首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Singh V  Lee JE  Núñez S  Howell PL  Schramm VL 《Biochemistry》2005,44(35):11647-11659
Methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) catalyzes reactions linked to polyamine metabolism, quorum sensing pathways, methylation reactions, and adenine salvage. It is a candidate target for antimicrobial drug design. Kinetic isotope effects (KIEs) were measured on the MTAN-catalyzed hydrolysis of 5'-methylthioadenosine (MTA) to determine the transition state structure. KIEs measured at pH 7.5 were near unity due to the large forward commitment to catalysis. Intrinsic KIEs were expressed by increasing the pH to 8.5. Intrinsic KIEs from MTAs labeled at 1'-(3)H, 1'-(14)C, 2'-(3)H, 4'-(3)H, 5'-(3)H, 9-(15)N, and Me-(3)H(3) were 1.160 +/- 0.004, 1.004 +/- 0.003, 1.044 +/- 0.004, 1.015 +/- 0.002, 1.010 +/- 0.002, 1.018 +/- 0.006, and 1.051 +/- 0.002, respectively. The large 1'-(3)H and small 1'-(14)C KIEs indicate that the Escherichia coli MTAN reaction undergoes a dissociative (D(N)A(N)) (S(N)1) mechanism with little involvement of the leaving group or participation of the attacking nucleophile at the transition state, causing the transition state to have significant ribooxacarbenium ion character. A transition state constrained to match the intrinsic KIEs was located with density functional theory [B3LYP/6-31G(d,p)]. The leaving group (N9) is predicted to be 3.0 A from the anomeric carbon. The small beta-secondary 2'-(3)H KIE of 1.044 corresponds to a modest 3'-endo conformation for ribose and a H1'-C1'-C2'-H2' dihedral angle of 53 degrees at the transition state. Natural bond orbital analysis of the substrate and the transition state suggests that the 4'-(3)H KIE is due to hyperconjugation between the lone pair (n(p)) of O3' and the antibonding (sigma) orbital of the C4'-H4' group, and the methyl-(3)H(3) KIE is due to hyperconjugation between the n(p) of sulfur and the sigma of methyl C-H bonds. Transition state analogues that resemble this transition state structure are powerful inhibitors, and their molecular electrostatic potential maps closely resemble that of the transition state.  相似文献   

2.
Escherichia coli 5'-methylthioadenosine/S-adenosyl-homocysteine nucleosidase (MTAN) hydrolyzes its substrates to form adenine and 5-methylthioribose (MTR) or S-ribosylhomocysteine (SRH). 5'-Methylthioadenosine (MTA) is a by-product of polyamine synthesis and SRH is a precursor to the biosynthesis of one or more quorum sensing autoinducer molecules. MTAN is therefore involved in quorum sensing, recycling MTA from the polyamine pathway via adenine phosphoribosyltransferase and recycling MTR to methionine. Hydrolysis of MTA by E. coli MTAN involves a highly dissociative transition state with ribooxacarbenium ion character. Iminoribitol mimics of MTA at the transition state of MTAN were synthesized and tested as inhibitors. 5'-Methylthio-Immucillin-A (MT-ImmA) is a slow-onset tight-binding inhibitor giving a dissociation constant (K(i)(*)) of 77 pm. Substitution of the methylthio group with a p-Cl-phenylthio group gives a more powerful inhibitor with a dissociation constant of 2 pm. DADMe-Immucillins are better inhibitors of E. coli MTAN, since they are more closely related to the highly dissociative nature of the transition state. MT-DADMe-Immucillin-A binds with a K(i)(*) value of 2 pm. Replacing the 5'-methyl group with other hydrophobic groups gave 17 transition state analogue inhibitors with dissociation constants from 10(-12) to 10(-14) m. The most powerful inhibitor was 5'-p-Cl-phenylthio-DADMe-Immucillin-A (pClPhT-DADMe-ImmA) with a K(i)(*) value of 47 fm (47 x 10(-15) m). These are among the most powerful non-covalent inhibitors reported for any enzyme, binding 9-91 million times tighter than the MTA and SAH substrates, respectively. The inhibitory potential of these transition state analogue inhibitors supports a transition state structure closely resembling a fully dissociated ribooxacarbenium ion. Powerful inhibitors of MTAN are candidates to disrupt key bacterial pathways including methylation, polyamine synthesis, methionine salvage, and quorum sensing. The accompanying article reports crystal structures of MTAN with these analogues.  相似文献   

