首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mianserin is a tetracyclic antidepressant drug and administered as racemate of R (-) and S (+) mianserin hydrochloride in a dose of 30-90 mg/day in divided doses. Liquid chromatography-mass spectroscopy (LC-MS) is a tool, which is widely used for determination of drug and their metabolites in biological fluids because of its high sensitivity and precision. Here we describe a liquid chromatography mass spectroscopy method for simultaneous determination of mianserin and its metabolite, N-desmethylmianserin, from human plasma using a liquid-liquid extraction with hexane:isoamylalcohol (98:2) and back extraction with 0.005 M formic acid solution. This method is specific and linear over the concentration range of 1.00-60.00 ng/ml for mianserin and 0.50-14.00 ng/ml for N-desmethylmianserin in human plasma. The lowest limits of quantification (LLQ) is 1.00 ng/ml for mianserin and 0.50 ng/ml for N-desmethylmianserin. Intraday and interday precision (%C.V.) is <10% for both mianserin and N-desmethylmianserin. The accuracy ranges from 94.44 to 112.33% for mianserin and 91.85-100.13% for N-desmethylmianserin. The stability studies showed that mianserin and N-desmethylmianserin in human plasma are stable during short-term period for sample preparation and analysis. The method was used to assay mianserin and its metabolite, N-desmethylmianserin, in human plasma samples obtained from subjects who had been given an oral tablet of 30 mg of mianserin.  相似文献   

2.
A selective, accurate, and reproducible LC/MS/MS assay was developed and validated for the determination of the HIV protease inhibitor atazanavir (BMS-232632) in human peripheral blood mononuclear cells (PBMC) samples. In addition to the details of the validated LC/MS/MS method, a practical procedure is described in great detail for the preparation of large supplies of control (blank) PBMC from units of blood (each unit of blood is about 500 ml) for making the calibration standards and quality control (QC) samples. The PBMC assay design, intended for high-throughput sample analysis, is also described in some detail in regards to the composition and concentration expressions of the calibration standards and QC samples, the lysing procedure of the PBMC samples, and the final analysis/quantitation procedure. The method involved automated solid-phase extraction (SPE) of atazanavir and a stable isotope analog internal standard (I.S.) using 3M Empore C2-SD 96-well plates. A portion of the reconstituted sample residue was injected onto a YMC Basic analytical column which was connected to a triple quad mass spectrometer for analyte determination by positive-ion electrospray in the selected reaction monitoring (SRM) mode. The standard curve, which ranged from 5 to 2500 fmol per one million cells (fmol/10(6) cells), was fitted to a quadratic regression model weighted by 1/concentration. The lower limit of quantitation (LLOQ) was 5 fmol/10(6) cells. The inter- and intra-run coefficients of variation (CV) for the assay were <9% and the accuracy was 94-104%. Atazanavir was stable in PBMC for at least 24h at room temperature and for at least 129 days at -15 degrees C.  相似文献   

3.
An HPLC method was developed and validated for the determination of mifepristone in human plasma. C(18) solid-phase extraction cartridges were used to extract plasma samples. Separation was by C(18) column; mobile phase, methanol-acetonitrile-water (50:25:25, v/v/v); flow rate, 0.8 ml/min; UV detection at 302 nm. The calibration curve was linear in the concentration range of 10 ng/ml to 20 microg/ml (r=0.9991). Within- and between-day variability were acceptable. The limit of detection for the assay was 6 ng/ml. Plasma samples were stable for at least 7 days in the state of plasma or residue treated at -20 degrees C. The method was simple, sensitive and accurate, and allowed to determine ng mifepristone in human plasma. It could be applied to assess the plasma level of mifepristone in women receiving low oral doses of mifepristone.  相似文献   

