首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pyruvate oxidase is a flavoprotein dehydrogenase isolated from Escherichia coli which catalyzes the oxidative decarboxylation of pyruvate to acetate and CO2. In vivo, the enzyme can bind to the bacterial membrane and reduce ubiquinone-8, feeding electrons into the respiratory chain. The purified enzyme has been shown previously to bind to phospholipids and detergents and, upon doing so, is activated. The turnover with ferricyanide as an electron acceptor increases 20- to 30-fold upon lipid binding. In this work, initial velocity and stop-flow kinetics are used to investigate the activation of this enzyme. It is shown that the unactivated form of the enzyme is markedly hysteretic. Progress curves at low substrate concentrations show an initial acceleration in enzyme turnover. This is consistent with the results of stop-flow experiments. Rates obtained for either the reduction of the unactivated flavoprotein by pyruvate or its reoxidation by ferricyanide in single turnover experiments are much slower than the rates predicted by observed turnover in initial velocity studies, in some cases by more than 2 orders of magnitude. The data are best explained by the slow interconversion between two forms of the enzyme, one with low turnover and one which rapidly turns over. As isolated, the enzyme is highly unreactive, as revealed by the stop-flow experiments. During turnover, even in the absence of lipid activators, some of the enzyme converts to the rapid-turnover form. This slow interconversion is shown by kinetic simulation to preclude a steady state from being established. Lipid activators appear to shift the equilibrium to favor the rapid-turnover form of the enzyme. Once the enzyme is "locked" into an activated conformation, the hysteresis is no longer observed, and the stop-flow results are in agreement with data obtained from initial velocity experiments. Activation appears to result in both increased rates of electron transfer into and out of the flavin.  相似文献   

2.
Pyruvate oxidase is a flavoprotein dehydrogenase isolated from Escherichia coli which catalyzes the oxidative decarboxylation of pyruvate to acetate plus CO2. The maximal turnover of the enzyme, measured using a ferricyanide reductase assay, is increased 20-to 30-fold by either of two methods. Proteolysis in the presence of the substrate (pyruvate) and cofactor (Mg2+-thiamin pyrophosphate) results in cleavage at a single locus near the carboxyl terminus and concomitant activation. Phospholipids and detergents can bind to the enzyme and result in a similar activation, which is presumed to be physiologically relevant, since the enzyme functions as a peripheral membrane enzyme. Previous studies showed that proteolytic activation of pyruvate oxidase results in substantial changes in the absorption spectrum of the oxidized form of the bound flavin. Up to this time, similar studies of the lipid-activated form of the enzyme have not been feasible, since it is necessary to reduce the flavoprotein in order to induce binding to the lipids. In this paper, glutaraldehyde cross-linking of the lipid-activated enzyme is used to trap the enzyme in this form. Spectroscopic studies show alterations of the flavin spectrum similar to those observed upon proteolytic activation. This alteration in the flavin binding site is consistent with kinetic studies which suggest that activation results from an acceleration in the rates of electron transfer both into and out of the bound flavin, which appears to be more "accessible" in the activated forms of the enzyme.  相似文献   

3.
The catalytic efficiency (kcat/Km) of Escherichia coli flavin pyruvate oxidase can be stimulated 450-fold either by the addition of lipid activators or by limited proteolytic hydrolysis. Previous studies have shown that a functional lipid binding site is a mandatory prerequisite for the in vivo functioning of this enzyme (Grabau, C., and Cronan, J. E., Jr. (1986) Biochemistry 25, 3748-3751). The effect of activation on the transient state kinetics of partial reactions in the overall oxidative conversion of pyruvate to acetate and CO2 has now been examined. The rate of decarboxylation of pyruvate to form CO2 and hydroxyethylthiamin pyrophosphate for both activated and unactivated forms of the enzyme is identical within experimental error. The decarboxylation step was measured using substrate concentrations of the enzyme in the absence of an electron acceptor. The pseudo-first order rate constant for the decarboxylation step is 60-80 s-1. The rate of oxidation of hydroxyethylthiamin pyrophosphate and concomitant enzyme-bound flavin reduction was analyzed by stopped-flow methods utilizing synthetic hydroxyethylthiamin pyrophosphate. The pseudo-first order rate for this step with unactivated enzyme was 2.85 s-1 and increased 145-fold for lipid-activated enzyme to 413 s-1 and 61-fold for the proteolytically activated enzyme to 173 s-1. The analysis of a third reaction step, the reoxidation of enzyme-bound FADH, was also investigated by stopped-flow techniques utilizing ferricyanide as the electron acceptor. The rate of oxidation of enzyme.FADH is very fast for both unactivated (1041 s-1) and activated enzyme (645 s-1). The data indicate that the FAD reduction step is the rate-limiting step in the overall reaction for unactivated enzyme. Alternatively, the rate-limiting step in the overall reaction with the activated enzyme shifts to one of the partial steps in the decarboxylation reaction.  相似文献   