3.
5'-Methylthioadenosine/S-adenosylhomocysteine (MTA/AdoHcy) nucleosidase is a key enzyme in a number of critical biological processes in many microbes. This nucleosidase catalyzes the irreversible hydrolysis of the N(9)-C(1') bond of MTA or AdoHcy to form adenine and the corresponding thioribose. The key role of the MTA/AdoHcy nucleosidase in biological methylation, polyamine biosynthesis, methionine recycling, and bacterial quorum sensing has made it an important antimicrobial drug target. The crystal structures of Escherichia coli MTA/AdoHcy nucleosidase complexed with the transition state analog, formycin A (FMA), and the nonhydrolyzable substrate analog, 5'-methylthiotubercidin (MTT) have been solved to 2.2- and 2.0-A resolution, respectively. These are the first MTA/AdoHcy nucleosidase structures to be solved in the presence of inhibitors. These structures clearly identify the residues involved in substrate binding and catalysis in the active site. Comparisons of the inhibitor complexes to the adenine-bound MTA/AdoHcy nucleosidase (Lee, J. E., Cornell, K. A., Riscoe, M. K., and Howell, P. L. (2001) Structure (Camb.) 9, 941-953) structure provide evidence for a ligand-induced conformational change in the active site and the substrate preference of the enzyme. The enzymatic mechanism has been re-examined.  相似文献   

4.
BACKGROUND: 5'-methylthioadenosine/S-adenosyl-homocysteine (MTA/AdoHcy) nucleosidase catalyzes the irreversible cleavage of 5'-methylthioadenosine and S-adenosylhomocysteine to adenine and the corresponding thioribose, 5'-methylthioribose and S-ribosylhomocysteine, respectively. While this enzyme is crucial for the metabolism of AdoHcy and MTA nucleosides in many prokaryotic and lower eukaryotic organisms, it is absent in mammalian cells. This metabolic difference represents an exploitable target for rational drug design. RESULTS: The crystal structure of E. coli MTA/AdoHcy nucleosidase was determined at 1.90 A resolution with the multiwavelength anomalous diffraction (MAD) technique. Each monomer of the MTA/AdoHcy nucleosidase dimer consists of a mixed alpha/beta domain with a nine-stranded mixed beta sheet, flanked by six alpha helices and a small 3(10) helix. Intersubunit contacts between the two monomers present in the asymmetric unit are mediated primarily by helix-helix and helix-loop hydrophobic interactions. The unexpected presence of an adenine molecule in the active site of the enzyme has allowed the identification of both substrate binding and potential catalytic amino acid residues. CONCLUSIONS: Although the sequence of E. coli MTA/AdoHcy nucleosidase has almost no identity with any known enzyme, its tertiary structure is similar to both the mammalian (trimeric) and prokaryotic (hexameric) purine nucleoside phosphorylases. The structure provides evidence that this protein is functional as a dimer and that the dual specificity for MTA and AdoHcy results from the truncation of a helix. The structure of MTA/AdoHcy nucleosidase is the first structure of a prokaryotic nucleoside N-ribohydrolase specific for 6-aminopurines.  相似文献   

