首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phospholipase C is required for the control of stomatal aperture by ABA   总被引:20,自引:0,他引:20  
The calcium-releasing second messenger inositol 1,4,5-trisphosphate is involved in the regulation of stomatal aperture by ABA. In other signalling pathways, inositol 1,4,5-trisphosphate is generated by the action of phospholipase C. We have studied the importance of phospholipase C in guard cell ABA-signalling pathways. Immunolocalisation of a calcium-activated phospholipase C confirmed the presence of phospholipase C in tobacco guard cells. Transgenic tobacco plants with considerably reduced levels of phospholipase C in their guard cells were only partially able to regulate their stomatal apertures in response to ABA. These results suggest that phospholipase C is involved in the amplification of the calcium signal responsible for reductions in stomatal aperture in response to ABA. As full ABA-induced inhibition of stomatal opening was not observed, our results support a role for the action of other calcium-releasing second messengers in the guard cell ABA-signalling pathway. It is not known whether these different calcium-releasing second messengers act in the same or parallel ABA-signalling pathways.  相似文献   

2.
Li J  Assmann SM 《The Plant cell》1996,8(12):2359-2368
Abscisic acid (ABA) regulation of stomatal aperture is known to involve both Ca2+-dependent and Ca2+-independent signal transduction pathways. Electrophysiological studies suggest that protein phosphorylation is involved in ABA action in guard cells. Using biochemical approaches, we identified an ABA-activated and Ca2+- independent protein kinase (AAPK) from guard cell protoplasts of fava bean. Autophosphorylation of AAPK was rapidly (~1 min) activated by ABA in a Ca2+- independent manner. ABA-activated autophosphorylation of AAPK occurred on serine but not on tyrosine residues and appeared to be guard cell specific. AAPK phosphorylated histone type III-S on serine and threonine residues, and its activity toward histone type III-S was markedly stimulated in ABA-treated guard cell protoplasts. Our results suggest that AAPK may play an important role in the Ca2+-independent ABA signaling pathways of guard cells.  相似文献   

3.
Abscisic acid (ABA)-induced stomatal closure is mediated by a complex, guard cell signalling network involving nitric oxide (NO) as a key intermediate. However, there is a lack of information concerning the role of NO in the ABA-enhanced stomatal closure seen in dehydrated plants. The data herein demonstrate that, while nitrate reductase (NR)1-mediated NO generation is required for the ABA-induced closure of stomata in turgid leaves, it is not required for ABA-enhanced stomatal closure under conditions leading to rapid dehydration. The results also show that NO signalling in the guard cells of turgid leaves requires the ABA-signalling pathway to be both capable of function and active. The alignment of this NO signalling with guard cell Ca2+-dependent/independent ABA signalling is discussed. The data also highlight a physiological role for NO signalling in turgid leaves and show that stomatal closure during the light-to-dark transition requires NR1-mediated NO generation and signalling.  相似文献   

4.
5.
Drought induces stomatal closure, a response that is associated with the activation of plasma membrane anion channels in guard cells, by the phytohormone abscisic acid (ABA). In several species, this response is associated with changes in the cytoplasmic free Ca(2+) concentration. In Vicia faba, however, guard cell anion channels activate in a Ca(2+)-independent manner. Because of potential differences between species, Nicotiana tabacum guard cells were studied in intact plants, with simultaneous recordings of the plasma membrane conductance and the cytoplasmic free Ca(2+) concentration. ABA triggered transient rises in cytoplasmic Ca(2+) in the majority of the guard cells (14 out of 19). In seven out of 14 guard cells, the change in cytoplasmic free Ca(2+) closely matched the activation of anion channels, while the Ca(2+) rise was delayed in seven other cells. In the remaining five cells, ABA stimulated anion channels without a change in the cytoplasmic Ca(2+) level. Even though ABA could activate anion channels in N. tabacum guard cells independent of a rise in the cytoplasmic Ca(2+) concentration, patch clamp experiments showed that anion channels in these cells are stimulated by elevated Ca(2+) in an ATP-dependent manner. Guard cells thus seem to have evolved both Ca(2+)-independent and -dependent ABA signaling pathways. Guard cells of N. tabacum apparently utilize both pathways, while ABA signaling in V. faba seems to be restricted to the Ca(2+)-independent pathway.  相似文献   

