首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Regulation of synthesis and turnover of an interferon-inducible mRNA.   总被引:13,自引:5,他引:8       下载免费PDF全文
Regulation of synthesis and turnover of an interferon (IFN)-inducible mRNA, mRNA 561, in HeLa monolayer cells was studied. Cytoplasmic levels of this mRNA were estimated by hybridization analyses with a cDNA clone that we have isolated as a probe. IFN-alpha A induced a high level of this mRNA in a transient fashion, whereas no induction was observed in response to IFN-gamma. Surprisingly little mRNA 561 was induced in cells treated simultaneously with IFN-alpha A and an inhibitor of protein synthesis, suggesting that in addition to IFN-alpha A, an interferon-inducible protein was needed for induction of this mRNA. Apparently this putative protein could be induced by IFN-gamma as well. Thus, although little mRNA 561 was synthesized in cells treated either with IFN-gamma alone or with IFN-alpha A and cycloheximide, a large quantity of this mRNA was induced in cells which had been pretreated with IFN-gamma and then treated with IFN-alpha A and cycloheximide. Once mRNA 561 was induced by IFN-alpha A, it turned over rapidly. This rapid turnover could be blocked by actinomycin D or cycloheximide indicating that another IFN-inducible protein may mediate this process.  相似文献   

2.
In previous studies, the induction of Ia antigens on murine peritoneal exudate macrophages by recombinant IFN-gamma (rIFN-gamma) and the antagonism of rIFN-gamma-induced Ia expression by the inhibitors IFN-alpha/beta and glucocorticoids have been examined. In this report, these findings have been extended to an analysis of total or cytoplasmic mRNA from macrophage cultures treated with rIFN-gamma in the absence or presence of these two inhibitors. Recombinant IFN-gamma induced a 5.7- to 6.5-fold increase in steady-state levels of Ia (A alpha-specific) mRNA. Coordinate increases in steady-state mRNA for A beta, and E alpha were observed in response to rIFN-gamma. Maximum induction occurred 24 hr post-treatment and required the continued presence of rIFN-gamma. Induction of A alpha-specific mRNA was sensitive to the protein synthesis inhibitor cycloheximide. Simultaneous treatment of macrophage cultures with rIFN-gamma and IFN-alpha/beta or the glucocorticoid dexamethasone (DEX) resulted in a significant decrease in steady-state, A alpha-specific mRNA levels compared with treatment with rIFN-gamma alone. This analysis suggests that both the induction of Ia expression by rIFN-gamma, and the antagonism of rIFN-gamma-induced Ia gene expression by IFN-alpha/beta and DEX, are regulated by cognate changes in Ia mRNA.  相似文献   

3.
4.
Interferons-alpha, -beta and -gamma (IFNs-alpha, -beta and -gamma) stimulated the synthesis of the second complement component (C2), Factor B (B) and C1 inhibitor (C1-inh) by human monocytes in vitro. The degree of increase of the secretion rates of C2, B and C1-inh was dose-dependent and proportional to increases in the abundances of their respective mRNAs. IFN-gamma was the most effective at stimulating monocyte C1-inh synthesis, whereas IFN-alpha and IFN-beta were marginally more effective at stimulating monocyte C2 and B synthesis. Kinetic studies showed that the effect of the IFNs was rapid, with maximum stimulation occurring within 1-2 h for all three proteins. After the removal of IFNs from cultures the C1-inh mRNA abundance remained elevated for over 24 h in IFN-gamma-treated monocytes but returned to control levels within 8 h in IFN-alpha-treated and IFN-beta-treated monocytes. The abundances of C2 mRNA and B mRNA also returned to basal values within 8 h after removal of any of the three cytokines from the cultures. Both IFN-alpha and IFN-beta acted synergistically with IFN-gamma to stimulate synthesis of C1-inh and B. This synergistic effect only occurred when the cytokines were present in the cultures simultaneously. The effects of IFN-gamma plus IFN-alpha or IFN-beta on C2 synthesis appeared to be additive rather than synergistic. IFN-gamma inhibited synthesis of C3 by monocytes, but IFN-alpha and IFN-beta had no effect on the synthesis of this protein. Furthermore, none of the three cytokines had any effect on the expression of actin mRNA in monocytes.  相似文献   