5.
The bacterial enzyme 5′‐methylthioadenosine/S‐adenosylhomocysteine nucleosidase (MTAN) plays a central role in three essential metabolic pathways in bacteria: methionine salvage, purine salvage, and polyamine biosynthesis. Recently, its role in the pathway that leads to the production of autoinducer II, an important component in quorum‐sensing, has garnered much interest. Because of this variety of roles, MTAN is an attractive target for developing new classes of inhibitors that influence bacterial virulence and biofilm formation. To gain insight toward the development of new classes of MTAN inhibitors, the interactions between the Helicobacter pylori‐encoded MTAN and its substrates and substrate analogs were probed using X‐ray crystallography. The structures of MTAN, an MTAN‐Formycin A complex, and an adenine bound form were solved by molecular replacement and refined to 1.7, 1.8, and 1.6 Å, respectively. The ribose‐binding site in the MTAN and MTAN‐adenine cocrystal structures contain a tris[hydroxymethyl]aminomethane molecule that stabilizes the closed form of the enzyme and displaces a nucleophilic water molecule necessary for catalysis. This research gives insight to the interactions between MTAN and bound ligands that promote closing of the enzyme active site and highlights the potential for designing new classes of MTAN inhibitors using a link/grow or ligand assembly development strategy based on the described H. pylori MTAN crystal structures.  相似文献   

6.
Ca2+-activated protein phosphatase activity was demonstrated in mouse pancreatic acinar cytosol with alpha-casein and skeletal-muscle phosphorylase kinase as substrates. This phosphatase activity preferentially dephosphorylated the alpha subunit of phosphorylase kinase. After DEAE-cellulose chromatography, the Ca2+-activated phosphatase activity became dependent on exogenous calmodulin for maximal activity. Half-maximal activation was achieved at 0.5 +/- 0.1 microM-Ca2+. Trifluoperazine completely inhibited Ca2+-activated phosphatase activity, with half-maximal inhibition occurring at 8.5 +/- 0.6 microM. Mn2+, but not Mg2+, at 1 mM concentration could substitute for Ca2+ in eliciting full enzyme activation. The apparent Mr of the phosphatase as determined by Sephadex G-150 chromatography was 93000 +/- 1000. Submitting active fractions obtained after Sephadex chromatography to calmodulin affinity chromatography resulted in the resolution of a major protein of Mr 55500 +/- 300. In conclusion, Ca2+-activated protein phosphatase activity has been identified in exocrine pancreas and has several features in common with Ca2+-activated calmodulin-dependent protein phosphatases previously isolated from brain and skeletal muscle. It is possible that this Ca2+-activated phosphatase may utilize as substrates certain acinar-cell phosphoproteins previously shown to undergo dephosphorylation in response to Ca2+-mediated secretagogues.  相似文献   

7.
The effects of a number of nucleosides related to 5'-methylthioadenosine on the activities of S-adenosylhomocysteine hydrolase, 5'-methylthioadenosine phosphorylase, spermidine synthase and spermine synthase were investigated. Both 5'-methylthioadenosine and 5'-isobutylthioadenosine gave rise to an enzyme-activated irreversible inhibition of S-adenosylhomocysteine hydrolase, but 5'-methylthiotubercidin (5'-methylthio-7-deaza-adenosine), 5'-deoxy-5'-chloroformycin, 5'-ethylthio-2-fluoro-adenosine and 1,N6-etheno-5'-methylthioadenosine were totally ineffective in producing this inactivation. Of the nucleosides tested, only 5'-methylthioadenosine, 5'-methylthiotubercidin and 5'-isobutylthioadenosine were inhibitory towards the aminopropyltransferases responsible for the synthesis of spermine and spermidine. 5'-Methylthiotubercidin, 5'-deoxy-5'-chloroformycin and 5'-isobutylthioadenosine were inhibitors of the degradation of 5'-methylthioadenosine by 5'-methylthioadenosine phosphorylase, but only 5'-isobutylthioadenosine was also a substrate for this enzyme. These results suggest that the effects of 5'-isobutylthioadenosine of the cell may result from the combination of inhibitory actions on polyamine synthesis, 5'-methylthioadenosine degradation and S-adenosylhomocysteine degradation. The resulting increased concentrations of S-adenosylhomocysteine could bring about inhibition of methyltransferase reactions. A new convenient method for the assay of S-adenosylhomocysteine hydrolase in the direction of synthesis is described.  相似文献   

