首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in the tailspike gene (gene 9) of Salmonella typhimurium phage P22 have been used to identify amino acid interactions during the folding of a polypeptide chain. Since temperature-sensitive folding (tsf) mutations cause folding defects in the P22 tailspike polypeptide chain, it is likely that mutants derived from these and correcting the original tsf defects (second-site intragenic suppressors) identify interactions during the folding pathway. We report the isolation and identification of second-site revertants to tsf mutants.  相似文献   

2.
B Fane  J King 《Genetics》1987,117(2):157-171
Amber mutations have been isolated and mapped to more than 60 sites in gene 9 of P22 encoding the thermostable phage tailspike protein. Gene 9 is the locus of over 30 sites of temperature sensitive folding (tsf) mutations, which affect intermediates in the chain folding and subunit association pathway. The phenotypes of the amber missense proteins produced on tRNA suppressor hosts inserting serine, glutamine, tryosine and leucine have been determined at different temperatures. Thirty-three of the sites are tolerant, producing functional proteins with any of the four amino acids inserted at the sites, independent of temperature. Tolerant sites are concentrated at the N-terminal end of the protein indicating that this region is not critical for conformation or function. Sixteen of the sites yield temperature sensitive missense proteins on at least one nonsense suppressing host. Most of the sites with ts phenotypes map to the central region of the gene which is also the region where most of the tsf mutations map. Mutations at 15 of the sites have a lethal phenotype on at least one tRNA suppressor host. For nine out of ten sites tested with at least one lethal phenotype, the primary defect was in the folding or subunit association of the missense polypeptide chain. This analysis of the tailspike missense proteins distinguishes three classes of amino acid sites in the polypeptide chain; residues whose side chains contribute little to folding, subunit assembly or function; residues critical for maintaining the folding and subunit assembly pathway at the high end of the temperature range of phage growth; and residues critical over the entire temperature range of growth.  相似文献   

3.
Temperature-sensitive folding (tsf) mutations in gene 9 of bacteriophage P22 interfere with the folding and association of the tailspike polypeptide chain at restrictive temperature. We report here the location and amino acid substitutions for 24 independent tsf mutants. The distribution of these and previously identified mutations is distinctly non-random; all of the 32 unambiguous sites of tsf mutations are located in the central 350 residues of the 666 residue tailspike polypeptide chain. No ts mutation has been found among the N-terminal 140 amino acids, and none among the C-terminal 170 amino acids. Since the physiological defect in these mutants is the destabilization of an early intermediate in the folding pathway, the localization of the mutants suggests that the central region of the chain is critical for formation or stabilization of this early intermediate. The majority of amino acids that served as sites for the tsf mutations were hydrophilic residues. Sixty percent of the replacements of these residues represented charge changes. This probably reflects the selection for mutant sites at the mature protein surface where the substitutions can be best tolerated without interfering with function. None of the sites of tsf mutations were at aromatic residues, and only one proline site was found. Substitutions at these residues may cause lethal folding defects which are not recovered as tsf mutants. The local sequences at tsf sites resemble those reported for turns. Structural studies identify beta-sheet as the dominant secondary structure. These mutations may disrupt the formation of conformational features of beta-sheets which are repeated, such as turns, associations between pairs of strands, or sheet/sheet packing interactions. Such a model accounts for the occurrence of tsf mutations with similar defective phenotypes at multiple positions along the chain.  相似文献   

4.
Temperature-sensitive folding (tsf) mutations in the gene for the thermostable P22 tailspike interfere with the polypeptide chain folding and association pathway at restrictive temperature without altering the thermostability of the protein once correctly folded and assembled at permissive temperature. Though the native proteins matured at permissive temperature are biologically active, many of them display alterations in electrophoretic mobility. The native forms of 15 of these tsf mutant proteins have been purified and characterized. The purified proteins differed in electrophoretic mobility and isoelectric point from wild type but did not show evidence of major conformational alterations. The results suggest that the electrophoretic variations conferred by the 15 tsf amino acid substitutions are due to changes in the net charge at solvent-accessible sites in the native form of the mutant protein. During the maturation of the chains at restrictive temperature, these sites influence the conformation of intermediates in chain folding and association. The amino acid sequences at these sites resemble those found at turns in polypeptide chains. The isolation of tsf mutations requires that the mature structure of the tailspike accommodates the mutant amino acid substitution without loss of function. The solvent-accessible sites are probably at the surface of this structural protein. This would explain how bulky mutant substitutions, such as arginines for glycines, are accommodated in the native tailspike structure. Such sites, stabilizing intermediates in the folding pathway and located on the surface of the mature protein, probably represent a general class of conformational substrates for tsf mutations.  相似文献   