4.
S E Hamilton  M Recny  L P Hager 《Biochemistry》1986,25(25):8178-8183
Pyruvate oxidase from Escherichia coli is a peripheral membrane associated enzyme which is activated by lipids. We have investigated the high-affinity lipid binding site associated with lipid activation of pyruvate oxidase by covalent attachment of [14C]lauric acid to the enzyme. Lauric acid is bound stoichiometrically (1 mol/mol of active sites), and the enzyme is essentially irreversibly activated. Mild tryptic digestion of the modified enzyme shows that the lauric acid is bound within the last 100 residues of the 572-residue monomer. Digestion with thermolysin releases two closely related peptides, A and B, in approximately equal amounts. Comparison of the amino acid composition of peptide A with the entire sequence of the protein shows that peptide A corresponds to the sequence from Ala-543 to Ile-554. The analysis of peptide B is very similar to that of A. Limited sequence analysis of peptide B shows that residue 1 is Ala and residue 2 is labeled. These results support the assignment of residue 1 in peptide B as Ala-543 and indicate that lauric acid is bound to Lys-544. Previous work in this laboratory has shown that pyruvate oxidase may be activated independently of lipids by mild protease digestion. Proteolytic activation is accompanied by the release of a small peptide (residues 550-572) from the carboxyl terminus of the protein. The present work locates the lipid binding site very close to this peptide. The significance of these results for the mechanism of activation of pyruvate oxidase and other lipid-activated systems is discussed.  相似文献   

5.
Pyruvate oxidase, a tetrameric enzyme consisting of 4 identical subunits, dissociates into apoenzyme monomers and free FAD when treated with acid ammonium sulfate in the presence of high concentrations of potassium bromide. Reconstitution of the native enzymatically active protein can be accomplished by incubating equimolar concentrations of apomonomers and FAD at pH 6.5. The kinetics of the reconstitution reaction have been measured by 1) enzyme activity assays, 2) spectrophotometric assays to measure FAD binding, and 3) high performance liquid chromatography analysis measuring the distribution of monomeric, dimeric, and tetrameric species during reconstitution. The kinetic analysis indicates that the second order reaction of apomonomers with FAD to form an initial monomer-FAD complex is fast. The rate-limiting step for enzymatic reactivation appears to be the folding of the polypeptide chain in the monomer-FAD complex to reconstitute the three-dimensional FAD binding site prior to subunit reassociation. The subsequent formation of native tetramers appears to proceed via an essentially irreversible dimer assembly pathway.  相似文献   

6.
7.
The aerobic respiratory chain of Escherichia coli is branched and contains two terminal oxidases. The chain predominant when the cells are grown with low aeration terminates with the cytochrome d terminal oxidase complex, and the branch present under high aeration ends with the cytochrome o terminal oxidase complex. Previous work has shown that cytochrome d complex functions as a ubiquinol-8 oxidase, and that a minimal respiratory chain can be reconstituted in proteoliposomes with a flavoprotein dehydrogenase (pyruvate oxidase), ubiquinone-8, and the cytochrome d complex. This paper demonstrates that the cytochrome o complex functions as an efficient ubiquinol-8 oxidase in reconstituted proteoliposomes, and that ubiquinone-8 serves as an electron carrier from the flavoprotein to the cytochrome complex. The maximal turnover (per cytochrome o) achieved in reconstituted proteoliposomes is at least as fast as observed in E. coli membrane preparations. Electron flow from the flavoprotein to oxygen in the reconstituted proteoliposomes generates a transmembrane potential of at least 120 mV, negative inside, which is sensitive to ionophore uncouplers and inhibitors of the terminal oxidase. These data demonstrate the minimal composition of this respiratory chain as a flavoprotein dehydrogenase, ubiquinone-8, and the cytochrome o complex. Previous models have suggested that cytochrome b556, also a component of the E. coli inner membrane, is required for electron flow to cytochrome o. This is apparently not the case. It now is clear that both of the E. coli terminal oxidases act as ubiquinol-8 oxidases and, thus, ubiquinone-8 is the branch point between the two respiratory chains.  相似文献   

