首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemical modification of lysine residues of eukaryotic tyrosyl-tRNA synthetase was studied. It was shown that only four out of 22 lysine residues per enzyme dimer could be modified with pyridoxal-5'-phosphate. This modification led to the inactivation of tRNATyr aminoacylation by more than 90% but did not practically affect the rate of ATP-[32P]pyrophosphate exchange. Low molecular weight substrates (ATP, ATP-tyrosine) weakly protected the enzyme from inactivation, whereas tRNATyr afforded a much more effective protection. It was supposed that lysine residues of tyrosyl-tRNA synthetase can be involved in the interaction with tRNATyr.  相似文献   

2.
Aminoacylation of anticodon loop substituted yeast tyrosine transfer RNA   总被引:7,自引:0,他引:7  
L Bare  O C Uhlenbeck 《Biochemistry》1985,24(9):2354-2360
A procedure for replacing residues 33-35 in the anticodon loop of yeast tRNATyr with any desired oligonucleotide has been developed. The three residues were removed by partial ribonuclease A digestion. An oligonucleotide was inserted into the gap in four steps by using RNA ligase, polynucleotide kinase, and pseT 1 polynucleotide kinase. The rate of aminoacylation of anticodon loop substituted tRNATyr by yeast tyrosyl-tRNA synthetase was found to depend upon the sequence of the oligonucleotide inserted. This suggests that the nucleotides in the anticodon loop of yeast tRNATyr are required for optimal aminoacylation. In addition, tRNATyr modified to have a phenylalanine anticodon was shown to be misacylated by yeast phenylalanyl-tRNA synthetase at a rate at least 10 times faster than unmodified tRNATyr. Thus, the anticodon is used by phenylalanyl-tRNA synthetase to distinguish between tRNAs.  相似文献   

3.
Covalent modification of Escherichia coli tyrosyl-tRNA synthetase (TyrRS) by the 2',3'-dialdehyde derivative of tRNATyr (tRNAox) resulted in a time-dependent inactivation of both ATP-PPi exchange and tRNA aminoacylation activities of the enzyme. In parallel with the inactivation, covalent incorporation of approximately 1 mol of [14C]tRNATyrox/mol of the dimeric synthetase occurred. Intact tRNATyr protected the enzyme against inactivation by the tRNA dialdehyde. Treatment of the TyrRS-[14C]tRNATyr covalent complex with alpha-chymotrypsin produced two labeled peptides (A and B) that were isolated and identified by sequence analysis. Peptides A and B are adjacent and together span residues 227-244 in the primary structure of the enzyme. The three lysine residues in this sequence (lysines-229, -234, and -237) are labeled in a mutually exclusive fashion, with lysine-234 being the most reactive. By analogy with the known three-dimensional structure of the homologous tyrosyl-tRNA synthetase from Bacillus stearothermophilus, these lysines should be part of the C-terminal domain which is presumed to bind the cognate tRNA. Interestingly, the labeled TyrRS structure showed significant similarities to the structure around the lysine residue of E. coli methionyl-tRNA synthetase which is the most reactive toward tRNAMetf(ox) (lysine-335) [Hountondji, C., Blanquet, S., & Lederer, F. (1985) Biochemistry 24, 1175-1180].  相似文献   

4.
Diphosphopyridine nucleotide-linked isocitrate dehydrogenase from bovine heart was inactivated at neutral pH by bromoacetate and diethyl pyrocarbonate and by photooxidation in the presence of methylene blue or rose bengal. Inactivation by diethyl pyrocarbonate was reversed by hydroxylamine. Loss of activity by photooxidation at pH 7.07 was accompanied by progressive destruction of histidine with time; loss of 83% of the enzyme activity was accompanied by modification of 1.1 histidyl residues per enzyme subunit. The pH-rate profiles of inactivation by photooxidation and by diethyl pyrocarbonate modification showed an inflection point around pH 6.6, in accord with the pKa for a histidyl residue of a protein. Partial protection against inactivation by photooxidation or diethyl pyrocarbonate was obtained with substrate (manganous isocitrate or magnesium isocitrate) or ADP; the combination of substrate and ADP was more effective than the components singly. As demonstrated by differential enzyme activity assays between pH 6.4 and pH 7.5 with and without 0.67 mm ADP, modification of the reactive histidyl residue of the enzyme caused a preferential loss of the positive modulation of activity by ADP. The latter was particularly apparent when substrate partially protected the enzyme against inactivation by rose bengal-induced photooxidation.  相似文献   