5.
Temperature-sensitive folding mutations (tsf) of the thermostable P22 tailspike protein prevent the mutant polypeptide chain from reaching the native state at the higher end of the temperature range of bacterial growth (37-42 degrees C). At lower temperatures the mutant polypeptide chains fold and associate into native proteins. The melting temperatures of the purified native forms of seven different tsf mutant proteins have been determined by differential scanning calorimetry. Under conditions in which the wild type protein had a melting temperature of 88.4 degrees C, the melting temperatures of the mutant proteins were all above 82 degrees C, more than 40 degrees C higher than the temperature for expression of the folding defect. Because the folding defects were observed in vivo, the thermostability of the native protein was also examined with infected cells. Once matured at 28 degrees C, intracellular tsf mutant tailspikes remained native when the cells were transferred to 42 degrees C, a temperature that prevents newly synthesized tsf chains from folding correctly. These results confirm that the failure of tsf polypeptide chains to reach their native state is not due to a lowered stability of the native state. Such mutants differ from the class of ts mutations which render the native state thermolabile. The intracellular folding defects must reflect decreased stabilities of folding intermediates or alteration in the off-pathway steps leading to aggregation and inclusion body formation. These results indicate that the stability of a native protein within the cells is not sufficient to insure the successful folding of the newly synthesized chains into the native state.  相似文献   

6.
Two global suppressors (Val-331 greater than Ala and Ala-334 greater than Val) have been identified for temperature-sensitive folding (tsf) mutations in gene 9 of bacteriophage P22 (Mitraki, A., Fane, B., Haase-Pettingell, C., Sturtevant, J., and King, J. (1991) Science 253, 54-58). We have introduced 19 different single amino acid substitutions at the two global suppressor sites independently and examined the effects on the tailspike formation in Escherichia coli. Folding and maturation patterns of the various substitutions at the two global suppressor sites in the wild-type background suggest that Val-331 is located on the protein surface and Ala-334 is in the hydrophobic region. In combination with a tsf mutation, tsfH304 (Gly-244 greater than Arg), only Gly at 331 and Ile at 334, the substitutions that have similar side chain properties to the original suppressor sequences, were active as tsf suppressors. The newly identified suppressors of tsfH304 could also alleviate the tsf defect of three other mutations. The mutant carrying both Val-331 greater than Ala and Ala-334 greater than Val substitutions was also a global suppressor and was more active in suppressing the tsf defect than mutants carrying only one substitution. The suppressors may act by increasing the stability of an intermediate in the productive pathway of folding and maturation of the mutant polypeptides.  相似文献   

7.
A Mitraki  J King 《FEBS letters》1992,307(1):20-25
Though an increasing variety of chaperonins are emerging as important factors in directing polypeptide chain folding off the ribosome, the primary amino acid sequence remains the major determinant of final conformation. The ability to identify cytoplasmic folding intermediates in the formation of the tailspike endorhamnosidase of phage P22 has made it possible to isolate two classes of mutations influencing folding intermediates-temperature-sensitive folding mutations and global suppressors of tsf mutants. These and related amino acid substitutions in eukaryotic proteins are discussed in the context of inclusion body formation and problems in the recovery of correctly folded proteins.  相似文献   

8.
The amino acid sequence of a polypeptide defines both the folding pathway and the final three-dimensional structure of a protein. Eighteen amino acid substitutions have been identified in bacteriophage P22 coat protein that are defective in folding and cause their folding intermediates to be substrates for GroEL and GroES. These temperature-sensitive folding (tsf) substitutions identify amino acids that are critical for directing the folding of coat protein. Additional amino acid residues that are critical to the folding process of P22 coat protein were identified by isolating second site suppressors of the tsf coat proteins. Suppressor substitutions isolated from the phage carrying the tsf coat protein substitutions included global suppressors, which are substitutions capable of alleviating the folding defects of numerous tsf coat protein mutants. In addition, potential global and site-specific suppressors were isolated, as well as a group of same site amino acid substitutions that had a less severe phenotype than the tsf parent. The global suppressors were located at positions 163, 166, and 170 in the coat protein sequence and were 8-190 amino acid residues away from the tsf parent. Although the folding of coat proteins with tsf amino acid substitutions was improved by the global suppressor substitutions, GroEL remained necessary for folding. Therefore, we believe that the global suppressor sites identify a region that is critical to the folding of coat protein.  相似文献   

