首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human motilin gene has been isolated and characterized. The gene spans about 9 kilobase pairs (kb) and the 0.7 kb motilin mRNA is encoded by five exons. The 22-amino-acid motilin sequence is encoded by exons 2 and 3. The human motilin gene was mapped to the p21.2----p21.3 region of chromosome 6 by hybridization of the cloned cDNA to DNAs from a panel of reduced human-mouse somatic cell hybrids and by in situ hybridization to human prometaphase chromosomes. RNA blotting using RNA prepared from various regions of the human gastrointestinal tract revealed high levels of motilin mRNA in duodenum and lower levels in the antrum of the stomach; motilin mRNA could not be detected by this procedure in the esophagus, cardia of the stomach, descending colon or gallbladder.  相似文献   

2.
R Coli  S L Anderson  S A Volpi  B Y Rubin 《Gene》2001,279(1):81-89
The autosomal recessive disorder familial dysautonomia (FD) has recently been demonstrated to be caused by mutations in the IKBKAP gene, so named because an initial report suggested that it encoded an IkappaB kinase complex associated protein (IKAP). Two mutations in IKBKAP have been reported to cause FD. The major mutation is a T-->C transition in the donor splice site of intron 20 and the minor mutation is a missense mutation in exon 19 that disrupts a consensus serine/threonine kinase phosphorylation site. We have characterized the cDNA sequences of the mouse, rat and rabbit IKBKAP-encoded mRNAs and determined the genomic organization and chromosomal location of mouse IKBKAP. There is significant homology in the amino acid sequence of IKAP across species and the serine/threonine kinase phosphorylation site altered in the minor FD mutation of IKAP is conserved. The mouse and human IKBKAP genes exhibit significant conservation of their genomic organization and the intron 20 donor splice site sequence, altered in the major FD mutation, is conserved in the human and mouse genes. Mouse IKBKAP is located on the central portion of chromosome 4 and maps to a region in which there is conserved linkage homology between the human and mouse genomes. The homologies observed in the human and mouse sequences should allow, through the process of homologous recombination, for the generation of mice that bear the IKBKAP mutations present in individuals with FD. The characterization of such mice should provide significant information regarding the pathophysiology of FD.  相似文献   

3.
4.
5.
Hara T  Chida K 《Gene》2002,283(1-2):11-16
In Chinese hamster extended blocks of telomeric-like repeats were previously detected by in situ hybridization at the pericentromeric region of most chromosomes and short arrays were localized at several interstitial sites. In this work, we analyzed the molecular organization of internal telomeric sequences (ITs) in the Chinese hamster genome. In genomic transfers hybridized with a telomeric probe, multiple Bal31 insensitive fragments were detected. Most of the fragments ranged in size between less than 1 kb and more than 100 kb and some were polymorphic. Fluorescence in situ hybridization experiments on DNA fibers and on elongated chromosomes showed that the pericentromeric ITs are composed of extensive and essentially continuous arrays of telomeric-like sequences. We then isolated three genomic regions which contain short ITs. These ITs are localized at interstitial sites (3q13-15, 3q21-26, 1p26) and are composed of 29-126 bp of (TTAGGG)(n) repeats. A peculiar feature of all the three ITs is the AT richness of the flanking sequences. Since AT-rich DNA is known to be unstable and characteristic of several mammalian fragile sites, we propose that the three ITs were inserted at these sites during the repair of double strand breaks.  相似文献   

6.
7.
8.
9.
10.
Szalai C  Toth S  Falus A 《Gene》2000,243(1-2):161-166
The exon-intron organization and sequences of the exon-intron boundaries of the human gp130 transmembrane receptor gene have been determined using genomic DNAs as samples. The gp130 gene comprises 17 exons and 16 introns. The positions of the exon-intron boundaries show good correlation to the functional/homology regions of gp130. Exons 3-17 code for the gp130 protein, and each subdomain of the receptor is encoded by a set of exons. The coding potential of exons and the intron phasing of the human gp130 gene conform to the patterns observed previously for other cytokine receptor genes. This supports the notions that the gp130 gene evolved from the same ancestral gene that gave rise to other members of the cytokine receptor family.  相似文献   