5.
Specific substitution into the anticodon loop of yeast tyrosine transfer RNA   总被引:11,自引:0,他引:11  
L A Bare  O C Uhlenbeck 《Biochemistry》1986,25(19):5825-5830
The aminoacylation kinetics of 19 different variants of yeast tRNATyr with nucleotide substitutions in positions 33-35 were determined. Substitution of the conserved uridine-33 does not alter the rate of aminoacylation. However, substitution of the anticodon position 34 or position 35 reduces Km from 2- to 10-fold and Vmax as much as 2-fold, depending on the nucleotide inserted. The ochre and amber suppressor tRNAsTyr both showed about a 7-fold reduction in Vmax/Km. Data from tRNATyr with different modified nucleotides at position 35 suggest that specific hydrogen bonds form between the synthetase and both the N1 and N3 hydrogens of psi-35. The effect of simultaneous substitutions at positions 34 and 35 can be predicted reasonably well by combining the effects of single substitutions. These data suggest that yeast tyrosyl-tRNA synthetase interacts with positions 34 and 35 of the anticodon of tRNATyr and opens the possibility that nonsense suppressor efficiency may be mediated by the level of aminoacylation.  相似文献   

6.
Tyrosyl-tRNA synthetase (EC 6.1.1.1) has been isolated from baker's yeast with an overall purification factor of more than 5000. After opening the cells, pH 4.8 precipitation, ammonium sulfate fractionation, removal of the nucleic acids with DEAE-cellulose and chromatography on CM-Sephadex, the critical purification step is the elution of the cation-exchanger-bound tyrosyl-tRNA synthetase with tRNATyr. The homogeneous enzyme exhibits a molecular weight of 40 000 as estimated by sedimentation equilibrium centrifugation and dodecylsulfate-gel electrophoresis under reducing and non-reducing conditions. Gel filtration experiments show a molecular weight of about 100 000 indicating the existence of an active dimeric form. The possibility of proteolytic cleavage of the enzyme is excluded. The reaction of tyrosyl-tRNA synthetase with p-chloromercuribenzoate and N-ethylmaleimide reveals two repidly reacting sulfhydryl groups per subunit of molecular weight 40 000, as demonstrated by the inhibition of aminoacylation and the isolation of enzyme-inhibitor complexes. In addition an efficient purification method is described for isolating tRNATyr from soluble ribonucleic acid from baker's yeast in three chromatographic steps in a yield of 28%.  相似文献   

7.
It has been shown that heterologous aminoacylation of tRNA by tyrosyl-tRNA synthetase leads to inactivation of the enzyme. Inorganic pyrophosphatase prevents the inactivation and increases the enzyme activity and aminoacylation level in a heterologous system. A putative inactivation mechanism is discussed.  相似文献   

8.
Kinetic and thermodynamic studies have been made on the effect of diethyl pyrocarbonate as a histidine modifier on the active site of adenosine deaminase in 50 mM sodium phosphate buffer pH 6.8, at 27 degrees C using UV spectrophotometry and isothermal titration calorimetry (ITC). Inactivation of adenosine deaminase by diethyl pyrocarbonate is correlated with modification of histidyl residues. The number of modified histidine residues complexed to active site of adenosine deaminase are equivalent to 4. The number and energy of histidine binding sets are determined by enthalpy curve, which represents triple stages. These stages are composed of 3,1 and 1 sites of histidyl modified residues at diethyl pyrocarbonate concentrations, 0.63, 1.8, 3.3 mM. The heat contents corresponding to the first, second and third sets are found to be 18000, 22000 and 21900 kJ mol(-1) respectively.  相似文献   