9.
The tailspike protein of bacteriophage P22 assembles with mature capsids during the final reaction in phage morphogenesis. The gene 9 mutation hmH3034 synthesizes a tailspike protein with a change at amino acid 100 from Asp to Asn. This mutant form of trimeric tailspike protein fails to assemble with capsids in vivo. By using in vitro quantitative tailspike-capsid assembly assays, this mutant tailspike trimer can be shown to assemble with capsids at very high tailspike concentrations. From these assays, we estimate that this single missense mutation decreases by 100-500-fold the affinity of the tailspike for capsids. Furthermore, hmH3034 tailspike protein has a structural defect which makes the mature tailspike trimers sensitive to SDS at room temperature and causes the trimers to "partially unfold." Spontaneously arising intragenic suppressors of the capsid assembly defect have been isolated. All of these suppressors are changes at amino acid 13 of the tailspike protein, which substitute His, Leu or Ser for the wild type amino acid Arg. These hmH3034/sup3034 mutants and the separated sup3034 mutants form fully functional tailspike proteins with assembly activities indistinguishable from wild type while retaining the SDS-sensitive structural defect. From the analysis of the hmH3034 mutant and its suppressors, we propose that in the wild-type tailspike protein, the Asp residue at position 100 and the Arg residue at position 13 form an intrachain or interchain salt bridge which stabilizes the amino terminus of the tailspike protein and that the unneutralized positive charge at amino acid 13 in the hmH3034 protein is the cause of the assembly defect of this protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
By means of genetic screens, a great number of mutations that affect the folding and stability of the tailspike protein from Salmonella phage P22 have been identified. Temperature-sensitive folding (tsf) mutations decrease folding yields at high temperature, but hardly affect thermal stability of the native trimeric structure when assembled at low temperature. Global suppressor (su) mutations mitigate this phenotype. Virtually all of these mutations are located in the central domain of tailspike, a large parallel beta-helix. We modified tailspike by rational single amino acid replacements at three sites in order to investigate the influence of mutations of two types: (1) mutations expected to cause a tsf phenotype by increasing the side-chain volume of a core residue, and (2) mutations in a similar structural context as two of the four known su mutations, which have been suggested to stabilize folding intermediates and the native structure by the release of backbone strain, an effect well known for residues that are primarily evolved for function and not for stability or folding of the protein. Analysis of folding yields, refolding kinetics and thermal denaturation kinetics in vitro show that the tsf phenotype can indeed be produced rationally by increasing the volume of side chains in the beta-helix core. The high-resolution crystal structure of mutant T326F proves that structural rearrangements only take place in the remarkably plastic lumen of the beta-helix, leaving the arrangement of the hydrogen-bonded backbone and thus the surface of the protein unaffected. This supports the notion that changes in the stability of an intermediate, in which the beta-helix domain is largely formed, are the essential mechanism by which tsf mutations affect tailspike folding. A rational design of su mutants, on the other hand, appears to be more difficult. The exchange of two residues in the active site expected to lead to a drastic release of steric strain neither enhanced the folding properties nor the stability of tailspike. Apparently, side-chain interactions in these cases overcompensate for backbone strain, illustrating the extreme optimization of the tailspike protein for conformational stability. The result exemplifies the view arising from the statistical analysis of the distribution of backbone dihedral angles in known three-dimensional protein structures that the adoption of straight phi/psi angles other than the most favorable ones is often caused by side-chain interactions. Proteins 2000;39:89-101.  相似文献   

11.
The in vivo accumulation of polypeptide chains in the form of aggregated non-native states is a problem in many applications of biotechnology. In the maturation pathway of the thermostable P22 tailspike endorhamnosidase, the folding and chain association intermediates can be distinguished from the native tailspikes in crude extracts of phage-infected Salmonella cells. Temperature-sensitive folding mutations, at many sites in the chain, destabilize these conformational intermediates preventing the formation of native tailspikes at restrictive temperatures (Goldenberg, D. P., Smith, D. H., and King, J. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 7060-7064). We report here that both wild type and mutant tailspike polypeptide chains which fail to reach the native state accumulate in an aggregated state. These off-pathway aggregates form from a thermolabile intermediate in the productive folding pathway. These aggregation reactions are suppressed by lowering the temperature of maturation. Similar off-pathway steps from folding intermediates may account for the non-native aggregates often found in the expression of cloned genes in heterologous hosts.  相似文献   