4.
A selective, accurate, precise and reproducible high-performance liquid chromatographic assay was developed for the quantitation of irbesartan, an angiotensin II antagonist, in human plasma and urine samples. The method involved solid-phase extraction of irbesartan and internal standard (I.S.) using a 100-mg Isolute CN cartridge. A portion of the eluate was injected onto an ODS analytical column connected to a fluorescence detector that was set at an excitation wavelength of 250 nm and an emission wavelength of 371 nm. The mobile phase consisted of 50% acetonitrile and a 50% weak phosphate-triethylamine solution, pH 3.5, at a flow-rate of 0.8 ml/min. The assay was linear from 1 to 1000 ng/ml with both plasma and urine. In either matrix, the lower limit of quantitation was 1 ng/ml. The analyses of quality control samples indicated that the nominal values could be predicted with an accuracy >95%. The inter- and intra-day coefficients of variation for the analyses in both matrices were <8%. Irbesartan was stable in both human plasma and urine for at least seven months at −20°C. The application of the assay to a pharmacokinetic study is described.  相似文献   

5.
An LC-MS/MS assay for the quantitative determination of a new antibacterial agent (AVE6971) has been developed and validated in human white blood cells (WBC). The assay involved a lysing procedure of white blood cells and ultra centrifugation of the extracts. Chromatography was performed on a Supelcosil ABZ+ C(18) (2.1 mm x 50 mm, 5 microm) column using a mobile phase consisting of methanol/acetonitrile/10mM ammonium formate mixture (10:30:60, v/v/v) at a flow rate of 0.2 ml/min. The linearity was within the range of 10-10000 ng/ml of extracts, corresponding to 0.5-500 ng of AVE6971 in WBC pellets tubes. The validated lower limit of quantification was 10 ng/ml. The inter- and intra-run coefficients of variation (CV) for the assay were <12.9% and the accuracy were from -9.0 to -1.2%. AVE6971 was stable in WBC for at least 1 month at -75 degrees C. This assay proved to be suitable for the determination of AVE6971 in WBC from clinical studies.  相似文献   

6.
A simple high-performance liquid chromatography (HPLC)-tandem mass spectrometric method has been developed for determination of propiverine hydrochloride and its metabolite, propiverine N-oxide (M-1) in human plasma using stable isotopes, propiverine hydrochloride-d10 and M-1-d10, as internal standards. The analytes were extracted with dichloromethane from 0.2 ml of plasma in neutral condition (pH 7.0) and separated by HPLC on a C18 reversed-phase column using methanol-1% acetic acid (50:50) as a mobile phase, and detected using positive electrospray ionization in selected reaction monitoring (SRM) mode. The method was validated over a concentration range of 2-500 ng/ml for propiverine hydrochloride and 4-1000 ng/ml for M-1 using 0.2 ml of human plasma per assay. The method developed was successfully applied to analysis of propiverine hydrochloride and M-1 in clinical studies.  相似文献   

7.
An assay employing automated solid-phase extraction (SPE) followed by high-performance liquid chromatography with positive ion TurboIonspray tandem mass spectrometry (LC-MS-MS) was developed and validated for the quantification of rosuvastatin (Crestor) in human plasma. Rosuvastatin is a hydroxy-methyl glutaryl coenzyme A reductase inhibitor currently under development by AstraZeneca. The standard curve range in human plasma was 0.1-30 ng/ml with a lower limit of quantification (LLOQ) verified at 0.1 ng/ml. Inaccuracy was less than 8% and imprecision less than +/-15% at all concentration levels. There was no interference from endogenous substances. The analyte was stable in human plasma following three freeze/thaw cycles and for up to 6 months following storage at both -20 and -70 degrees C. The assay was successfully applied to the analysis of rosuvastatin in human plasma samples derived from clinical trials, allowing the pharmacokinetics of the compound to be determined.  相似文献   