6.
Protein phosphorylation and cytosolic-free [Ca2+] ([Ca2+]i) contribute to signalling cascades evoked by the water-stress hormone abscisic acid (ABA) that lead to stomatal closure in higher-plant leaves. ABA activates an inward-rectifying Ca2+ channel at the plasma membrane of stomatal guard cells, promoting Ca2+ entry by shifting the voltage-sensitivity of the channels. Because many of these effects could be mediated by kinase/phosphatase action at the membrane, we examined a role for protein (de-)phosphorylation in plasma membrane patches from Vicia guard cells. Ca2+ channel activity decayed rapidly in excised patches, and recovered on adding ATP (K1/2, 1.3 +/- 0.7 mm) but not the non-hydrolyzable analog ATPgammaS. ABA activation of the channel required the presence of ATP and like ABA, the 1/2 A-type protein phosphatase antagonists okadaic acid (OA) and calyculin A (CA) enhanced Ca2+ channel activity by increasing the open probability and number of active channels. Neither ATP nor the antagonists affected the mean open lifetime of the channel, suggesting an action through changes in closed lifetime distributions. Like ABA, OA and CA shifted the voltage-sensitivities of the Ca2+ current and [Ca2+]i increases in intact guard cells towards positive voltages. OA and CA also augmented the [Ca2+]i rise evoked by hyperpolarization and delayed its recovery. These results demonstrate a membrane-delimited interaction between 1/2 A-type protein phosphatase(s) and the Ca2+ channel or associated proteins, and they are consistent with a role for protein (de-)phosphorylation in ABA signalling mediated directly through Ca2+ channel gating that leads to [Ca2+]i increases in the guard cells.  相似文献   

7.
Our understanding of the signalling mechanisms involved in the process of stomatal closure is reviewed. Work has concentrated on the mechanisms by which abscisic acid (ABA) induces changes in specific ion channels at both the plasmalemma and the tonoplast, leading to efflux of both K+ and anions at both membranes, requiring four essential changes. For each we need to identify the specific channels concerned, and the detailed signalling chains by which each is linked through signalling intermediates to ABA. There are two global changes that are identified following ABA treatment: an increase in cytoplasmic pH and an increase in cytoplasmic Ca2+, although stomata can close without any measurable global increase in cytoplasmic Ca2+. There is also evidence for the importance of several protein phosphatases and protein kinases in the regulation of channel activity. At the plasmalemma, loss of K+ requires depolarization of the membrane potential into the range at which the outward K+ channel is open. ABA-induced activation of a non-specific cation channel, permeable to Ca2+, may contribute to the necessary depolarization, together with ABA-induced activation of S-type anion channels in the plasmalemma, which are then responsible for the necessary anion efflux. The anion channels are activated by Ca2+ and by phosphorylation, but the precise mechanism of their activation by ABA is not yet clear. ABA also up-regulates the outward K+ current at any given membrane potential; this activation is Ca(2+)-independent and is attributed to the increase in cytoplasmic pH, perhaps through the marked pH-sensitivity of protein phosphatase type 2C. Our understanding of mechanisms at the tonoplast is much less complete. A total of two channels, both Ca(2+)-activated, have been identified which are capable of K+ efflux; these are the voltage-independent VK channel specific to K+, and the slow vacuolar (SV) channel which opens only at non-physiological tonoplast potentials (cytoplasm positive). The SV channel is permeable to K+ and Ca2+, and although it has been argued that it could be responsible for Ca(2+)-induced Ca2+ release, it now seems likely that it opens only under conditions where Ca2+ will flow from cytoplasm to vacuole. Although tracer measurements show unequivocally that ABA does activate efflux of Cl- from vacuole to cytoplasm, no vacuolar anion channel has yet been identified. There is clear evidence that ABA activates release of Ca2+ from internal stores, but the source and trigger for ABA-induced increase in cytoplasmic Ca2+ are uncertain. The tonoplast and another membrane, probably ER, have IP3-sensitive Ca2+ release channels, and the tonoplast has also cADPR-activated Ca2+ channels. Their relative contributions to ABA-induced release of Ca2+ from internal stores remain to be established. There is some evidence for activation of phospholipase C by ABA, by an unknown mechanism; plant phospholipase C may be activated by Ca2+ rather than by the G-proteins used in many animal cell signalling systems. A further ABA-induced channel modulation is the inhibition of the inward K+ channel, which is not essential for closing but will prevent opening. It is suggested that this is mediated through the Ca(2+)-activated protein phosphatase, calcineurin. The question of Ca(2+)-independent stomatal closure remains controversial. At the plasmalemma the stimulation of K+ efflux is Ca(2+)-independent and, at least in Arabidopsis, activation of anion efflux by ABA may also be Ca(2+)-independent. But there are no indications of Ca(2+)-independent mechanisms for K+ efflux at the tonoplast, and the appropriate anion channel at the tonoplast is still to be found. There is also evidence that ABA interferes with a control system in the guard cell, resetting its set-point to lower contents, suggesting that stretch-activated channels also feature in the regulation of guard cell ion channels, perhaps through interactions with cytoskeletal proteins. (ABSTRACT TRUN  相似文献   