12.
G J Thomas  R Becka  D Sargent  M H Yu  J King 《Biochemistry》1990,29(17):4181-4187
The thermostable tailspike endorhamnosidase of Salmonella phage P22 provides a model system for comparing the role of amino acid sequences in determining the intracellular folding pathway with their role in stabilizing the mature structural protein. Complete Raman band assignments are given here for the native form of the tailspike trimer in aqueous solution. Once correctly folded and assembled, the wild-type and two well-characterized mutant proteins, tsfIle258----Leu and tsfGly323----Asp, exhibit the same secondary structure in solution, consisting predominantly of beta-strand (56 +/- 5%) and turns (17 +/- 2%). Raman bands that are sensitive indicators of hydrogen-bonding interactions of tyrosine (phenolic OH) and tryptophan (indole NH) are unchanged between 30 and 80 degrees C in both wild type and tsf mutants. Similarly, Raman bands that are sensitive to changes in the hydrophobic environment of nonpolar side chains exhibit no significant temperature dependence in wild type and tsf mutants. In contrast, these conformational features are greatly altered by chemical denaturation of the tailspike with lithium halide and guanidine hydrochloride. In the chemically denatured tailspike, the beta-strand structure is substantially converted to irregular or "random coil" conformation. These findings confirm conclusions from physiological studies that the three-dimensional structures of the tsf mutants, once stabilized at permissive temperatures, are equivalent to the native structure of the wild type, and this structure is maintained at temperatures far above those that block the folding of the chain into the final native conformation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
As part of a study of protein folding, we have constructed a fine-structure map of 9 existing and 29 newly isolated UV- and hydroxylamine-induced temperature-sensitive (ts) mutations in gene 9 of Salmonella bacteriophage P22. Gene 9 specifies the polypeptide chain of the multimeric tail spikes, six of which form the cell attachment organelle of the phage. The 38 ts mutants were mapped against deletion lysogens with endpoints in gene 9. They mapped in 10 of the 15 deletion intervals. Two- and three-factor crosses between mutants within each interval indicated that at least 31 ts sites are represented among the 38 mutants. To determine the distribution of ts sites within the physical map, we identified the protein fragments from infection of su- hosts with 10 gene 9 amber mutants. Their molecular weights, ranging from 13,900 to 55,000 daltons, were combined with the genetic data to yield a composite map of gene 9. The 31 ts sites were distributed through most of the gene, but were most densely clustered in the central third.—None of the ts mutant pairs tested exhibited intragenic complementation. Studies of the defective phenotypes of the ts mutants (Goldenberg and King 1981; Smith and King 1981) revealed that most do not affect the thermostability of the mature protein, but instead prevent the folding or subunit assembly of the mutant chains synthesized at restrictive temperature. Thus, many of thes ts mutations identify sites in the polypeptide chain that are critical for the folding or maturation of the tail-spike protein.  相似文献   

14.
A N Stroup  L M Gierasch 《Biochemistry》1990,29(42):9765-9771
A family of mutants of the P22 bacteriophage tailspike protein has been characterized as temperature sensitive for folding (tsf) by King and co-workers [King, J. (1986) Bio/Technology 4, 297-303]. There is substantial evidence that the tsf mutations alter the folding pathway but not the stability of the final folded protein. Several point mutations are known to cause the tsf phenotype; most of these occur in regions of the tailspike sequence likely to take up reverse turns. Hence, it has been hypothesized that the correct folding of the P22 tailspike protein requires formation of turns and that the mutations causing tsf phenotypes interfere at this critical stage. We have tested this hypothesis by study of isolated peptides corresponding to a region of the P22 tailspike harboring a tsf mutation. Comparison of the tendencies of wild-type and tsf sequences to adopt turn conformations was achieved by the synthesis of peptides with flanking cysteine residues and the use of a thiol-disulfide exchange assay. We find that the wild-type sequence, either as a decapeptide (Ac-CVKFPGIETC-CONH2) or as a dodecapeptide (Ac-CYVKFPGIETLC-CONH2), has a 3-5-fold greater tendency for its termini to approach closely enough to form the intramolecular disulfide than do the peptide sequences corresponding to the tsf mutant sequences, which have a Gly----Arg substitution (Ac-CVKFPRIETC-CONH2 or Ac-CYVKFPRIETLC-CONH2). A peptide with a D-Arg substituted for the Gly has a slightly higher turn propensity than does the wild type. Together with data from nuclear magnetic resonance analysis of the oxidized peptides, this suggests that a type II beta turn is favored by the wild-type sequence. Our results on isolated peptides from the P22 tailspike protein support the model for its folding that includes reverse turn formation as a critical step.  相似文献   