8.
We have developed and validated an assay, using liquid chromatography coupled with electrospray tandem mass spectrometry (LC-MS/MS), for the quantification of the novel protease inhibitors (PIs) atazanavir and tipranavir. The sample pre-treatment consisted of protein precipitation with a mixture of methanol and acetronitrile using 100 microl plasma for atazanavir and 50 microl for tipranavir. Chromatographic separation was achieved on an Inertsil ODS3 column (50 mm x 2.0 mm i.d., particle size 5 microm), with a quick stepwise gradient using an acetate buffer (pH 5) and methanol, at a flow rate of 0.5 ml/min. The analytical run time was 5.5 min. The triple quadrupole mass spectrometer operated in the positive ion-mode and multiple reaction monitoring (MRM) was used for drug quantification. The assay was linear over a concentration range of 0.05-10 microg/ml for atazanavir and 0.1-75 microg/ml for tipranavir. Saquinavir-d5 was used as internal standard. The intra- and inter-day coefficients of variation were less than 3.8% for atazanavir and less than 10.4% for tipranavir. Accuracies were within +/-7.3 and +/-7.2% for atazanavir and tipranavir, respectively. Both drugs were stable under various relevant storage conditions. The validated concentration ranges proved to be adequate to measure concentrations of human immunodeficiency virus type-1 (HIV-1)-infected individuals. The developed method could easily be combined with a previously developed LC-MS/MS assay for the quantification of protease inhibitors.  相似文献   

9.
Ebastine (CAS 90729-43-4) is an antiallergic agent which selectively and potently blocks histamine H1-receptors in vivo. A simple and sensitive high-performance liquid chromatography (HPLC) method is described for the simultaneous determination of ebastine and its two oxidized metabolites, carebastine (CAS 90729-42-3) and hydroxyebastine (M–OH), in human plasma. After a pretreatment of plasma sample by solid-phase extraction, ebastine and its metabolites were analyzed on an HPLC system with ultraviolet detection at 254 nm. Chromatography was performed on a cyano column (250×4.0 mm I.D.) at 40 °C with the mobile phase of acetonitrile–methanol–0.012 M ammonium acetate buffer (20:30:48, v/v/v) at a flow rate of 1.2 ml/min. Accurate determinations were possible over the concentration range of 3–1000 ng/ml for the three compounds using 1 ml plasma samples. The intra- and inter-day assay accuracy of this method were within 100±15% of nominal values and the precision did not exceed 12.4% of relative standard deviation. The lower limits of quantitation were 3 ng/ml for ebastine and its metabolites in human plasma. This method was satisfactorily applied to the determination of ebastine and its two oxidized metabolites in human plasma after oral administration of ebastine.  相似文献   

10.
A novel, highly sensitive method for the determination of pilocarpic acid (PA) in human plasma is described. In addition, the method provides for the conversion of the lactone, pilocarpine (P), to PA so that a total drug presence can be determined. Using novel high-performance liquid chromatographic conditions capable of separating P, isopilocarpine (I-P), PA and isopilocarpic acid (I-PA) from each other and from endogenous plasma impurities, it was confirmed that P exclusively and quantitatively converts to PA in heparinized human plasma during storage. For the determination of PA, the selective extraction of PA from protein-free plasma was accomplished using two different solid-phase extraction (SPE) cartridges in two consecutive SPE steps. After extraction, PA was lactonized with trifluoroacetic acid back to P, and both P and an internal standard were acylated using heptafluorobutyric anhydride (HFBA). The trifluoroacetylated derivatives were monitored using gas chromatography (GC) with mass spectrometric (MS) detection. This procedure allowed the sensitive and reliable determination of PA with a limit of quantification (LOQ) of 1 ng/ml, which could not be achieved using previously described methods. The assay was validated in the concentration range of 1 to 10 ng/ml with an intra-day precision (expressed as the coefficient of variation, C.V.) ranging from 9.9 to 0.5%. Inter-day precision for the quality control standard at 2.5 ng/ml showed a C.V. of 10.2%. Accuracy ranged from 94 to 102%. The assay was used to monitor the maximum systemic exposure to P, administered by the ocular route, in terms of total plasma PA (P and PA).  相似文献   