8.
MTAN has been known to occur in a variety of bacterial cell types. Due to the evolution of bacterial strains which are resistant to some of the most powerful antibiotics there has been a renewed interest in the development of novel anti-microbial agents. Presented herein is a synthesis of a potent MTAN inhibitor, namely 2-amino-4-[5-(4-amino-5H-pyrrolo[3,2-d]pyrimidin-7-yl)-3,4-dihydroxypyrrolidin-2-ylmethylsulfanyl]-butyric acid (1).  相似文献   

9.
The prokaryotic 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) catalyzes the irreversible cleavage of the glycosidic bond in 5′-methylthioadenosine (MTA) and S-adenosylhomocysteine (SAH), a process that plays a key role in several metabolic pathways. Its absence in all mammalian species has implicated this enzyme as a promising target for antimicrobial drug design. Here, we report the crystal structure of BmMTAN in complex with its product adenine at a resolution of 2.6 Å determined by single-wavelength anomalous dispersion method. 11 key residues were mutated for kinetic characterization. Mutations of Tyr134 and Met144 resulted in the largest overall increase in Km, whereas mutagenesis of residues Glu18, Glu145 and Asp168 completely abolished activity. Glu145 and Asp168 were identified as active site residues essential for catalysis. The catalytic mechanism and implications of this structure for broad-based antibiotic design are discussed.  相似文献   

10.
Guan R  Ho MC  Brenowitz M  Tyler PC  Evans GB  Almo SC  Schramm VL 《Biochemistry》2011,50(47):10408-10417
Human 5'-methylthioadenosine phosphorylase (MTAP) links the polyamine biosynthetic and S-adenosyl-l-methionine salvage pathways and is a target for anticancer drugs. p-Cl-PhT-DADMe-ImmA is a 10 pM, slow-onset tight-binding transition state analogue inhibitor of the enzyme. Titration of homotrimeric MTAP with this inhibitor established equivalent binding and independent catalytic function of the three catalytic sites. Thermodynamic analysis of MTAP with tight-binding inhibitors revealed entropic-driven interactions with small enthalpic penalties. A large negative heat capacity change of -600 cal/(mol K) upon inhibitor binding to MTAP is consistent with altered hydrophobic interactions and release of water. Crystal structures of apo MTAP and MTAP in complex with p-Cl-PhT-DADMe-ImmA were determined at 1.9 and 2.0 ? resolution, respectively. Inhibitor binding caused condensation of the enzyme active site, reorganization at the trimer interfaces, the release of water from the active sites and subunit interfaces, and compaction of the trimeric structure. These structural changes cause the entropy-favored binding of transition state analogues. Homotrimeric human MTAP is contrasted to the structurally related homotrimeric human purine nucleoside phosphorylase. p-Cl-PhT-DADMe-ImmA binding to MTAP involves a favorable entropy term of -17.6 kcal/mol with unfavorable enthalpy of 2.6 kcal/mol. In contrast, binding of an 8.5 pM transition state analogue to human PNP has been shown to exhibit the opposite behavior, with an unfavorable entropy term of 3.5 kcal/mol and a favorable enthalpy of -18.6 kcal/mol. Transition state analogue interactions reflect protein architecture near the transition state, and the profound thermodynamic differences for MTAP and PNP suggest dramatic differences in contributions to catalysis from protein architecture.  相似文献   