5.
Expression of interferon-inducible genes in RD-114 cells.   总被引:7,自引:3,他引:4       下载免费PDF全文
J Kusari  R K Tiwari  R Kumar    G C Sen 《Journal of virology》1987,61(5):1524-1531
RD-114 is a cell line which is partially responsive to interferon (IFN). Although both IFN-alpha and IFN gamma inhibit production of the resident retrovirus, they do not inhibit replication of other viruses, such as vesicular stomatitis virus and encephalomyocarditis virus, in these cells. In the studies reported here, we studied the characteristics of induction of seven IFN-inducible mRNAs in RD-114 cells. We observed that mRNAs 561, 6-16, 1-8, 2A, and 6-26 have similar induction characteristics in RD-114 cells and in HeLa cells, a fully responsive line. mRNA 2'-5'-oligo-adenylate synthetase (2-5(A) synthetase), however, was induced more efficiently by IFN-alpha in HeLa cells than in RD-114 cells. The same was true for the induction of metallothionein II mRNA by IFN-gamma. However, the latter mRNA was induced equally strongly in both lines when ZnCl2 was used as the inducer, suggesting that the gene is not defective in RD-114 cells. Although IFN-alpha induced 2-5(A) synthetase mRNA poorly and IFN-gamma did not induce it at all in these cells, a mixture of IFN-alpha and IFN-gamma induced this mRNA quite effectively, to a level of induction comparable to that in HeLa cells. Only 1 U of IFN-gamma per ml was sufficient to elicit this synergism, and the data suggested that an IFN-gamma-inducible protein was needed for this process. Induction of mRNA 561 by IFN-alpha in RD-114 cells, unlike that in HeLa cells, did not need ongoing protein synthesis. Once induced, this mRNA turned over rapidly in both cell lines, and this turnover could be slowed down by inhibiting protein synthesis in either cell line. IFN-induced mRNAs, such as 561 and 1-8, were polysome associated in IFN-treated RD-114 cells, suggesting that they were actively translated. Therefore, it is unlikely that the products of these IFN-inducible genes, by themselves, mediate the inhibition of replication of those viruses which are insensitive to IFN action in RD-114 cells.  相似文献   

6.
7.
8.
A cDNA clone complementary to an interferon (IFN)-induced mRNA was isolated and used to characterize the regulation of expression of its RNA by the IFNs and to identify the protein its RNA encodes. This cDNA hybridizes to IFN-induced 3.1- and 2.3-kilobase mRNAs that are synthesized in response to both IFN-alpha and IFN-gamma. IFN-gamma induces the sustained accumulation of these mRNAs while IFN-alpha induces their transient accumulation. Cycloheximide (50 micrograms/ml) failed to inhibit the induction of these mRNAs by either IFN-alpha or IFN-gamma, suggesting that their induction does not require de novo protein synthesis. DNA sequence analysis of this cDNA reveals that it encodes a protein of Mr 53,168 that has sequence homology with and the biological activity of a tryptophanyl-tRNA synthetase, an enzymatic activity that has been demonstrated to play a role in and be modulated by the growth of cells. Elevated levels of this enzyme may be involved in the cell growth inhibitory activity of the IFNs.  相似文献   

9.
We investigated the regulation of class I and class II major histocompatibility complex (MHC) antigen expression of murine peritoneal macrophages (M phi) by interferons (IFNs) at the mRNA level. Enhancement of class I antigen expression by IFNs (IFN-alpha, beta, and gamma), induction of class II antigen expression by IFN-gamma, and inhibition of class II antigen expression by IFN-alpha or IFN-beta all corresponded to steady-state levels of these MHC-specific mRNAs. Cycloheximide (CHX), a protein synthesis inhibitor, was used to elucidate whether IFN regulation of MHC mRNA expression depends on the newly synthesized proteins. CHX concentration was carefully chosen so that M phi viability was not decreased, total protein synthesis was considerably but not completely inhibited, and suppression of surface class II expression was virtually perfect. Under these conditions CHX did not affect the levels of either class I or class II mRNA, but it prevented IFN-beta from interfering with class II mRNA induction by IFN-gamma. These results indicate that the augmentation of induction and/or accumulation of MHC mRNA by IFNs is not dependent on the de novo synthesis of protein, but the down-regulation of class II mRNA level by IFN-beta is mediated by some newly synthesized protein(s).  相似文献   