11.
A rapid and sensitive high-performance liquid chromatographic (HPLC) assay for the determination of alpha-naphthylisothiocyanate (1-NITC) and two metabolites alpha-naphthylamine (1-NA) and alpha-naphthylisocyanate (1-NIC) in rat plasma and urine has been developed. The chromatographic analysis was carried out using reversed-phase isocratic elution with a Partisphere C(18) 5-microm column, a mobile phase of acetonitrile-water (ACN-H(2)O 70:30, v/v), and detection by ultraviolet (UV) absorption at 305 nm. The lower limits of quantitation (LLQ) in rat plasma, urine, and ACN were 10, 30, and 10 ng/ml for 1-NITC; 30, 100, and 30 ng/ml for 1-NA; and 30 ng/ml in ACN for 1-NIC. At low (10 ng/ml), medium (500 ng/ml), and high (5000 ng/ml) concentrations of quality control samples (QCs), the range of within-day and between-day accuracies were 95-106 and 97-103% for 1-NITC in plasma, respectively. Stability studies showed that 1-NITC was stable at all tested temperatures in ACN, and at -20 and -80 degrees C in plasma, urine, and ACN precipitated plasma and urine, but degraded at room temperature and 4 degrees C. 1-NA was stable in all of the tested matrices at all temperatures. 1-NIC was unstable in plasma, urine, and ACN precipitated plasma and urine, but stable in ACN. The degradation product of 1-NITC and 1-NIC in universal buffer was confirmed to be 1-NA. 1-NITC and 1-NA were detected and quantified in rat plasma and urine, following the administration of a 25 mg/kg i.v. dose of 1-NITC to a female Sprague-Dawley rat.  相似文献   

12.
A sensitive high-performance liquid chromatographic (HPLC) assay has been developed and validated for the quantitation of the novel anticancer agent topotecan and topotecan as the total of its lactone and carboxylate forms in human plasma. Linear response in analyte standard peak area were observed over the concentration range 0.05–10 ng/ml using 100-μl plasma samples. The instability of the drug in the biological matrix necessitated that the plasma fraction was obtained within 5 min after blood sampling by centrifugation, immediately followed by protein precipitation with cold methanol (−30°C). Stability studies have indicated that topotecan is stable in these methanolic extracts for at least 4.5 months at −30°C and 2 months at −70°C. For the total determination of the lactone plus lactone ring-opened forms of the drug as topotecan, plasma samples were deproteinated with methanol and, subsequently, acidified with 7% (v/v) perchloric acid. Plasma samples for the measurement of total levels of the lactone and the ring-opened forms of the topotecan were stable for at least 4.5 months when stored at −30°C. After centrifugation, the supernatants were analysed by HPLC using a Zorbax SB-C18 Stable Bond column and methanol-0.1 M hexane-1-sulfonic acid in methanol-0.01 M N,N,N′,N′-tetramethylethylenediamine (TEMED) in distilled water pH 6.0 (25:10:65, v/v) as the mobile phase. Detection was performed fluorimetrically. Within-run and between-run precision was always less than 12.1% in the concentration range of interest (0.05–10.0 ng/ml). The limit of quantitation is 0.05 ng/ml. Accuracy measurements ranged between 87.6 and 113.5%.  相似文献   

13.
A rapid, sensitive and specific normal-phase (adsorption) high-performance liquid chromatographic (HPLC) assay was developed for the determination of 1-(2-aminoethyl)-3-(2,6-dichlorophenyl)thiourea [I] in plasma and urine. The assay involves the extraction of the compound into methylene chloride from plasma or urine buffered to pH 10, and the HPLC analysis of the residue dissolved in methylene chloride—methanol—heptane (85:10:5). A 10-μm silica gel column was used with methylene chloride—methanol—heptane—ammonium hydroxide (85:10:5:0.1) as the eluting solvent. The effluent was monitored at 254 nm and quantitation was based on the peak height vs. concentration technique. The assay has a recovery of 64.5 ± 4.5% (S.D.) from plasma and 96.0 ± 6.3% (S.D.) from urine in the concentration range of 0.1–2 μg per ml and 2–40 μg per 0.1 ml of plasma and urine, respectively, with a limit of detection of 0.05–0.1 μg [I] per ml of plasma using a 1-ml specimen and 0.1 μg per ml urine using a 0.1-ml specimen, respectively. The assay was applied to the determination of plasma levels and urinary excretion of the compound [I] in dog following the oral administration of 28.8 mg of [I] · maleate per kg body weight.The HPLC assay was also used to determine the stability of [I] and for the measurement of a potential degradation product, clonidine [II] [2-(2,6-dichlorophenylamino)-2-imidazoline] in pooled human plasma stored at ?17°C, and pooled human urine stored at ?17°C and ?90°C, respectively.  相似文献   