15.
Several temperature-sensitive folding (tsf) mutants of the tailspike protein from bacteriophage P22 have been found to fold with lower efficiency than the wild-type sequence, even at lowered temperatures. Previous refolding studies initiated from the unfolded monomer have indicated that the tsf mutations decrease the rate of structured monomer formation. We demonstrate that pressure treatment of the tailspike aggregates provides a useful tool to explore the effects of tsf mutants on the assembly pathway of the P22 tailspike trimer. The effects of pressure on two different tsf mutants, G244R and E196K, were explored. Pressure treatment of both G244R and E196K aggregates produced a folded trimer. E196K forms almost no native trimer in in vitro refolding experiments, yet it forms a trimer following pressure in a manner similar to the native tailspike protein. In contrast, trimer formation from pressure-treated G244R aggregates was not rapid, despite the presence of a G244R dimer after pressure treatment. The center-of-mass shifts of the fluorescence spectra under pressure are nearly identical for both tsf aggregates, indicating that pressure generates similar intermediates. Taken together, these results suggest that E196K has a primary defect in formation of the beta-helix during monomer collapse, while G244R is primarily an assembly defect.  相似文献   

16.
Mechanism of phage P22 tailspike protein folding mutations.   总被引:5,自引:4,他引:1       下载免费PDF全文
Temperature-sensitive folding (tsf) and global-tsf-suppressor (su) point mutations affect the folding yields of the trimeric, thermostable phage P22 tailspike endorhamnosidase at elevated temperature, both in vivo and in vitro, but they have little effect on function and stability of the native folded protein. To delineate the mechanism by which these mutations modify the partitioning between productive folding and off-pathway aggregation, the kinetics of refolding after dilution from acid-urea solutions and the thermal stability of folding intermediates were analyzed. The study included five tsf mutations of varying severity, the two known su mutations, and four tsf/su double mutants. At low temperature (10 degrees C), subunit-folding rates, measured as an increase in fluorescence, were similar for wild-type and mutants. At 25 degrees C, however, tsf mutations reduced the rate of subunit folding. The su mutations increased this rate, when present in the tsf-mutant background, but had no effect in the wild-type background. Conversely, tsf mutations accelerated, and su mutations retarded the irreversible off-pathway reaction, as revealed by temperature down-shifts after varied times during refolding at high temperature (40 degrees C). The kinetic results are consistent with tsf mutations destabilizing and su mutations stabilizing an essential subunit folding intermediate. In accordance with this interpretation, tsf mutations decreased, and su mutations increased the temperature resistance of folding intermediates, as disclosed by temperature up-shifts during refolding at 25 degrees C. The stabilizing and destabilizing effects were most pronounced early during refolding. However, they were not limited to subunit-folding intermediates and were also observable during thermal unfolding of the native protein.  相似文献   

17.
The P22 tailspike adhesin is an elongated thermostable trimer resistant to protease digestion and to denaturation in sodium dodecyl sulfate. Monomeric, dimeric, and protrimeric folding and assembly intermediates lack this stability and are thermolabile. In the native trimer, three right-handed parallel beta-helices (residues 143-540), pack side-by-side around the three-fold axis. After residue 540, these single chain beta-helices terminate and residues 541-567 of the three polypeptide chains wrap around each other to form a three-stranded interdigitated beta-helix. Three mutants located in this region -- G546D, R563Q, and A575T -- blocked formation of native tailspike trimers, and accumulated soluble forms of the mutant polypeptide chains within cells. The substitutions R563Q and A575T appeared to prevent stable association of partially folded monomers. G546D, in the interdigitated region of the chain, blocked tailspike folding at the transition from the partially-folded protrimer to the native trimer. The protrimer-like species accumulating in the G546D mutant melted out at 42 degrees C and was trypsin and SDS sensitive. The G546D defect was not corrected by introduction of global suppressor mutations, which correct kinetic defects in beta-helix folding. The simplest interpretation of these results is that the very high thermostability (T(m) = 88 degrees C), protease and detergent resistance of the native tailspike acquired in the protrimer-to-trimer transition, depends on the formation of the three-stranded interdigitated region. This interdigitated beta-helix appears to function as a molecular clamp insuring thermostable subunit association in the native trimer.  相似文献   