8.
Hwang JU  Lee Y 《Plant physiology》2001,125(4):2120-2128
In guard cells of open stomata under daylight, long actin filaments are arranged at the cortex, radiating out from the stomatal pore. Abscisic acid (ABA), a signal for stomatal closure, induces rapid depolymerization of cortical actin filaments and the slower formation of a new type of actin that is randomly oriented throughout the cell. This change in actin organization has been suggested to be important in signaling pathways involved in stomatal closing movement, since actin antagonists interfere with normal stomatal closing responses to ABA. Here we present evidence that the actin changes induced by ABA in guard cells of dayflower (Commelina communis) are mediated by cytosolic calcium levels and by protein phosphatase and protein kinase activities. Treatment of guard cells with CaCl2 induced changes in actin organization similar to those induced by ABA. Removal of extracellular calcium with EGTA inhibited ABA-induced actin changes. These results suggest that Ca2+ acts as a signal mediator in actin reorganization during guard cell response to ABA. A protein kinase inhibitor, staurosporine, inhibited actin reorganization in guard cells treated with ABA or CaCl2, and also increased the population of cells with long radial cortical actin filaments in untreated control cells. A protein phosphatase inhibitor, calyculin A, induced fragmentation of actin filaments in ABA- or CaCl2-treated cells and in control cells, and inhibited the formation of randomly oriented long actin filaments induced by ABA or CaCl2. These results suggest that protein kinase(s) and phosphatase(s) participate in actin remodeling in guard cells during ABA-induced stomatal closure.  相似文献   

9.
Calcium ions as second messengers in guard cell signal transduction   总被引:21,自引:0,他引:21  
Ca2+ is a ubiquitous second messenger in plant cell signalling. In this review we consider the role of Ca2+-based signal transduction in stomatal guard cells focusing on three important areas: (1) the regulation of guard cell turgor relations and the control of gene expression in guard cells, (2) the control of specificity in Ca2+ signalling, (3) emerging technologies and new approaches for studying intracellular signalling. Stomatal apertures alter in response to a wide array of environmental stimuli as a result of changes in guard cell turgor. For example, the plant hormone abscisic acid (ABA) stimulates a reduction in stomatal aperture through a decrease in guard cell turgor. Furthermore, guard cells have been shown to be competent to relay an ABA signal from its site of perception to the nucleus. An increase in the concentration of cytosolic free Ca2+ ([Ca2+]1) is central to the mechanisms underlying ABA-induced changes in guard cell turgor. We describe a possible model of Ca2+-based ABA signal transduction during stomatal closure and discuss recent evidence which suggests that Ca2+ is also involved in ABA nuclear signal transduction. Many other environmental stimuli which affect stomatal apertures, in addition to ABA, induce an increase in guard cell [Ca2+]1) This raises questions regarding how increases in [Ca2+]1) can be a common component in the signal transduction pathways by which stimuli cause both stomatal opening and closure. We discuss several mechanisms of increasing the amount of information contained within the Ca2+ signal, including encoding information in a stimulus-specific Ca2+ signal or Ca2+ signature', the concept of the ‘physiological address’ of the cell, and the use of other second messengers. We conclude by addressing the emerging technologies and new approaches which can be used in conjunction with guard cells to dissect further the molecular mechanisms of Ca2+-mediated signalling in plants.  相似文献   