10.
Interferon (IFN)-alpha is a cytokine with antiviral, antiproliferative, and immunomodulatory properties, the functions of which are mediated via IFN-induced protein products. We used metabolic labeling and two-dimensional gel electrophoresis followed by MS and database searches to identify potentially new IFN-alpha-induced proteins in human T cells. By this analysis, we showed that IFN-alpha induces the expression of ubiquitin cross-reactive protein (ISG15) and two ubiquitin-conjugating enzymes, UbcH5 and UbcH8. Northern-blot analysis showed that IFN-alpha rapidly enhances mRNA expression of UbcH5, UbcH6 and UbcH8 in T cells. In addition, these genes were induced in macrophages in response to IFN-alpha or IFN-gamma stimulation or influenza A or Sendai virus infections. Similarly, IFNs enhanced UbcH8 mRNA expression in A549 lung epithelial cells, HepG2 hepatoma cells, and NK-92 cells. Cycloheximide, a protein synthesis inhibitor, did not block IFN-induced upregulation of UbcH8 mRNA expression, suggesting that UbcH8 is the primary target gene for IFN-alpha and IFN-gamma. Ubiquitin conjugation is a rate-limiting step in antigen presentation and therefore the upregulation of UbcHs by IFNs may contribute to the enhanced antigen presentation by macrophages. Our results show that proteome analysis of cells is a suitable method for identifying previously unrecognized cytokine-inducible genes.  相似文献   

11.
12.
The YAC T cell lymphoma normally does not express Ly-6E mRNA or Ly-6E surface molecules but can be induced to do so on incubation with either IFN-gamma or IFN-alpha/beta. This system afforded a model to assess the possible role of protein kinase C (PKC) in IFN-mediated Ly-6E induction. First, we used various pharmacologic agents known to interfere with the function of PKC or other kinases. The PKC inhibitors H-7 and phloretin were found to block Ly-6E induction by IFN-gamma or IFN-alpha/beta both at the mRNA and protein levels. In contrast, inhibitors of cyclic nucleotide-dependent kinases (HA1004), of myosin L chain kinase (ML-9, A-3) or of calmodulin (R24157, W-7) failed to suppress this induction. Next, we investigated the effects of the PKC activators PMA and mezerein (MEZ) on Ly-6E expression. Although neither PMA nor MEZ by themselves could induce Ly-6E in YAC cells, both agents enhanced by up to fivefold the induction of Ly-6 mRNA and Ly-6E surface expression triggered by IFN-gamma. However, the induction of Ly-6E expression caused by IFN-alpha/beta was only marginally increased by cotreatment of YAC cells with PMA or MEZ. Altogether, these observations demonstrate that PKC or a related kinase is involved in the transduction mechanisms that lead to Ly-6E induction. However, activation of PKC is not sufficient for this induction and requires other unidentified signal(s) provided by IFN. Our data also indicate that IFN-gamma and IFN-alpha/beta induce Ly-6E through overlapping but distinct intracellular pathways with different sensitivities to PKC activators.  相似文献   

13.
R Kumar  R K Tiwari  J Kusari    G C Sen 《Journal of virology》1987,61(9):2727-2732
The human rhabdomyosarcoma cell line RD-114 is partially responsive to interferons (IFNs). In these cells, alpha interferon (IFN-alpha) or gamma interferon (IFN-gamma) inhibits the replication of some viruses but not of others. Similarly, some of the IFN-inducible mRNAs are induced poorly, whereas others are induced well. Here we report the isolation of clonal derivatives of this line which display different spectra of responses to IFNs. Among the eight extensively characterized clonal lines, one, C10, did not respond to IFN-alpha or IFN-gamma at all. Retrovirus production by each of the seven other lines was inhibited by both IFN-alpha and IFN-gamma. Replication of vesicular stomatitis virus was inhibited strongly by IFN-alpha in clone B1 but not in others, whereas it was not appreciably affected by IFN-gamma in any clone. Replication of encephalomyocarditis virus was inhibited strongly by IFN-gamma in clones A1, A2, A3, B3, and B8 and by IFN-alpha in clone A2. Neither IFN inhibited the multiplication of these clones greatly, although their doubling times were slightly increased. Five mRNAs were induced by IFNs to varying degrees in the seven clones. mRNA 2A was most strongly induced by IFN-gamma in clone A3. mRNA 1-8 was strongly induced by IFN-alpha in clone A1 and by either IFN in clones A2 and A3. The highest concentrations of 2',5'-oligoadenylate synthetase mRNA, mRNA 561, and mRNA 6-16 were in IFN-alpha-treated clones A1 and A2. These results demonstrated the existence of clonal heterogeneity in IFN responses in a cell line and strengthened the view that IFN treatment of cells generates multiple signals leading to a variety of IFN-induced phenotypes.  相似文献   