9.
P Pasta  G Mazzola  G Carrea 《Biochemistry》1987,26(5):1247-1251
Diethyl pyrocarbonate inactivated the tetrameric 3 alpha,20 beta-hydroxysteroid dehydrogenase with second-order rate constants of 1.63 M-1 s-1 at pH 6 and 25 degrees C or 190 M-1 s-1 at pH 9.4 and 25 degrees C. The activity was slowly and partially restored by incubation with hydroxylamine (81% reactivation after 28 h with 0.1 M hydroxylamine, pH 9, 25 degrees C). NADH protected the enzyme against inactivation with a Kd (10 microM) very close to the Km (7 microM) for the coenzyme. The ultraviolet difference spectrum of inactivated vs. native enzyme indicated that a single histidyl residue per enzyme subunit was modified by diethyl pyrocarbonate, with a second-order rate constant of 1.8 M-1 s-1 at pH 6 and 25 degrees C. The histidyl residue, however, was not essential for activity because in the presence of NADH it was modified without enzyme inactivation and modification of inactivated enzyme was rapidly reversed by hydroxylamine without concomitant reactivation. Progesterone, in the presence of NAD+, protected the histidyl residue against modification, and this suggests that the residue is located in or near the steroid binding site of the enzyme. Diethyl pyrocarbonate also modified, with unusually high reaction rate, one lysyl residue per enzyme subunit, as demonstrated by dinitrophenylation experiments carried out on the treated enzyme. The correlation between inactivation and modification of lysyl residues at different pHs and the protection by NADH against both inactivation and modification of lysyl residues indicate that this residue is essential for activity and is located in or near the NADH binding site of the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The relationship of the active sites which catalyze the three reactions in the trifunctional enzyme C1-tetrahydrofolate synthase (C1-THF synthase) from Saccharomyces cerevisiae has been examined with immunochemical and chemical modification techniques. Immunotitration of the enzyme with a polyclonal antiserum resulted in identical inhibition curves for the dehydrogenase and cyclohydrolase activities which were distinctly different from the inhibition curve for the synthetase activity. During chemical modification with diethyl pyrocarbonate (DEPC), the three activities were inactivated at significantly different rates, indicating that at least three distinct essential residues are involved in the reaction with DEPC. The pH dependence of the reaction with DEPC was consistent with the modification of histidyl residues. Treatment of C1-THF synthase with N-ethylmaleimide (NEM) resulted in significant inactivation of only the dehydrogenase and cyclohydrolase activities, with the cyclohydrolase at least an order of magnitude more sensitive than the dehydrogenase. Inactivation of cyclohydrolase was biphasic at NEM concentrations above 0.1 mM, suggesting two essential cysteinyl residues were being modified. NADP+, a dehydrogenase substrate, protected both dehydrogenase and cyclohydrolase activities, but not synthetase activity, against inactivation by either reagent. Synthetase substrates had no protective ability. Pteroylpolyglutamates and p-aminobenzoic acid polyglutamates exhibited some protection of all three activities. The p-aminobenzoic acid polyglutamate series showed progressive protection with increasing chain length. These results are consistent with an overlapping site for the dehydrogenase and cyclohydrolase reactions, independent from the synthetase active site. Possible active-site configurations and the role of the polyglutamate tail in substrate binding are discussed.  相似文献   

11.
The effect of side chain modification on the organic anion exchanger in the renal brush-border membrane was examined to identify what amino acid residues constitute the substrate binding site. One histidyl-specific reagent, diethyl pyrocarbonate (DEPC), and 2 arginyl-specific reagents, phenylglyoxal and 2,3-butanedione, were tested for their effect on the specifically mediated transport of p-amino[3H]hippurate (PAH), a prototypic organic anion. The specifically mediated transport refers to the difference in the uptake of [3H]PAH in the absence and presence of a known competitive inhibitor, probenecid, and was examined in brush-border membrane vesicles isolated from the outer cortex of canine kidneys. The experiments were performed utilizing a rapid filtration assay. DEPC, phenylglyoxal, and 2,3-butanedione inactivated the specifically mediated PAH transport, i.e. probenecid inhibitable transport with IC50 values of 160, 710, and 1780 microM, respectively. The rates of PAH inactivation by DEPC and phenylglyoxal were suggestive of multiple pseudo first-order reaction kinetics and were consistent with a reaction mechanism whereby more than 1 arginyl or histidyl residue is inactivated. Furthermore, PAH (5 mM) did not affect the rate of phenylglyoxal inactivation. In contrast, PAH (5 mM) affected the rate of DEPC inactivation. The modification by DEPC was specific for histidyl residues since transport could be restored by treatment with hydroxylamine. The results demonstrate that histidyl and arginyl residues are essential for organic anion transport in brush-border membrane vesicles. We conclude that the histidyl residue constitutes the cationic binding site for the anionic substrate, whereas the arginyl residue(s) serves to guide the substrate to or away from the histidyl site.  相似文献   