10.
Heterotrimeric G proteins composed of Gα, Gβ, and Gγ subunits are important signalling agents in both animals and plants. In plants, G proteins modulate numerous responses, including abscisic acid (ABA) and pathogen-associated molecular pattern (PAMP) regulation of guard cell ion channels and stomatal apertures. Previous analyses of mutants deficient in the sole canonical Arabidopsis Gα subunit, GPA1, have shown that Gα-deficient guard cells are impaired in ABA inhibition of K(+) influx channels, and in pH-independent activation of anion efflux channels. ABA-induced Ca(2+) uptake through ROS-activated Ca(2+)-permeable channels in the plasma membrane is another key component of ABA signal transduction in guard cells, but the question of whether these channels are also dependent on Gα for their ABA response has not been evaluated previously. We used two independent Arabidopsis T-DNA null mutant lines, gpa1-3 and gpa1-4, to investigate this issue. We observed that gpa1 mutants are disrupted both in ABA-induced Ca(2+)-channel activation, and in production of reactive oxygen species (ROS) in response to ABA. However, in response to exogenous H(2)O(2) application, I(Ca) channels are activated normally in gpa1 guard cells. In addition, H(2)O(2) inhibition of stomatal opening and promotion of stomatal closure are not disrupted in gpa1 mutant guard cells. These data indicate that absence of GPA1 interrupts ABA signalling between ABA reception and ROS production, with a consequent impairment in Ca(2+)-channel activation.  相似文献   

11.
12.
Two novel approaches for the study of Ca2+-mediated signal transduction in stomatal guard cells are described. Stimulus-induced changes in guard-cell cytosolic Ca2+ ([Ca2+]cyt) were monitored using viable stomata in epidermal strips of a transgenic line of Nicotiana plumbaginifolia expressing aequorin (the proteinous luminescent reporter of Ca2+) and in a new transgenic line in which aequorin expression was targeted specifically to the guard cells. The results indicated that abscisic acid (ABA)-induced stomatal closure was accompanied by increases in [Ca2+]cyt in epidermal strips. In addition to ABA, mechanical and low-temperature signals directly affected stomatal behaviour, promoting rapid closure. Elevations of guard-cell [Ca2+]cyt play a key role in the transduction of all three stimuli. However, there were striking differences in the magnitude and kinetics of the three responses. Studies using Ca2+ channel blockers and the Ca2+ chelator EGTA further suggested that mechanical and ABA signals primarily mobilize Ca2+ from intracellular store(s), whereas the influx of extracellular Ca2+ is a key component in the transduction of low-temperature signals. These results illustrate an aspect of Ca2+ signalling whereby the specificity of the response is encoded by different spatial or kinetic Ca2+ elevations.  相似文献   

13.
ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells   总被引:19,自引:0,他引:19  
Increased synthesis and redistribution of the phytohormone abscisic acid (ABA) in response to water deficit stress initiates an intricate network of signalling pathways in guard cells leading to stomatal closure. Despite the large number of ABA signalling intermediates that are known in guard cells, new discoveries are still being made. Recently, the reactive oxygen species hydrogen peroxide (H2O2) and the reactive nitrogen species nitric oxide (NO) have been identified as key molecules regulating ABA-induced stomatal closure in various species. As with many other physiological responses in which H2O2 and NO are involved, stomatal closure in response to ABA also appears to require the tandem synthesis and action of both these signalling molecules. Recent pharmacological and genetic data have identified NADPH oxidase as a source of H2O2, whilst nitrate reductase has been identified as a source of NO in Arabidopsis guard cells. Some signalling components positioned downstream of H2O2 and NO are calcium, protein kinases and cyclic GMP. However, the exact interaction between the various signalling components in response to H2O2 and NO in guard cells remains to be established.  相似文献   