14.
A test-system based on enzyme-linked immunosorbent assay (ELISA) for quantitative determination of cyclosporin A (CSA) in human whole blood has been developed. The detection limit of the method was 25 ng/ml, the linearity of the method in the concentration range of 60–1400 ng/ml varied from 94 to 105%, the variation coefficient did not exceed 8%. The novel method exhibited good correlation with radioimmunoassay and polarization fluoroimmunoassay methods; the linear regression coefficients were 0.965 and 0.984, respectively. The developed test system is stable for at least 9 months when stored at 4°C and can be used in clinical practice.  相似文献   

15.
A liquid chromatography-mass spectrometry method (LC-MS/MS) for the quantitative determination of rifaximin in human plasma was developed and validated. In the developed procedure, metoprolol was added to human plasma as an internal standard (IS) and acetonitrile was used to precipitate the plasma proteins before LC-MS/MS analysis. Chromatographic separation was obtained on a RESTEK Pinnacle C18 column (50 mm x 2.1mm, 5 microm) with a mobile phase consisted of ammonium acetate solution (15 mM, pH 4.32) as buffer A and methanol as mobile phase B. Quantification was performed in positive mode using multiple reaction monitoring (MRM) of the transitions m/z 786.1-->754.1 for rifaximin and m/z 268.3-->116.1 for the IS. The assay has been validated over the concentration range of 0.5-10 ng/ml (r=0.9992) based on the analysis of 0.2 ml of plasma. The assay accuracy was between 98.2% and 109%. The within-day and between-day precision was better than 3.9% and 8.9% at three concentration levels. The freeze-thaw stability was also investigated and it was found that both rifaximin and the IS were quite stable. This method provides a rapid, sensitive, specific and robust tool for the quantitative determination of rifaximin in human plasma, which is especially useful for the pharmacokinetic study of rifaximin.  相似文献   

16.
We have established a highly sensitive high-performance liquid chromatographic method for the determination of an anticancer drug, UCN-01, in human plasma or urine. Using a fluorescence detector set at an excitation wavelength of 310 nm and emission monitored at 410 nm, there was a good linearity for UCN-01 in human plasma (r=0.999) or urine (r=0.999) at concentrations ranging from 0.2 to 100 ng/ml or 1 to 400 ng/ml, respectively. For intra-day assay, in plasma samples, the precision and accuracy were 1.8% to 5.6% and −10.0% to 5.2%, respectively. For inter-day assay, the precision and accuracy were 2.0% to 18.2% and 2.4% to 10.0%, respectively. In urine samples, the intra- and inter-day precision and accuracy were within 3.9% and ±2.7%, respectively. The lower limit of quantification (LLOQ) was set at 0.2 ng/ml in plasma and 1 ng/ml in urine. UCN-01 in plasma samples was stable up to two weeks at −80°C and also up to four weeks in urine samples. This method could be very useful for studying the human pharmacokinetics of UCN-01.  相似文献   