12.
A catalytic role for histidine 237 in rat mammary gland thioesterase II   总被引:2,自引:0,他引:2  
The involvement of a histidyl residue in the catalytic mechanism of thioesterase II, a serine active-site enzyme that catalyzes the chain terminating reaction in de novo fatty acid synthesis, has been inferred from studies with the inhibitor diethyl pyrocarbonate. Its likely location has been predicted by identification of conserved residues in related thioesterases and ultimately confirmed by site-directed mutagenesis. Diethyl pyrocarbonate inactivated the enzyme with a second-order rate constant of 49 M-1 s-1 at pH 6, 10 degrees C. Data analysis indicated that although several residues reacted with the reagent, modification of a single residue was responsible for the inactivation. Removal of a single ethoxycarbonyl moiety by treatment with neutral hydroxylamine completely restored enzyme activity. Prior ethoxycarbonylation of the histidyl residue blocked the ability of the active-site serine to react with phenylmethanesulfonyl fluoride. Comparison of the amino acid sequences of five structurally related proteins indicated that only 1 histidine has been completely conserved. Replacement of this residue in rat thioesterase II (His-237) with arginine and leucine by mutagenesis reduced the catalytic activity by 2-3 orders of magnitude. The activity of the mutant thioesterases, unlike that of the wild-type enzyme, was relatively insensitive to inhibition by diethyl pyrocarbonate and phenylmethylsulfonyl fluoride. These studies provide strong evidence that His-237 is involved directly in catalysis and suggest that its role is to increase the nucleophilic character of the active-site Ser-101 by acting as a proton acceptor thus facilitating acylation of the seryl residue. The mechanism appears to share certain common features with the charge-relay system characteristic of other esterases.  相似文献   

13.
Diethylpyrocarbonate modification of endoglucanase D from Clostridium thermocellum, cloned in Escherichia coli, resulted in a rapid but partial (maximally 70-80%) loss of activity. The second-order rate constant of inactivation proved to be exceptionally high (3210 M-1.min-1). A 3-fold reduction of the kcat and a 2-fold increase of the Km for 2'-chloro-4'-nitrophenyl beta-cellobioside were observed. Spectrophotometric analysis indicate the presence of one rapidly (k = 0.45 min-1) and two slower (k = 0.23 min-1) reacting histidyl residues. In the presence of 50 mM methyl beta-cellotrioside, the rate of inactivation was reduced 16-fold, and the kinetics of modification were compatible with the protection of 1 histidyl residue. Since peptide analysis was inconclusive, identification of the critical residue was attempted by site-directed mutagenesis. Each of the 12 histidyl residues present in the endoglucanase D sequence was mutated into either Ala or Ser. Seven of the mutant enzymes had specific activities lower than 50% of the wild-type. Only in the case of the Ser-516 mutant, however, was the residual activity not affected by diethyl pyrocarbonate. These findings suggest an important functional or structural role for His-516 in the wild-type enzyme.  相似文献   