8.
We studied the physiological response of Escherichia coli central metabolism to the expression of heterologous pyruvate carboxylase (PYC) in the presence and absence of pyruvate oxidase (POX). These studies were complemented with expression analysis of central and intermediary metabolic genes and conventional in vitro enzyme assays to evaluate glucose metabolism at steady-state growth conditions (chemostats). The absence of POX activity reduced nongrowth-related energy metabolism (maintenance coefficient) and increased the maximum specific rate of oxygen consumption. The presence of PYC activity (i.e., with POX activity) increased the biomass yield coefficient and reduced the maximum specific oxygen consumption rate compared to the wildtype. The presence of PYC in a poxB mutant resulted in a 42% lower maintenance coefficient and a 42% greater biomass yield compared to the wildtype. Providing E. coli with PYC or removing POX increased the threshold specific growth rate at which acetate accumulation began, with an 80% reduction in acetate accumulation observed at a specific growth rate of 0.4 h-1 in the poxB-pyc+ strain. Gene expression analysis suggests utilization of energetically less favorable glucose metabolism via glucokinase and the Entner-Doudoroff pathway in the absence of functional POX, while the upregulation of the phosphotransferase glucose uptake system and several amino acid biosynthetic pathways occurs in the presence of PYC. The physiological and expression changes resulting from these genetic perturbations demonstrate the importance of the pyruvate node in respiration and its impact on acetate overflow during aerobic growth.  相似文献   

9.
Two peptides (PEP1, 26 residues, and PEP2, 22 residues) were synthesized with amino acid sequences identical to two of the long segments of polypeptide chain rich in alanine, proline, and charged amino acids that link the lipoyl domains together in the dihydrolipoyl acetyltransferase component of the pyruvate dehydrogenase multienzyme complex of Escherichia coli. The circular dichroism and 400-MHz 1H NMR spectra of the peptides indicated that they lacked regular secondary structure. Even in the presence of 45% (v/v) hexafluoroisopropanol, they appeared to acquire a helical content of only 23-25%. However, 13C NMR spectroscopy revealed that the Ala-Pro peptide bonds were all (> 95%) in the trans configuration, compared with a value of 87% for the Ala-Pro bond in the model peptide AAPA, which is a recurrent sequence motif in PEP1 and PEP2. Likewise in peptides representing the N- and C-terminal halves of peptide PEP2, the Ala-Pro bonds were again all (> 95%)-trans, suggesting that peptide length is the essential determinant of the cis:trans ratio. Antisera were raised against peptides PEP2 and PEP3, the latter representing a third interdomain segment of polypeptide chain (Radford, S. E., Laue, E. D., Perham, R. N., Martin, S. R., and Appella, E. (1989a) J. Biol. Chem. 264, 767-775). Despite extensive sequence similarity among peptides PEP1, PEP2, and PEP3, only limited immunological cross-reactivity was observed, which suggests that the antigenic epitope(s) in the peptides are different and distinct. It is likely that these peptides are representative of a class of inter-domain linkers or spacers found in a wide variety of proteins and endowed with varying degrees of flexibility and stiffness to match their particular biological purpose.  相似文献   

10.
Pyruvate oxidase (PyOD) is a very useful enzyme for clinical diagnostic applications and environmental monitor. Optimization of the fermentation medium for maximization of PyOD constitutively, production by Escherichia coli DH5α/pSMLPyOD was carried out. Response surface methodology (RSM) was used to optimize the medium constituents. A 26–2 fractional factorial design (first order model) was carried out to identify the significant effect of medium components towards PyOD production. Statistical analysis of results shows that yeast extract, ammonium sulfate and composite phosphate were significant factors on PyOD production. The optimized values of these three factors were obtained by RSM based on the result of a 23 central composite rotatable design. Under these proposed optimized medium, the model predicted a PyOD activity of 610 U/L and via experimental rechecking the model, an activity of 670 U/L was attained.  相似文献   

