol) at temperatures corresponding to the fluid phase and the fluid-solid phase coexistence. In addition, we studied the solid-solid temperature regime for the DMPC/DSPC and DMPE/DMPC mixtures. From the Laurdan intensity images the generalized polarization function (GP) was calculated at different temperatures to characterize the phase state of the lipid domains. We found a homogeneous fluorescence distribution in the GUV images at temperatures corresponding to the fluid region for all of the lipid mixtures. At temperatures corresponding to phase coexistence we observed concurrent fluid and solid domains in the GUVs independent of the lipid mixture. In all cases the lipid solid domains expanded and migrated around the vesicle surface as we decreased the temperature. The migration of the solid domains decreased dramatically at temperatures close to the solid-fluid-->solid phase transition. For the DLPC-containing mixtures, the solid domains showed line, quasicircular, and dendritic shapes as the difference in the hydrophobic chain length between the components of the binary mixture increases. In addition, for the saturated PC-containing mixtures, we found a linear relationship between the GP values for the fluid and solid domains and the difference between the hydrophobic chain length of the binary mixture components. Specifically, at the phase coexistence temperature region the difference in the GP values, associated with the fluid and solid domains, increases as the difference in the chain length of the binary mixture component increases. This last finding suggests that in the solid-phase domains, the local concentration of the low melting temperature phospholipid component increases as the hydrophobic mismatch decreases. At the phase coexistence temperature regime and based on the Laurdan GP data, we observe that when the hydrophobic mismatch is 8 (DLPC/DAPC), the concentration of the low melting temperature phospholipid component in the solid domains is negligible. This last observation extends to the saturated PE/PC mixtures at the phase coexistence temperature range. For the DMPC/DSPC we found that the nonfluorescent solid regions gradually disappear in the solid temperature regime of the phase diagram, suggesting lipid miscibility. This last result is in contrast with that found for DMPE/DMPC mixtures, where the solid domains remain on the GUV surface at temperatures corresponding to that of the solid region. In all cases the solid domains span the inner and outer leaflets of the membrane, suggesting a strong coupling between the inner and outer monolayers of the lipid membrane. This last finding extends previous observations of GUVs composed of DPPE/DPPC and DLPC/DPPC mixtures (, Biophys. J. 78:290-305).  相似文献   

13.
D A Wilkinson  J F Nagle 《Biochemistry》1979,18(19):4244-4249
Volumes of lipid dispersions as a function of temperature have been measured for two different kinds of binary mixtures of lecithins, (1) DMPC and DSPC and (2) DMPC and DC20PC. Emphasis was placed on DMPC-rich compositions so as to resolve ambiguities regarding solid-phase immiscibility in DMPC-DSPC mixtures. Special attention has been paid to problems of equilibration in the low-temperature phase and to methods of mixing the lipids. We find that there is no solid-solid immiscibility in DMPC-DSPC mixtures, although this system is close to exhibiting such immiscibility, and that DMPC-DC20PC mixtures exhibit pronounced solid immiscibility.  相似文献   

14.
Membrane fluidity as affected by the organochlorine insecticide DDT   总被引:4,自引:0,他引:4  
Fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) was used to study the interaction of DDT with model and native membranes. DDT decreases the phase transition midpoint temperature (Tm) of liposomes reconstituted with dimyristoyl-, dipalmitoyl- and distearoylphosphatidylcholines (DMPC, DPPC and DSPC), and broadens the thermotropic profile of the transition. The effects of DDT are concentration dependent and are more pronounced in bilayers of short-chain lipids, e.g., DMPC. The insecticide fails to alter DPH polarization in the fluid phase of the above lipids. Similar effects were observed in binary mixtures of DMPC plus DPPC. Furthermore, DDT alters the single broad transition of the equimolar mixture of DMPC plus DSPC into a biphasic transition. The lower temperature component has a midpoint at 25 degrees C, i.e., a value close to the Tm of DMPC. DDT inhibits to some extent the cholesterol-induced ordering in DMPC bilayers and high cholesterol concentrations (greater than or equal to 30 mol%) do not prevent insecticide interaction, conversely to the effect observed for lindane (Antunes-Madeira, M.C. and Madeira, V.M.C. (1989) Biochim. Biophys. Acta 982, 161-166). Apparently, the bilayer order is not disturbed by DDT in fluid native membranes of mitochondria and sarcoplasmic reticulum, but moderate disordering effects are noticed in membranes enriched in cholesterol, namely, brain microsomes and erythrocytes.  相似文献   