11.
Methythioadenosine phosphorylase (MTAP) functions solely in the polyamine pathway of mammals to remove the methylthioadenosine (MTA) product from both spermidine synthase (2.5.1.16) and spermine synthase (2.5.1.22). Inhibition of polyamine synthesis is a validated anticancer target. We designed and synthesized chemically stable analogues for the proposed transition state of human MTAP on the basis of the known ribooxacarbenium character at all reported N-ribosyltransferase transition states [Schramm, V. L. (2003) Acc. Chem. Res. 36, 588-596]. Methylthio-immucillin-A (MT-ImmA) is an iminoribitol tight-binding transition state analogue inhibitor with an equilibrium dissociation constant of 1.0 nM. The immucillins resemble the ribooxacarbenium ion transition states of N-ribosyltransferases and are tightly bound as the N4' cations. An ion pair formed between the iminoribitol cation and phosphate anion mimics the ribooxacarbenium cation-phosphate anion pair formed at the transition state and is confirmed in the crystal structure. The X-ray crystal structure of human MTAP with bound MT-Imm-A also reveals that the 5'-methylthio group lies in a flexible hydrophobic pocket. Substitution of the 5'-methylthio group with a 5'-phenylthio group gives an equilibrium binding constant of 1.0 nM. Methylthio-DADMe-immucillin-A is a pyrrolidine analogue of the transition state with a methylene bridge between the 9-deazaadenine group and the pyrrolidine ribooxacarbenium mimic. It is a slow-onset inhibitor with a dissociation constant of 86 pM. Improved binding energy with DADMe-immucillin-A suggests that the transition state is more closely matched by increasing the distance between leaving group and ribooxacarbenium mimics, consistent with a more dissociative transition state. Increasing the hydrophobic volume near the 5'-position at the catalytic site with 5'-phenylthio-DADMe-immucillin-A gave a dissociation constant of 172 pM, slightly weaker than the 5'-methylthio group. p-Cl-phenylthio-DADMe-immucillin-A binds with a dissociation constant of 10 pM (K(m)/K(i) value of 500000), the tightest binding inhibitor reported for MTAP. These slow-onset, tight-binding transition state analogue inhibitors are the most powerful reported for MTAP and have sufficient affinity to be useful in inhibiting the polyamine pathway.  相似文献   

12.
Methylthio-DADMe-immucillin-A (MT-DADMe-ImmA) is an 86-pm inhibitor of human 5'-methylthioadenosine phosphorylase (MTAP). The sole function of MTAP is to recycle 5'-methylthioadenosine (MTA) to S-adenosylmethionine. Treatment of cultured cells with MT-DADMe-ImmA and MTA inhibited MTAP, increased cellular MTA concentrations, decreased polyamines, and induced apoptosis in FaDu and Cal27, two head and neck squamous cell carcinoma cell lines. The same treatment did not induce apoptosis in normal human fibroblast cell lines (CRL2522 and GM02037) or in MCF7, a breast cancer cell line with an MTAP gene deletion. MT-DADMe-ImmA alone did not induce apoptosis in any cell line, implicating MTA as the active agent. Treatment of sensitive cells caused loss of mitochondrial inner membrane potential, G(2)/M arrest, activation of mitochondria-dependent caspases, and apoptosis. Changes in cellular polyamines and MTA levels occurred in both responsive and nonresponsive cells, suggesting cell-specific epigenetic effects. A survey of aberrant DNA methylation in genomic DNA using a microarray of 12,288 CpG island clones revealed decreased CpG island methylation in treated FaDu cells compared with untreated cells. FaDu tumors in a mouse xenograft model were treated with MT-DADMe-ImmA, resulting in tumor remission. The selective action of MT-DADMe-ImmA on head and neck squamous cell carcinoma cells suggests potential as an agent for treatment of cancers sensitive to reduced CpG island methylation.  相似文献   