17.
A method for the determination of sertraline in human plasma using gas chromatography-mass spectrometry (GC-MS), with the selected ion-monitoring (SIM) mode, was described. The following was used in this study: (1) single liquid-liquid extraction at alkaline pH after deproteinization of plasma protein and (2) perfluoroacylation with HFBA, which has higher sensitivity (about 10-fold) compared with previous reported derivatization. The detection limit for the SIM of sertraline as an N-HFB derivative was 0.1 ng/ml, and its recovery was 80-85%. The linear response was obtained in the range of 0.2-10.0 ng/ml with a correlation coefficient of 0.999. The coefficient of variation (C.V.%) was less than 12.1% in the 1-30 ng/ml, and less than 18.2% at 0.2 ng/ml, and the accuracy was less than 10% at all of the concentration range. These findings indicate that this assay method has adequate precision and accuracy to determine the amount of sertraline in human plasma. After pharmacokinetics was performed with this assay method following oral administration of sertraline hydrochloride in man, moment analysis revealed that pharmacokinetic parameters for sertraline (Cmax, 10.3 ng/ml; Tmax, 8.0 h; T(1/2) 28.6 h) were similar to previously reported results. These results indicate that this simple and sensitive assay method is readily applicable to the pharmacokinetic studies of sertraline.  相似文献   

18.
A liquid chromatographic assay with mass-spectrometric detection was developed for the quantitative determination of the cytochrome p450 3A phenotyping probe midazolam in human plasma. Sample pretreatment involved a one-step extraction of 600 microl aliquots with ethyl acetate. Midazolam and the internal standard, lorazepam, were separated on a column (150 mm x 4.6mm, i.d.) packed with 5 microm Zorbax Eclipse XDB-C8 material, using a mobile phase composed of methanol and 10mM aqueous ammonium acetate (60:40, v/v). Column effluents were analyzed using mass-spectrometry with an atmospheric pressure chemical ionization source. Calibration curves were linear in the concentration range of 1.00-200 ng/ml. The accuracy and precision ranged from 92.8 to 112% and 0.056 to 13.4%, respectively, for four different concentrations of quality control samples analyzed in triplicate on eight separate occasions. The developed method was subsequently applied to study the pharmacokinetics of midazolam in a group of 35 human subjects at a single dose of 25 microg/kg.  相似文献   

19.
A method was developed for the determination of tafenoquine (I) in human plasma using high-performance liquid chromatography-tandem mass spectrometry. Prior to analysis, the protein in plasma samples was precipitated with methanol containing [2H3(15N)]tafenoquine (II) to act as an internal standard. The supernatant was injected onto a Genesis-C18 column without any further clean-up. The mass spectrometer was operated in the positive ion mode, employing a heat assisted nebulisation, electrospray interface. Ions were detected in multiple reaction monitoring mode. The assay required 50 microl of plasma and was precise and accurate within the range 2 to 500 ng/ml. The average within-run and between-run relative standard deviations were < 7% at 2 ng/ml and greater concentrations. The average accuracy of validation standards was generally within +/- 4% of the nominal concentration. There was no evidence of instability of I in human plasma following three complete freeze-thaw cycles and samples can safely be stored for at least 8 months at approximately -70 degrees C. The method was very robust and has been successfully applied to the analysis of clinical samples from patients and healthy volunteers dosed with I.  相似文献   

20.
A rapid, sensitive and selective hydrophilic interaction liquid chromatography-tandem mass spectrometric (HILIC-MS/MS) method for the determination of levosulpiride in human plasma was developed. Levosulpiride and internal standard, tiapride were extracted from human plasma with ethyl acetate at pH 11 and analyzed on an Atlantis HILIC silica column with the mobile phase of acetonitrile-ammonium formate (190 mM, pH 3.0) (94:6, v/v). The analytes were detected using an electrospray ionization tandem mass spectrometry in the multiple-reaction-monitoring mode. The standard curve was linear (r = 0.999) over the concentration range of 1.00-200 ng/ml. The lower limit of quantification for levosulpiride was 1.00 ng/ml using 100 microl plasma sample. The coefficient of variation and relative error for intra- and inter-assay at three quality control (QC) levels were 3.8-9.1 and -2.9 to -0.1%, respectively. The recoveries of levosulpiride ranged from 80.5 to 87.4%, with that of tiapride (internal standard) being 84.6%. This method was successfully applied to the pharmacokinetic study of levosulpiride in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号