15.
We investigate miscibility transitions of two different ternary lipid mixtures, DOPC/DPPC/Chol and POPC/PSM/Chol. In vesicles, both of these mixtures of an unsaturated lipid, a saturated lipid, and cholesterol form micron-scale domains of immiscible liquid phases for only a limited range of compositions. In contrast, in monolayers, both of these mixtures produce two distinct regions of immiscible liquid phases that span all compositions studied, the alpha-region at low cholesterol and the beta-region at high cholesterol. In other words, we find only limited overlap in miscibility phase behavior of monolayers and bilayers for the lipids studied. For vesicles at 25 degrees C, the miscibility phase boundary spans portions of both the monolayer alpha-region and beta-region. Within the monolayer beta-region, domains persist to high pressures, yet within the alpha-region, miscibility phase transition pressures always fall below 15 mN/m, far below the bilayer equivalent pressure of 32 mN/m. Approximately equivalent phase behavior is observed for monolayers of DOPC/DPPC/Chol and for monolayers of POPC/PSM/Chol. As expected, pressure-area isotherms of our ternary lipid mixtures yield smaller molecular area and compressibility for monolayers containing more saturated acyl chains and cholesterol. All monolayer experiments were conducted under argon. We show that exposure of unsaturated lipids to air causes monolayer surface pressures to decrease rapidly and miscibility transition pressures to increase rapidly.  相似文献   

16.
The effects of hydrostatic pressure on the physical properties of large unilamellar vesicles of single lipids dipalmitoyl phosphatidylcholine (DPPC) and dimyristoyl phosphatidylcholine (DMPC) and lipid mixtures of DMPC/DPPC have been studied from time-resolved fluorescence of trans-parinaric acid. Additional experiments were carried out using diphenylhexatriene to compare the results extracted from both probes. Fluorescence decays were analyzed by the maximum entropy method. Pressure does not influence the fluorescence lifetime distribution of trans-parinaric acid in isotropic solvents. However, in pressurized lipid bilayers an abrupt change was observed in the lifetime distribution which was associated with the isothermal pressure-induced phase transition. The pressure to temperature equivalence values, dT/dP, determined from the midpoint of the phase transitions, were 24 and 14.5 degrees C kbar-1 for DMPC and POPC, respectively. Relatively moderate pressures of about 500 bar shifted the DMPC/DPPC phase diagram 11.5 degrees C to higher temperatures. The effects of pressure on the structural properties of these lipid vesicles were investigated from the anisotropy decays of both probes. Order parameters for all systems increased with pressure. In the gel phase of POPC the order parameter was smaller than that obtained in the same phase of saturated phospholipids, suggesting that an efficient packing of the POPC hydrocarbon chains is hindered.  相似文献   