11.
12.
13.
The rat gene encoding oncomodulin (OM), a small calcium-binding protein, is under the control of a solo LTR derived from an endogenous intracisternal A-particle. The latter sequence is the only OM promoter analyzed so far. In order to study cell-type-specific OM expression in a species lacking LTR sequences in the OM locus, we initially synthesized an OM cDNA from mouse placenta. By sequencing, we found a 137-bp-long 5 leader region that differed markedly from its rat counterpart but had high similarity to several mouse genomic sequences. Primers specific to this sequence in addition with primers specific for an exon 2/intron 2 sequence were used to screen a mouse ES cell line genomic P1 library. One positive clone contained the whole OM gene, including intron 1 of 25 kb and a 5 flanking region of 27 kb lacking an LTR. The region upstream of exon 1 contains no TATA or CCAAT boxes but has a homopurine/homopyrimidine stretch of 102 bp as well as a (CA)22 repeat. The latter sequence is polymorphic and was therefore, used to map the OM gene to the distal end of the long arm of mouse Chromosome (Chr) 5 by interspecific backcross analysis. Additonally we localized the OM gene by in situ hybridization to the region G1-3 on Chr 5, confirming the genetic linkage results. Finally, the OM gene was found to be structurally conserved and to exist in a single copy in mammals.  相似文献   

14.
Five yeast artificial chromosome (YAC) clones containing the human casein gene family were isolated and characterized to study the control mechanisms for the expression of these genes. Partial restriction analysis in conjunction with the chromosomal fragmentation method and fluorescence in situ hybridization (FISH) analysis were performed to construct a detailed physical map of the casein gene family and to determine the chromosomal localization of these genes. The isolated YAC clones 748F3, 750D11, 882G11, 886B3 and 960D2 were 1.2 Mb, 860 kb, 800 kb 1.5 Mb and 1.5 Mb in size, respectively. The clones 748F3, 882G11, 886B3 and 960D2 contained the entire casein gene family, while the κ-casein gene was absent in 750D11. The human αS1-, β- and κ-casein genes were found to be closely linked and arranged in the order αS1-β-κ. The distance between αS1 and β, and between αS1 and κ was approximately 10 and 300 kb, respectively. The β-casein gene was oriented in the opposite direction to the αS1- and κ-casein genes. The casein gene family was localized to chromosome 4q21.1 by FISH analysis. Received: 7 July 1996 / Revised: 29 October 1996  相似文献   

15.
Genomic organization and chromosomal localization of the TAPA-1 gene.   总被引:4,自引:0,他引:4  
TAPA-1 is a 26-kDa integral membrane protein expressed on many human cell types. Antibodies against TAPA-1 induce homotypic aggregation of cells and can inhibit their growth. The murine homologue of TAPA-1 was cloned from both cDNA and genomic DNA libraries. A very high level of homology was found between human and mouse TAPA-1. The 5' untranslated region of the TAPA-1 gene resembles housekeeping gene promoters with respect to G + C content and the presence of potential Sp1 binding sites. The chromosomal localization of human and murine TAPA-1 genes was determined by Southern blot experiments using DNA from somatic cell hybrids. The genes were found to be part of a conserved syntenic group in mouse chromosome 7 and the short arm of human chromosome 11. The organization of the TAPA-1 gene and the projection of the exon boundaries on the proposed protein structure are presented.  相似文献   

16.
17.
18.
19.
Synucleins are a family of small intracellular proteins expressed mainly in the nervous system. The involvement of synucleins in neurodegeneration and malignancy has been demonstrated, but the physiological functions of these proteins remain elusive. Further studies including generation of animals with modified persyn expression are necessary to clarify the functions of these proteins and the mechanisms of their involvement in human diseases. We cloned and determined the organization and chromosomal localization of the mouse gene coding for persyn, a member of the synuclein family. The gene is composed of five exons, and its general structure is very similar to that of the human persyn gene. Using fluorescence in situ hybridization, we assigned the persyn gene to the boundary of bands B and C on mouse chromosome 14. We found a fragment of the gene that directs expression of the persyn protein in sensory neurons and could be used for generation of transgenic animals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号