14.
ABA-regulated promoter activity in stomatal guard cells   总被引:4,自引:0,他引:4  
CDeT6-19 is an ABA-regulated gene which has been isolated from Craterostigma plantagineum . The CDeT6-19 gene promoter has been fused to the β- glucuronidase reporter gene ( GUS ) and used to stably transform Arabidopsis thaliana and Nicotiana tabacum . This construct has been shown to be expressed in stomatal guard cells and often in the adjacent epidermal cells of both species in response to both exogenous ABA and drought stress. These results indicate that the stomatal guard cell is competent to relay an ABA signal to the nucleus. In contrast GUS expression directed by the promoter from a predominantly seed-specific, ABA-regulated gene, Em , or the promoter from the ABA-regulated CDeT27-45 gene is not detectable in the epidermal or guard cells of tobacco or Arabidopsis in response to ABA. The fact that not all ABA-regulated gene promoters are active in stomatal guard cells suggests that effective transduction of the signal is dependent upon particular regions within the gene promoter or that guard cells lack all or part of the specific transduction apparatus required to couple the ABA signal to these promoters. This suggests that there are multiple ABA stimulus response coupling pathways. The identification of a regulatory sequence from an ABA-induced gene which is expressed in stomatal guard cells creates the possibility of examining the role of Ca2+ and other second messengers in ABA-induced gene expression.  相似文献   

15.
Methyl jasmonate (MeJA) signalling shares several signal components with abscisic acid (ABA) signalling in guard cells. Cyclic adenosine 5′‐diphosphoribose (cADPR) and cyclic guanosine 3′,5′‐monophosphate (cGMP) are second messengers in ABA‐induced stomatal closure. In order to clarify involvement of cADPR and cGMP in MeJA‐induced stomatal closure in Arabidopsis thaliana (Col‐0), we investigated effects of an inhibitor of cADPR synthesis, nicotinamide (NA), and an inhibitor of cGMP synthesis, LY83583 (LY, 6‐anilino‐5,8‐quinolinedione), on MeJA‐induced stomatal closure. Treatment with NA and LY inhibited MeJA‐induced stomatal closure. NA inhibited MeJA‐induced reactive oxygen species (ROS) accumulation and nitric oxide (NO) production in guard cells. NA and LY suppressed transient elevations elicited by MeJA in cytosolic free Ca2+ concentration ([Ca2+]cyt) in guard cells. These results suggest that cADPR and cGMP positively function in [Ca2+]cyt elevation in MeJA‐induced stomatal closure, are signalling components shared with ABA‐induced stomatal closure in Arabidopsis, and that cADPR is required for MeJA‐induced ROS accumulation and NO production in Arabidopsis guard cells.  相似文献   

16.
Pharmacological agents were used to investigate the possible involvement of actin in signalling chains associated with abscisic acid (ABA)-induced ion release from the guard cell vacuole, a process which is absolutely essential for stomatal closure. Effects on the ABA-induced transient stimulation of tonoplast efflux were measured, using (86)Rb in isolated guard cells of Commelina communis, together with effects on stomatal apertures. In the response to 10 microm ABA (triggered by Ca(2+) influx rather than internal Ca(2+) release), jasplakinolide (stabilizing actin filaments) and latrunculin B (depolymerizing actin filaments) had opposite effects. Both closure and the vacuolar efflux transient were inhibited by jasplakinolide but enhanced by latrunculin B. At 10 microm ABA prevention of mitogen-activated protein (MAP) kinase activation by PD98059 partially inhibited closure and reduced the efflux transient. By contrast, latrunculin B inhibited the efflux transient at 0.1 microm ABA (involving internal Ca(2+) release rather than Ca(2+) influx). The results suggest that 10 microm ABA activates Ca(2+)-dependent vacuolar ion efflux via a Ca(2+)-permeable influx channel which is maintained closed by interaction with F-actin. A MAP kinase is also involved, in a chain similar to that postulated for Ca(2+)-dependent gene expression in cold acclimation.  相似文献   