14.
Residue Glu152 of tyrosyl-tRNA synthetase (TyrTS) from Bacillus stearothermophilus is close to phosphate groups 73 and 74 of tRNATyr in the structural model of their complex. TyrTS(E152A), a mutant synthetase carrying the change of Glu152 to Ala, was toxic when overproduced in Escherichia coli. The toxicity strongly increased with the growth temperature. It was measured by the ratios of the efficiencies with which the producing cells plated in induced or repressed conditions and at 30 degrees C or 37 degrees C. TyrTS(E152Q), TyrTS(E152D) and the wild-type synthetase were not toxic in conditions where TyrTS(E152A) was toxic. The toxicity of TyrTS(E152A) was abolished by additional mutations of the synthetase that prevent the binding of tRNATyr but not by a mutation that prevents the formation of Tyr-AMP. Because TyrTS(E152A) was active for the aminoacylation of tRNATyr, its toxicity could only be due to faulty interactions with non-cognate tRNAs, either their non-productive binding or their mischarging with tyrosine. TyrTS(E152A) and TyrTS(E152Q) mischarged tRNAPhe and tRNAVal in vitro with tyrosine unlike TyrTS(E152D) or the wild-type enzyme. Thus, several features of the side-chain in position 152 of TyrTS, including its negative charge, are important for the rejection of non-cognate tRNAs. TyrTS(E152A), TyrTS(E152D) and TyrTS(E152Q) had similar steady-state kinetics parameters for the charging of tRNATyr with tyrosine in vitro, with kcat/KM ratios improved 2.5 times relative to the wild-type synthetase. We conclude that the side-chain of residue Glu152 weakens the binding of TyrTS to tRNATyr and prevents its interaction with non-cognate tRNAs.  相似文献   

15.
Diethyl pyrocarbonate (ethoxyformic anhydride) was used to modify histidyl residues in prothrombin. Diethyl pyrocarbonate inactivated the potential fibrinogen-clotting activity of prothrombin with a second-order rate constant of 70 M-1 min-1 at pH 6.0 and 25 degrees C. The difference spectrum of the modified protein had a maximum absorption at 240 nm which is characteristic of N-carbethoxyhistidine. The pH dependence for inactivation suggested the participation of a residue with a pKa of 6.2. Addition of hydroxylamine to ethoxyformylated prothrombin reversed the loss of fibrinogen-clotting activity. No structural differences were detected between the native and modified proteins using fluorescence emission and high-performance size-exclusion chromatography. The tyrosine and tryptophan content was not altered, but approximately 1-2 amino groups were modified. Statistical analysis of residual enzyme activity and extent of modification indicates that among 7 histidyl residues modified per molecule, there is 1 essential histidine (not in the active site) involved in the potential fibrinogen-clotting activity of prothrombin. To further examine its properties, the modified prothrombin was activated to thrombin using Echis carinatus venom protease. There was no difference in the catalytic activity of thrombin obtained from either native or ethoxyformylated prothrombin, as measured by H-D-Phe-pipecolyl-Arg-p-nitroanilide (D-Phe-Pip-Arg-NA) hydrolysis. However, thrombin produced from the modified protein showed a loss of fibrinogen-clotting activity but had a comparable apparent Ki value (about 20 microM) to thrombin from native prothrombin when fibrinogen was used as a competitive inhibitor during D-Phe-Pip-Arg-NA hydrolysis. The similarity in Ki values indicated that thrombin derived from diethyl pyrocarbonate-modified prothrombin does not have an altered fibrinogen-binding site. Although the histidyl residue involved during inactivation has not been identified, the results suggest that a histidyl residue in the thrombin portion of prothrombin is essential for interaction with fibrinogen.  相似文献   

16.
The relative importance of tyrosine and histidine residues for the catalytic action of Escherichia coli asparaginase (L-asparagine amidohydrolase, EC 3.5.1.1) was studied by chemical modification and 1H-NMR spectroscopy. We show that, under appropriate reaction conditions, N-bromosuccinimide (NBS) as well as diazonium-1H-tetrazole (DHT) inactivate by selectively modifying two tyrosine residues per asparaginase subunit without affecting histidyl moieties. We further show that diethyl pyrocarbonate (DEP), a reagent considered specific for histidine, also modifies tyrosine residues in asparaginase. Thus, inactivation of the enzyme by DEP is not indicative of histidine residues being involved in catalysis. In 1H-nuclear magnetic resonance (NMR) spectra of asparaginase signals from all three histidine residues were identified. By measuring the pH dependencies of these resonances, pKa values of 7.0 and 5.8 were derived for two of the histidines. Titration with aspartate which tightly binds to the enzyme at low pH strongly reduced the signal amplitude of the pKa 7 histidyl moiety as well as those of resonances of one or more tyrosine residues. This suggests that tyrosine and histidine are indeed constituents of the active site.  相似文献   