11.
12.
Previous work has shown that the coupling of the soluble Escherichia coli pyruvate oxidase to a lipid-depleted membrane terminal electron transport system requires the addition of ubiquinone and a neutral lipid fraction (C. Cunningham and L. P. Hager (1975) J. Biol. Chem. 250, 7139-7146). The active factor present in the neutral lipid fraction has now been isolated and characterized. NMR, uv, and mass spectroscopic analysis identifies palmitic acid as the active component. A comparison of palmitic acid with other fatty acids of varying chain lengths indicates that most fatty acids having chain lengths in the range C12 to C20 have comparable activity to palmitic acid. Exceptions are stearic and arachidic acid which have greatly reduced activity. Fatty acids of C6 to C10 chain length showed about one third the activity of palmitic acid. Fatty acids having chain lengths of 2 to 5 carbon atoms are essentially inactive. The carboxyl function of the fatty acid is required for activity. Derivatives of fatty acids in which the carboxyl group had been modified to an alcohol, aldehyde, or methyl ester function show greatly diminished activity. Both the cis and trans forms of unsaturated long-chain fatty acids are active. The stimulation of the electron transfer reaction by fatty acids occurs at the ubiquinone level of the electron transport chain. Ubiquinone-30 is rapidly reduced by pyruvate oxidase only in the presence of palmitic acid.  相似文献   

13.
C Grabau  J E Cronan 《Biochemistry》1986,25(13):3748-3751
The pyruvate oxidase of Escherichia coli is a peripheral membrane flavoprotein that is dramatically activated by lipids. The enzyme strongly binds to phospholipid vesicles in vitro. In vivo, in addition to enzyme activation, binding is thought to be important to provide access of the enzyme to ubiquinone dissolved in the lipid bilayer. It was unclear if both or either of these attributes is needed for enzyme function in vivo. To differentiate between activation and lipid binding, we have constructed, using recombinant DNA techniques, a mutant gene that produces a truncated protein. The truncated protein lacks the last 24 amino acids of the C-terminus of the oxidase (due to introduction of a translation termination codon) and thus is closely analogous to the activated species produced in vitro by limited chymotrypsin cleavage [Recny, M.A., Grabau, C., Cronan, J.E., Jr., & Hager, L.P. (1985) J. Biol. Chem. 260, 14287-14291]. The truncated protein (like the protease-derived species) is fully active in vitro in the absence of lipid, and its activity is not further increased by addition of lipid activators. Moreover, the truncated enzyme fails to bind Triton X-114, a detergent that binds to and activates the wild-type oxidase. Strains producing the truncated protein were devoid of oxidase activity in vivo. This result indicates that binding to membrane lipids is specifically required for function of the oxidase in vivo; activation alone does not suffice.  相似文献   

14.
Pyruvate oxidase is a flavoprotein dehydrogenase located on the inner surface of the Escherichia coli cytoplasmic membrane and coupled to the E. coli aerobic respiratory chain. In this paper, the role of quinones in the pyruvate oxidase system is investigated, and a minimal respiratory chain is described consisting of only two pure proteins plus ubiquinone 8 incorporated in phospholipid vesicles. The enzymes used in this reconstitution are the flavoprotein and the recently purified E. coli cytochrome d terminal oxidase. The catalytic velocity of the reconstituted liposome system is about 30% of that observed when the flavoprotein is reconstituted with E. coli membranes. It is also shown that electron transport from pyruvate to oxygen in the liposome system generates a transmembrane potential of at least 180 mV (negative inside), which is sensitive to the uncouplers carbonyl cyanide p-(tri-chloromethoxy)phenylhydrazone and valinomycin. A trans-membrane potential is also generated by the oxidation of ubiquinol 1 by the terminal oxidase in the absence of the flavoprotein. It is concluded that (1) the flavoprotein can directly reduce ubiquinone 8 within the phospholipid bilayer, (2) menaquinone 8 will not effectively substitute for ubiquinone 8 in this electron-transfer chain, and (3) the cytochrome d terminal oxidase functions as a ubiquinol 8 oxidase and serves as a "coupling site" in the E. coli aerobic respiratory chain. These investigations suggest a relatively simple organization for the E. coli respiratory chain.  相似文献   