18.
Salmonella typhimurium cells infected by temperature-sensitive mutants in gene 9 of bacteriophage P22 at the restrictive temperature (39 °C) fail to accumulate functional tail spike protein. We report here studies of the inactive mutant tail spike polypeptide chains synthesized at 39 °C by temperature-sensitive mutants at 15 different sites of gene 9. For all 15 mutants, the gene 9 polypeptide chains were synthesized at 39 °C at rates similar to wild type. The mutant polypeptide chains were stable within the infected cells.The inactive polypeptide chains were tested for three functions displayed by the mature tail spike protein: irreversible binding to phage heads, endorhamnosidase activity, and reaction with anti-tail antibody. The 15 mutant proteins that accumulated at 39 °C lacked all three functions. Since the amino acid substitutions do not affect these functions of the mature protein, the mutant polypeptide chains synthesized at 39 °C have a conformation very different from the wild type, and different from the same proteins when matured at 30 °C. The fact that amino acid substitutions throughout the 76,000 Mr polypeptide chain prevent all three functions suggests that the mutations prevent the correct folding of the gene 9 polypeptide chain at restrictive temperature. Thus, these mutations identify sites in the polypeptide chain critical for protein maturation.Many of the mutant proteins could be activated in the absence of new protein synthesis by shifting infected cells from restrictive to permissive temperature before cell lysis. For these mutants, the immature chains accumulating at high temperature must be reversibly related to intermediates in protein folding or subunit assembly.  相似文献   

19.
Benton CB  King J  Clark PL 《Biochemistry》2002,41(16):5093-5103
P22 tailspike is a homotrimeric, thermostable adhesin that recognizes the O-antigen lipopolysaccharide of Salmonella typhimurium. The 70 kDa subunits include long beta-helix domains. After residue 540, the polypeptide chains change their path and wrap around one another, with extensive interchain contacts. Formation of this interdigitated domain intimately couples the chain folding and assembly mechanisms. The earliest detectable trimeric intermediate in the tailspike folding and assembly pathway is the protrimer, suspected to be a precursor of the native trimer structure. We have directly analyzed the kinetics of in vitro protrimer formation and disappearance for wild type and mutant tailspike proteins. The results confirm that the protrimer intermediate is an on-pathway intermediate for tailspike folding. Protrimer was originally resolved during tailspike folding because its migration through nondenaturing polyacrylamide gels was significantly retarded with respect to the migration of the native tailspike trimer. By comparing protein mobility versus acrylamide concentration, we find that the retarded mobility of the protrimer is due exclusively to a larger overall size than the native trimer, rather than an altered net surface charge. Experiments with mutant tailspike proteins indicate that the conformation difference between protrimer and native tailspike trimer is localized toward the C-termini of the tailspike polypeptide chains. These results suggest that the transformation of the protrimer to the native tailspike trimer represents the C-terminal interdigitation of the three polypeptide chains. This late step may confer the detergent-resistance, protease-resistance, and thermostability of the native trimer.  相似文献   

20.
The processive beta-strands and turns of a polypeptide parallel beta-helix represent one of the topologically simplest beta-sheet folds. The three subunits of the tailspike adhesin of phage P22 each contain 13 rungs of a parallel beta-helix followed by an interdigitated section of triple-stranded beta-helix. Long stacks of hydrophobic residues dominate the elongated buried core of these two beta-helix domains and extend into the core of the contiguous triple beta-prism domain. To test whether these side-chain stacks represent essential residues for driving the chain into the correct fold, each of three stacked phenylalanine residues within the buried core were substituted with less bulky amino acids. The mutant chains with alanine in place of phenylalanine were defective in intracellular folding. The chains accumulated exclusively in the aggregated inclusion body state regardless of temperature of folding. These severe folding defects indicate that the stacked phenylalanine residues are essential for correct parallel beta-helix folding. Replacement of the same phenylalanine residues with valine or leucine also impaired folding in vivo, but with less severity. Mutants were also constructed in a second buried stack that extends into the intertwined triple-stranded beta-helix and contiguous beta-prism regions of the protein. These mutants exhibited severe defects in later stages of chain folding or assembly, accumulating as misfolded but soluble multimeric species. The results indicate that the formation of the buried hydrophobic stacks is critical for the correct folding of the parallel beta-helix, triple-stranded beta-helix, and beta-prism domains in the tailspike protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号