17.
Diethyl pyrocarbonate inhibits pig kidney holo-3,4-dihydroxyphenylalanine decarboxylase with a second-order rate constant of 1170 M-1 min-1 at pH 6.8 and 25 degrees C, showing a concomitant increase in absorbance at 242 nm due to formation of carbethoxyhistidyl derivatives. Activity can be restored by hydroxylamine, and the pH curve of inactivation indicates the involvement of a residue with a pKa of 6.03. Complete inactivation of 3,4-dihydroxyphenylalanine decarboxylase requires the modification of 6 histidine residues/mol of enzyme. Statistical analysis of the residual enzyme activity and of the extent of modification shows that, among 6 modifiable residues, only one is critical for activity. Protection exerted by substrate analogues, which bind to the active site of the enzyme, suggests that the modification occurs at or near the active site. The modified inactivated 3,4-dihydroxyphenylalanine decarboxylase still retains most of its ability to bind substrates. Thus, it may be suggested that the inactivation of enzyme by diethyl pyrocarbonate is not due to nonspecific steric or conformational changes which prevent substrate binding. However, the modified enzyme fails to produce at high pH either an enzyme-substrate complex or an enzyme-product complex absorbing at 390 nm. Considerations on this peculiar feature of the modified enzyme consistent with a catalytic role for the modified histidyl residue are discussed. The overall conclusion of this study may be that the modification of only one histidyl residue of 3,4-dihydroxyphenylalanine decarboxylase inactivates the enzyme and that this residue plays an essential role in the mechanism of action of the enzyme.  相似文献   

18.
The influence of some reagents modifying NH2-, SH-groups or imidazole moiety, on the prostaglandin endoperoxide synthetase activity was studied. Acetaldehyde, pyridoxal phosphate, dithiobis (nitrobenzoic) acid and iodoacetamide were found not to affect the enzyme activity. The activity was abolished as a result of the interaction with p-chloromercuribenzoic acid and diethyl pyrocarbonate. The hemin completely protected the apo-enzyme against the inactivation with diethyl pyrocarbonate. The assumption about the presence of imidazole moiety in the active site of the enzyme was made.  相似文献   

19.
Y H Ko  P Vanni  G R Munske  B A McFadden 《Biochemistry》1991,30(30):7451-7456
The inactivation of tetrameric 188-kDa isocitrate lyase from Escherichia coli at pH 6.8 (37 degrees C) by diethyl pyrocarbonate, exhibiting saturation kinetics, is accompanied by modification of histidine residues 266 and 306. Substrates isocitrate, glyoxylate, or glyoxylate plus succinate protect the enzyme from inactivation, but succinate alone does not. Removal of the carbethoxy groups from inactivated enzyme by treatment with hydroxylamine restores activity of isocitrate lyase. The present results suggest that the group-specific modifying reagent diethyl pyrocarbonate may be generally useful in determining the position of active site histidine residues in enzymes.  相似文献   

20.
The structure of a recombinant protein, TyrRS(delta4), corresponding to the anticodon arm binding domain of Bacillus stearothermophilus tyrosyl-tRNA synthetase, has been solved, and its dynamics have been studied by nuclear magnetic resonance (NMR). It is the first structure described for such a domain of a tyrosyl-tRNA synthetase. It consists of a five-stranded beta sheet, packed against two alpha helices on one side and one alpha helix on the other side. A large part of the domain is structurally similar to other functionally unrelated RNA binding proteins. The basic residues known to be essential for tRNA binding and charging are exposed to the solvent on the same face of the molecule. The structure of TyrRS(delta4), together with previous mutagenesis data, allows one to delineate the region of interaction with tRNATyr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号