15.
16.
Pyruvate oxidase of Escherichia coli, an enzyme greatly activated by phospholipids, is a tetramer of a Mr 62,000 subunit. We have utilized the differing electrophoretic mobilities of several mutant oxidases on native polyacrylamide gels to study the role of the quaternary structure of the enzyme in the activation process. We found that when two poxB gene alleles coexisted in cells, heterotetrameric species were formed in addition to homotetramers. The concentration of each tetrameric species varied according to the concentration of the different subunits present, and the distribution seemed virtually identical to those expected from random mixing. We showed that the intrinsic activity of pyruvate oxidase was not affected by interactions among the four subunits. However, binding of the enzyme to lipids, a property required for function in vivo, required that a tetramer contain at least two subunits capable of lipid binding. Our data fit the model proposed previously (Grabau, C., Chang, Y.-Y., and Cronan, J. E., Jr. (1989) J. Biol. Chem. 264, 12510-12519) in which the carboxyl termini of two subunits interact to form a functional lipid-binding domain. We also have detected oxidase activity in a form of oxidase of unusually high electrophoretic mobility. This form seems to be either a monomeric or a dimeric form (more probably the former) of the oxidase subunit.  相似文献   

17.
The cytochrome o complex is the predominant terminal oxidase in the aerobic respiratory chain of Escherichia coli when the bacteria are grown under conditions of high aeration. The oxidase is a ubiquinol oxidase and reduces molecular oxygen to water. Electron transport through the enzyme is coupled to the generation of a protonmotive force. The purified cytochrome o complex contains four or five subunits, two protoheme IX (heme b) prosthetic groups, plus at least one Cu. The subunits are all encoded by the cyo operon. Sequence comparisons show that the cytochrome o complex is closely related to the aa3-type cytochrome c oxidase family. Gene fusions have been used to define the topology of each of the gene products. Subunits I, II, III and IV are proposed to have 15, 2, 5 and 3 transmembrane spans, respectively. The fifth gene product (cyoE) encodes a protein with 7 membrane spanning segments, and this may also be a subunit of this enzyme. Fourier transform infrared spectroscopy has been used to monitor CO bound in the active site where oxygen is reduced. These data provide definitive proof that the cytochrome o complex has a heme-copper binuclear center, similar to that present in the aa3-type cytochrome c oxidases. Site-directed mutagenesis is being utilized to define which amino acids are ligands to the heme iron and copper prosthetic groups.  相似文献   

18.
Escherichia coli pyruvate oxidase is a membrane-associated flavoprotein dehydrogenase which is greatly activated by lipids and detergents. The carboxyl-terminal region of the protein has been shown to play a critical role in the interaction with lipids. We report mutations generated by chemical and oligonucleotide-mediated site-directed mutagenesis of the poxB gene which result in enzymes defective in lipid activation. Nine mutants were isolated which encode enzymes with point mutations in the carboxyl-terminal segment of the protein. Two mutant lesions introduced termination codons giving enzymes lacking the last nine or three amino acids of the protein which were unable to interact with detergents in vitro and were unable to function in vivo. Of the missense mutants isolated, two were most informative. One was the substitution of Glu-564 with proline in the PoxB16 oxidase. This residue lies in the center of a putative lipid-binding amphipathic alpha-helix (Arg-558 to Thr-568) located close to the carboxyl terminus. Strains producing the PoxB16 oxidase were devoid of oxidase activity in vivo, the enzymes could not be activated by Triton X-100, and were activated poorly by phospholipids in vitro. These results indicated that the PoxB16 oxidase lacked normal lipid-binding ability. Another mutant oxidase (PoxB15) in which proline was substituted for Asp-560 at the beginning of the amphipathic alpha-helix had normal oxidase activity. These findings indicate that the amphipathic alpha-helix structure plays an essential role in the activation and lipid-binding properties of the enzyme. The second informative missense mutation was the substitution of the carboxyl-terminal arginine with glycine. This enzyme showed normal activation in vitro by phospholipids and some detergents, and somewhat reduced activity in vivo. This mutant enzyme appeared to dissociate from detergent vesicles more readily than does the normal enzyme. A model for the membrane interaction of the carboxyl terminus based on the properties of these mutant proteins is presented.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号