17.
C R Sanders  J P Schwonek 《Biochemistry》1992,31(37):8898-8905
Mixtures of long-chain and short-chain phosphatidylcholine (PC) were characterized by multinuclear (13C, 31P, 2H) solid-state nuclear magnetic resonance. This work complements and extends previous characterization of such mixtures by focusing on concentrated mixtures at temperatures above the gel to liquid crystalline phase transition temperature (Tm) of the long-chain PC component. Above Tm it was observed that highly oriented, bilayer-like assemblies could be formed of mixtures of dimyristoylphosphatidylcholine (DMPC) and dihexanoylphosphatidylcholine (DHPC) in molar ratios ranging from approximately 1:3.5 to 1:2 (DHPC:DMPC) over a considerable range of lipid concentrations (at least 3-40% w/v total lipid, for a 1:2.5 sample). Orientation was observed to occur only in an L alpha-like phase. The NMR data can be accounted for by a general model of the DHPC-DMPC aggregates in which DHPC can be found in two distinct populations (one highly ordered, one not). The averaged conformations of the glycerol backbone/headgroup regions of the long- and short-chain PC composing the assemblies were judged by solid-state 13C NMR to be similar to each other. The information gleaned about these mixtures and the quality of the oriented NMR spectra obtained suggest that DHPC-DMPC mixtures may prove to be useful as model membrane media in solid-state NMR studies of biomembranes.  相似文献   

18.
Nonhydrolyzable matrices of ether-linked phosphatidylcholines (PCs) and sphingomyelin have been used to study the mechanism of action of lipolytic enzymes. Since ether PCs, sphingomyelin, and ester PCs vary in the number of hydrogen bond donors and acceptors in the carbonyl region of the bilayer, we have examined several physical properties of ether PCs and sphingomyelin in model systems to validate their suitability as nonhydrolyzable lipid matrices. The intermolecular interactions of ether PCs with ester PCs, sphingomyelin, and cholesterol were investigated by differential scanning calorimetry. Phase diagrams constructed from the temperature dependence of the gel to liquid-crystalline phase transition of 1,2-O-dihexadecyl-sn-glycero-3-phosphocholine (DPPC-ether) and 1,2-O-ditetradecyl-sn-glycero-3-phosphocholine (DMPC-ether) with both 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) demonstrated complete lipid miscibility in the gel and liquid-crystalline phases. Additionally, phase diagrams of egg yolk sphingomyelin (EYSM) with DMPC or DMPC-ether and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) or 1,2-O-dioctadecyl-sn-glycero-3-phosphocholine (DSPC-ether) demonstrated no major differences in miscibility of EYSM in ester and ether PCs. The effect of 10 mol % cholesterol on the thermal transitions of mixtures of ester and ether PCs also indicates little preference of cholesterol for either lipid. The fusion of small single bilayer vesicles of DMPC, DMPC-ether, DPPC, and DPPC-ether to larger aggregates as determined by gel filtration indicated that the ester PC vesicles were somewhat more stable.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Interaction of melittin with phosphatidylcholine molecules in pure vesicles, binary mixtures and a ternary mixture of dimyristoylphosphatidylcholine IDMPC), dipalmitoylphosphatidylcholine (DPPC) and distearoylphosphatidylcholine (DSPC) was investigated by differential scanning calorimetry. Melittin binds preferentially with DMPC, and results in segregation of DMPC in binary mixtures of DMPC/DPPC and DMPC/DSPC and in a ternary mixture of DMPC/DPPC/DSPC. The results indicate that the hydrophobic part of peptide interacts preferentially with the phospholipid which has the same size of hydrophobic region or fatty acyl chains.  相似文献   

20.
SAXS/WAXS studies were performed in combination with freeze fracture electron microscopy using mixtures of a new Gemini catanionic surfactant (Gem16-12, formed by two sugar groups bound by a hydrocarbon spacer with 12 carbons and two 16-carbon chains) and the zwitterionic phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) to establish the phase diagram. Gem16-12 in water forms bilayers with the same amount of hydration water as DPPC. A frozen interdigitated phase with a low hydration number is observed below room temperature. The kinetics of the formation of this crystalline phase is very slow. Above the chain melting temperature, multilayered vesicles are formed. Mixing with DPPC produces mixed bilayers above the corresponding chain melting temperature. At room temperature, partially lamellar aggregates with local nematic order are observed. Splitting of infinite lamellae into discs is linked to immiscibility in frozen state. The ordering process is always accompanied by dehydration of the system. As a consequence, an unusual order-disorder phase transition upon cooling is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号