14.
Complement regulatory protein CD46 is a human cell receptor for measles virus (MV). In this study, we investigated why mouse macrophages expressing human CD46 restricted MV replication and produced higher levels of nitric oxide (NO) in response to MV and gamma interferon (IFN-gamma). Treatment of MV-infected CD46-expressing mouse macrophages with antibodies against IFN-alpha/beta blocked NO production. Antibodies against IFN-alpha/beta also inhibited the augmenting effect of MV on IFN-gamma-induced NO production in CD46-expressing mouse macrophages. These antibodies did not affect NO production induced by IFN-gamma alone. These data suggest that MV enhances NO production in CD46-expressing mouse macrophages through action of IFN-alpha/beta. Mouse macrophages expressing a human CD46 mutant lacking the cytoplasmic domains were highly susceptible to MV. These cells produced much lower levels of NO and IFN-alpha/beta upon infection by MV, suggesting the CD46 cytoplasmic domains enhanced IFN-alpha/beta production. When mouse macrophages expressing tailless human CD46 were exposed to culture medium from MV-infected mouse macrophages expressing intact human CD46, viral protein synthesis and development of cytopathic effects were suppressed. Pretreating the added culture medium with antibodies against IFN-alpha/beta abrogated these antiviral effects. Taken together, these findings suggest that expression of human CD46 in mouse macrophages enhances production of IFN-alpha/beta in response to MV infection, and IFN-alpha/beta synergizes with IFN-gamma to enhance NO production and restrict viral protein synthesis and virus replication. This novel function of human CD46 in mouse macrophages requires the CD46 cytoplasmic domains.  相似文献   

15.
A role for alpha/beta interferon (IFN-alpha/beta) in the IFN-gamma antiviral response has long been suggested. Accordingly, possible roles for autocrine or double-stranded-RNA (dsRNA)-induced IFN-alpha/beta in the IFN-gamma response were investigated. Use was made of wild-type and a variety of mutant human fibrosarcoma cell lines, including mutant U5A cells, which lack a functional IFN-alpha/beta receptor and hence an IFN-alpha/beta response. IFN-gamma did not induce detectable levels of IFN-alpha/beta in any of the cell lines, nor was the IFN-gamma response per se dependent on autocrine IFN-alpha/beta. On the other hand, a number of responses to dsRNA [poly(I). poly(C)] and encephalomyocarditis virus were greatly enhanced by IFN-gamma pretreatment (priming) of wild-type cells or of mutant cells lacking an IFN-alpha/beta response; these include the primary induction of dsRNA-inducible mRNAs, including IFN-beta mRNA, and, to a lesser extent, the dsRNA-mediated activation of the p38 mitogen-activated protein (MAP) kinase(s). IFN-gamma priming of mRNA induction by dsRNA is dependent on JAK1 and shows biphasic kinetics, with an initial rapid (<30-min) response being followed by a more substantial effect on overnight incubation. The IFN-gamma-primed dsRNA responses appear to be subject to modulation through the p38, phosphatidylinositol 3-kinase, and ERK1/ERK2 MAP kinase pathways. It can be concluded that despite efficient priming of IFN-beta production, the IFN-alpha/beta pathways play no significant role in the primary IFN-gamma antiviral response in these cell-virus systems. The observed IFN-gamma priming of dsRNA responses, on the other hand, will likely play a significant role in combating virus infection in vivo.  相似文献   

16.
Cyclosporin A (CsA), but not its nonimmunosuppressive analog cyclosporin H (CsH), inhibited the expression of HLA-DR in human monocytes. Induction of HLA-DR by interferon (IFN)-gamma in fresh monocytes was also inhibited by CsA and not by CsH. However, when monocytes were pretreated with either CsA or CsH for 16 hr prior to the addition of IFN-gamma, HLA-DR expression was increased, probably because of a cyclosporin-induced increase in the number of IFN-gamma receptors. Down-regulation of the HLA-DR mRNA by CsA was found to be dependent on continuous protein synthesis. IFN-alpha also inhibited the IFN-gamma-induced HLA-DR mRNA expression and showed synergy with CsA at low concentrations but not at high concentrations of the drugs. A common mechanistic element in the pathways of CsA and IFN-alpha is proposed.  相似文献   