13.
Several acyclic hydroxy-methylthio-amines with 3-5 carbon atoms were prepared and coupled via a methylene link to 9-deazaadenine. The products were tested for inhibition against human MTAP and Escherichia coli and Neisseria meningitidis MTANs and gave K(i) values as low as 0.23nM. These results were compared to those obtained with 1st and 2nd generation inhibitors (1S)-1-(9-deazaadenin-9-yl)-1,4-dideoxy-1,4-imino-5-methylthio-d-ribitol (MT-Immucillin-A, 3) and (3R,4S)-1-[9-deazaadenin-9-yl)methyl]3-hydroxy-4-methylthiomethylpyrrolidine (MT-DADMe-Immucillin-A, 4). The best inhibitors were found to exhibit binding affinities of approximately 2- to 4-fold those of 3 but were significantly weaker than 4. Cleavage of the 2,3 carbon-carbon bond in MT-Immucillin-A (3) gave an acyclic product (79) with a 21,500 fold loss of activity against E. coli MTAN. In another case, N-methylation of a side chain secondary amine resulted in a 250-fold loss of activity against the same enzyme [(±)-65 vs (±)-68]. The inhibition results were also contrasted with those acyclic derivatives previously prepared as inhibitors for a related enzyme, purine nucleoside phosphorylase (PNP), where some inhibitors in the latter case were found to be more potent than their cyclic counterparts.  相似文献   

14.
15.
Introduction of specific structural probes into substrate binding sites of Escherichia coli glutamine synthetase is now possible. Various analogues of ATP substituted with an amino or sulfhydryl moiety at the 6- or 8-position of the purine ring have been found to substitute for ATP in the autoinactivation reaction of the manganese enzyme with L-Met-(S)-sulfoximine at pH 7. Dissociation of enzyme complexes containing an ADP analogue, L-Met-(S)-sulfoximine phosphate, and 2 equiv of Mn2+ is negligible at neutral pH. Prior to binding of the mercapto nucleotides to active sites, 6-mercaptopurine ribonucleoside triphosphate (6-S-ATP) and 8-mercaptoadenosine 5'-triphosphate (8-S-ATP) also have been further modified with fluorescent and chromogenic probes for energy-transfer measurements [Maurizi, M. R., Kasprzyk, P. G., & Ginsburg, A. (1986) Biochemistry (following paper in this issue)] or with electron-dense markers for electron microscopic and X-ray crystallographic structural analyses. Binding 6-S-ATP or 8-S-ATP to enzyme active sites at pH 7.1 produced red shifts of approximately 6 nm in nucleotide spectra characteristic for transfer of these nucleotide analogues into more acidic and hydrophobic environments. The spectrum of 6-S-ADP at active sites was more red-shifted than that of 6-S-AMP attached to adenylylation sites. The thiol group at the 6- or 8-position of the purine ring of the bound nucleotides was accessible for reactions with alkylating or mercurial reagents. Alkylation or mercaptide formation produced large blue shifts in the spectrum of enzyme-bound 6-S-ADP or 8-S-ADP at active sites or of 6-S-AMP covalently bound at adenylylation sites. At least one of two tryptophanyl residues in each subunit is very near the nucleotide binding site, as evidenced by changes in tryptophanyl residue fluorescence on binding ATP, mercaptonucleotides, or other ATP analogues.  相似文献   

16.
17.
The interactions of a transition state mimic anilinomethyl glucoimidazole (AmGlcIm), with a K(i) constant of 0.6 x 10(-)(9) M and a Gibbs free energy value of -53.5 kJ/mol, with a family GH3 beta-d-glucan glucohydrolase from barley have been analyzed crystallographically and by ab initio quantum mechanical modeling. AmGlcIm binds 3 times more tightly to the beta-d-glucan glucohydrolase than a previously investigated phenyl glucoimidazole. In the enzyme-AmGlcIm complex, an additional residue, Tyr253, and a water molecule positioned between subsites -1 and +1 are recruited for binding. Analyses of the two binary complexes reveal the following. (i) An intricate network exists in which hydrogen bonds between the enzyme's catalytic pocket residues Lys206, His207, Tyr253, Asp285, and Glu491 and the glucoimidazoles are shorter by 0.15-0.53 A, compared with distances of hydrogen bonds in the Michaelis complex. (ii) The "glucose" moiety of the glucoimidazoles adopts a (4)E conformation that is vital for the low-nanomolar binding. (iii) The N1 atoms of the glucoimidazoles are positioned nearly optimally for in-line protonation by the Oepsilon1 atom of the catalytic acid/base Glu491. (iv) The enzyme derives binding energies from both glycone and aglycone components of the glucoimidazoles. (iv) The prevalent libration motion of the two domains of the enzyme could play a significant role during induced fit closure in the active site. (v) Modeling based on the structural data predicts that protons could be positioned on the N1 atoms of the glucoimidazoles, and the catalytic acid/base Glu491 could carry an overall negative charge. (vi) The enzyme-AmGlcIm complex reveals the likely structure of an early transition state during hydrolysis. Finally, the high-resolution structures enabled us to define minimal structures of oligosaccharides attached to Asn221, Asn498, and Asn600 N-glycosylation sites.  相似文献   