17.
Recent work has indicated that nitric oxide (NO) and its synthesis are important elements of signal cascades in plant-pathogen defence, and are a prerequisite for drought and abscisic acid (ABA) responses in Arabidopsis thaliana and Vicia faba guard cells. NO regulates inward-rectifying K+ channels and Cl- channels of Vicia guard cells via intracellular Ca2+ release. However, its integration with related signals, including the actions of serine-threonine protein kinases, is less well defined. We report here that the elevation of cytosolic-free [Ca2+] ([Ca2+]i) mediated by NO in guard cells is reversibly inhibited by the broad-range protein kinase antagonists staurosporine and K252A, but not by the tyrosine kinase antagonist genistein. The effects of kinase antagonism translate directly to a loss of NO-sensitivity of the inward-rectifying K+ channels and background (Cl- channel) current, and to a parallel loss in sensitivity of the K+ channels to ABA. These results demonstrate that NO-dependent signals can be modulated through protein phosphorylation upstream of intracellular Ca2+ release, and they implicate a target for protein kinase control in ABA signalling that feeds into NO-dependent Ca2+ release.  相似文献   

18.
Stomatal movement is accomplished by changes in the ionic content within guard cells as well as in the cell wall of the surrounding stomatal pore. In this study, the sub-stomatal apoplastic activities of K+, Cl-, Ca2+ and H+ were continuously monitored by inserting ion-selective micro-electrodes through the open stomata of intact Vicia faba leaves. In light-adapted leaves, the mean activities were 2.59 mM (K+), 1.26 mM (Cl-), 64 microM (Ca2+) and 89 microM (H+). Stomatal closure was investigated through exposure to abscisic acid (ABA), sudden darkness or both. Feeding the leaves with ABA through the cut petiole initially resulted in peaks after 9-10 min, in which Ca2+ and H+ activities transiently decreased, and Cl- and K+ activities transiently increased. Thereafter, Ca2+, H+ and Cl- activities completely recovered, while K+ activity approached an elevated level of around 10 mM within 20 min. Similar responses were observed following sudden darkness, with the difference that Cl- and Ca2+ activities recovered more slowly. Addition of ABA to dark-adapted leaves evoked responses of Cl- and Ca2+ similar to those observed in the light. K+ activity, starting from its elevated level, responded to ABA with a transient increase peaking around 16 mM, but then returned to its dark level. During stomatal closure, membrane potential changes in mesophyll cells showed no correlation with the K+ kinetics in the sub-stomatal cavity. We thus conclude that the increase in K+ activity mainly resulted from K+ release by the guard cells, indicating apoplastic compartmentation. Based on the close correlation between Cl- and Ca2+ changes, we suggest that anion channels are activated by a rise in cytosolic free Ca2+, a process which activates depolarization-activated K+ release channels.  相似文献   

19.
The role of cytosolic Ca2+ in signal transduction in stomatal guard cells of Commelina communis was investigated using fluorescence ratio imaging and photometry. By changing extracellular K+, extracellular Ca2+, or treatment with Br-A23187, substantive increases in cytosolic Ca2+ to over 1 micromolar accompanied stomatal closure. The increase in Ca2+ was highest in the cytoplasm around the vacuole and the nucleus. Similar increases were observed when the cells were pretreated with ethyleneglycol-bis-(o-aminoethyl)tetraacetic acid or the channel blocker La3+, together with the closing stimuli. This suggests that a second messenger system operates between the plasma membrane and Ca2+-sequestering organelle(s). The endogenous growth regulator abscisic acid elevated cytosolic Ca2+ levels in a minority of cells investigated, even though stomatal closure always occurred. Ca2+-dependent and Ca2+-independent transduction pathways linking abscisic acid perception to stomatal closure are thus indicated.  相似文献   

20.
An abscisic acid (ABA)-insensitive Vicia faba mutant, fia (fava bean impaired in ABA-induced stomatal closure) had previously been isolated. In this study, it was investigated how FIA functions in ABA signalling in guard cells of Vicia faba. Unlike ABA, methyl jasmonate (MeJA), H(2)O(2), and nitric oxide (NO) induced stomatal closure in the fia mutant. ABA did not induce production of either reactive oxygen species or NO in the mutant. Moreover, ABA did not suppress inward-rectifying K(+) (K(in)) currents or activate ABA-activated protein kinase (AAPK) in mutant guard cells. These results suggest that FIA functions as an early signal component upstream of AAPK activation in ABA signalling but does not function in MeJA signalling in guard cells of Vicia faba.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号