17.
Cytokine-induced polypeptides were identified in whole cell lysates of human fibroblasts by computer-based analysis of two-dimensional gels with the use of the PDQuest System. Treatment with interferon-alpha (IFN-alpha) and interferon-gamma (IFN-gamma) enhanced the synthesis of 12 and 28 polypeptides, respectively. Exposure to interleukin 1 alpha (IL-1 alpha) or interleukin 1 beta (IL-1 beta) resulted in the increased synthesis of seven identical polypeptides. Treatment with tumor necrosis factor (TNF) at 100 U/ml led to enhanced expression of seven polypeptides, whereas exposure to TNF at 1000 U/ml increased the levels of these seven plus two additional polypeptides. The antiviral and antiproliferative effects of these cytokines in strain 153 fibroblasts were also assessed. Both IFN-alpha and IFN-gamma exhibited antiviral activity, whereas both IL-1 and TNF stimulated fibroblast growth. IFN-gamma was alone in inhibiting proliferation. Thus, although these cytokines exhibit low degrees of structural homology, they share some common functions, and a number of polypeptides were induced in common by two or more of these agents. The greatest similarities in polypeptide induction occur between IFN-alpha and IFN-gamma and between the IL-1s and TNF. However, polypeptides were also induced in common by IFN-alpha and TNF, IFN-gamma and IL-1, and IFN-gamma and TNF. These similarities in polypeptide induction may reflect the overlapping functions of these cytokines and may be indicative of common biochemical pathways in their mechanisms of action.  相似文献   

18.
Human cell lines were isolated that express the V protein of either simian virus 5 (SV5) or human parainfluenza virus type 2 (hPIV2); the cell lines were termed 2f/SV5-V and 2f/PIV2-V, respectively. STAT1 was not detectable in 2f/SV5-V cells, and the cells failed to signal in response to either alpha/beta interferons (IFN-alpha and IFN-beta, or IFN-alpha/beta) or gamma interferon (IFN-gamma). In contrast, STAT2 was absent from 2f/PIV2-V cells, and IFN-alpha/beta but not IFN-gamma signaling was blocked in these cells. Treatment of both 2f/SV5-V and 2f/PIV2-V cells with a proteasome inhibitor allowed the respective STAT levels to accumulate at rates similar to those seen in 2fTGH cells, indicating that the V proteins target the STATs for proteasomal degradation. Infection with SV5 can lead to a complete loss of both phosphorylated and nonphosphorylated forms of STAT1 by 6 h postinfection. Since the turnover of STAT1 in uninfected cells is longer than 24 h, we conclude that degradation of STAT1 is the main mechanism by which SV5 blocks interferon (IFN) signaling. Pretreatment of 2fTGH cells with IFN-alpha severely inhibited both SV5 and hPIV2 protein synthesis. However, and in marked contrast, pretreatment of 2fTGH cells with IFN-gamma had little obvious effect on SV5 protein synthesis but did significantly reduce the replication of hPIV2. Pretreament with IFN-alpha or IFN-gamma did not induce an antiviral state in 2f/SV5-V cells, indicating either that the induction of an antiviral state is completely dependent on STAT signaling or that the V protein interferes with other, STAT-independent cell signaling pathways that may be induced by IFNs. Even though SV5 blocked IFN signaling, the addition of exogenous IFN-alpha to the culture medium of 2fTGH cells 12 h after a low-multiplicity infection with SV5 significantly reduced the subsequent cell-to-cell spread of virus. The significance of the results in terms of the strategy that these viruses have evolved to circumvent the IFN response is discussed.  相似文献   

19.
Expression of the granzyme B inhibitors, human proteinase inhibitor 9 (PI-9), or the murine orthologue, serine proteinase inhibitor 6 (SPI-6), confers resistance to CTL or NK killing by perforin- and granzyme-dependent effector mechanisms. In light of prior studies indicating that virally infected hepatocytes are selectively resistant to this CTL effector mechanism, the present studies investigated PI-9 and SPI-6 expression in hepatocytes and hepatoma cells in response to adenoviral infection and to cytokines produced during antiviral immune responses. Neither PI-9 nor SPI-6 expression was detected by immunoblotting in uninfected murine or human hepatocytes. Similarly, human Huh-7 hepatoma cells were found to express only very low levels of PI-9 relative to levels detected in perforin- and granzyme-resistant CTL or lymphokine-activated killer cells. Following in vivo adenoviral infection or in vitro culture with IFN-alphabeta or IFN-gamma, SPI-6 expression was induced in murine hepatocytes. Similarly, after culture with IFN-alpha, induction of PI-9 mRNA and protein expression was observed in human hepatocytes and Huh-7 cells. IFN-gamma and TNF-alpha also induced 4- to 10-fold higher levels of PI-9 mRNA expression in Huh-7 cells, whereas levels of mRNA encoding a related serine proteinase inhibitor, proteinase inhibitor 8, were unaffected by culture of Huh-7 cells with IFN-alpha, IFN-gamma, or TNF-alpha. These findings indicate that cytokines that promote antiviral cytopathic responses also regulate expression of the cytoprotective molecules, PI-9 and SPI-6, in hepatocytes that are potential targets of CTL and NK effector mechanisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号