18.
The S-adenosylmethionine (AdoMet) salvage enzyme 5'-methylthioadenosine phosphorylase (MTAP) has been implicated as both a cancer target and a tumor suppressor. We tested these hypotheses in mouse xenografts of human lung cancers. AdoMet recycling from 5'-methylthioadenosine (MTA) was blocked by inhibition of MTAP with methylthio-DADMe-Immucillin-A (MTDIA), an orally available, nontoxic, picomolar transition state analogue. Blood, urine, and tumor levels of MTA increased in response to MTDIA treatment. MTDIA treatment inhibited A549 (human non-small cell lung carcinoma) and H358 (human bronchioloalveolar non-small cell lung carcinoma cells) xenograft tumor growth in immunodeficient Rag2(-/-)γC(-/-) and NCr-nu mice. Systemic MTA accumulation is implicated as the tumor-suppressive metabolite because MTDIA is effective for in vivo treatment of A549 MTAP(-/-) and H358 MTAP(+/+) tumors. Tumors from treated mice showed increased MTA and decreased polyamines but little alteration in AdoMet, methionine, or adenine levels. Gene expression profiles of A549 tumors from treated and untreated mice revealed only modest alterations with 62 up-regulated and 63 down-regulated mRNAs (≥ 3-fold). MTDIA antitumor activity in xenografts supports MTAP as a target for lung cancer therapy.  相似文献   

19.
The allosteric enzyme aspartate transcarbamoylase (ATCase) exists in two conformational states. The enzyme, in the absence of substrates is primarily in the low-activity T state, is converted to the high-activity R state upon substrate binding, and remains in the R state until substrates are exhausted. These conformational changes have made it difficult to obtain structural data on R-state active-site complexes. Here we report the R-state structure of ATCase with the substrate Asp and the substrate analog phosphonoactamide (PAM) bound. This R-state structure represents the stage in the catalytic mechanism immediately before the formation of the covalent bond between the nitrogen of the amino group of Asp and the carbonyl carbon of carbamoyl phosphate. The binding mode of the PAM is similar to the binding mode of the phosphonate moiety of N-(phosphonoacetyl)-l-aspartate (PALA), the carboxylates of Asp interact with the same residues that interact with the carboxylates of PALA, although the position and orientations are shifted. The amino group of Asp is 2.9 A away from the carbonyl oxygen of PAM, positioned correctly for the nucleophilic attack. Arg105 and Leu267 in the catalytic chain interact with PAM and Asp and help to position the substrates correctly for catalysis. This structure fills a key gap in the structural determination of each of the steps in the catalytic cycle. By combining these data with previously determined structures we can now visualize the allosteric transition through detailed atomic motions that underlie the molecular mechanism.  相似文献   

20.
CheA-mediated CheB phosphorylation and the subsequent CheB-mediated demethylation of the chemoreceptors are important steps required for the bacterial chemotactic adaptation response. Although Escherichia coli CheB has been reported to interact with CheA competitively against CheY, we have observed that Thermotoga maritima CheB has no detectable CheA-binding. By determining the CheY-like domain crystal structure of T. maritima CheB, and comparing against the T. maritima CheY and Salmonella typhimurium CheB structures, we propose that the two consecutive glutamates in the β4/α4 loop of T. maritima CheB that is absent in T. maritima CheY and in E. coli/S. typhimurium CheB may be one factor contributing to the low CheA affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号