首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Ab initio calculations (Hartree-Fock) using the 3–21G and the STO-3G Gaussian basis sets were performed on synthetic analogues of the minor groove binding bis-benzimidazole Hoechst 33258 designed to exhibit altered sequence recognition. Geometry optimized conformations, energies and distribution of electrostatic charges within the molecule were derived. The binding of the optimized conformations of the drug to both alternating and non-alternating (AT)n and (GC)n sequences were studied.  相似文献   

2.
AM1 semi-empirical and ab initio calculations were performed on certain synthetic polyamide conjugates of the aglycone of the minor groove binding antibiotic calicheamicin. Geometry optimized conformations and heats of formation were obtained. The binding of the optimized conformations of the drug to both alternating and non-alternating (AT)n and to (G)n x (C)n sequences were studied and the energies of binding were compared to each other. The results can be utilized in the design of novel enediyne-based drugs.  相似文献   

3.
The use of FTIR spectroscopy is made to study the interactions between polynucleotides and two series of minor groove binding compounds. The latter were developed and described previously as part of an ongoing program of rational design of modified ligands based on naturally occurring pyrrole amidine antibiotic netropsin, and varying the structure of bisbenzimidazole chromosomal stain Hoechst 33258. Characteristic IR absorptions due to the vibrations of thymidine and cytosine keto groups in polynucleotides containing AT and GC base pairs respectively are used to monitor their interaction with the added ligands. Although the two thiazole based lexitropsins based on netropsin structure differ in the relative orientation of nitrogen and sulfur atoms with respect to the concave edge of the molecules, they interact exclusively with the thymidine C2 = O carbonyl groups in the minor groove of the alternating AT polymer as evidenced by specific changes in the IR spectra. In the second series of compounds based on Hoechst 33258, the structure obtained by replacing the two benzimidazoles in the parent compound by a combination of pyridoimidazole and benzoxazole, exhibits changes in the carbonyl frequency region of poly dG.poly dC which is attributed to the ligand interaction at the minor groove of GC base pairs. In contrast, Hoechst 33258 itself interacts only with poly dA.poly dT. Weak or no interaction exists between the ligands and any of the polynucleotides at the levels of the phosphate groups or the deoxyribose units.  相似文献   

4.
Abstract

The use of FTIR spectroscopy is made to study the interactions between polynucleotides and two series of minor groove binding compounds. The latter were developed and described previously as part of an ongoing program of rational design of modified Ligands based on naturally occurring pyrrole amidine antibiotic netropsin, and varying the structure of bis- benzimidazole chromosomal stain Hoechst 33258. Characteristic IR absorptions due to the vibrations of thymidine and cytosine keto groups in polynucleotides containing AT and GC base pairs respectively are used to monitor their interaction with the added Ligands. Although the two thiazole based lexitropsins based on netropsin structure differ in the relative orientation of nitrogen and sulfur atoms with respect to the concave edge of the molecules, they interact exclusively with the thymidine C2=O carbonyl groups in the minor groove of the alternating AT polymer as evidenced by specific changes in the IR spectra.

In the second series of compounds based on Hoechst 33258, the structure obtained by replacing the two benzimidazoles in the parent compound by a combination of pyridoimidazole and benzoxazole, exhibits changes in the carbonyl frequency region of poly dG · poly dC which is attributed to the ligand interaction at the minor groove of GC base pairs. In contrast, Hoechst 33258 itself interacts only with poly dA · poly dT. Weak or no interaction exists between the Ligands and any of the polynucleotides at the levels of the phosphate groups or the deoxyribose units.  相似文献   

5.
The hydration shell of several conformations of the polynucleotides poly(dA).poly(dT), poly(dA).poly(dU), and poly(dA-dI).poly(dT-dC) has been simulated using the Monte Carlo method (Metropolis sampling). Calculations have shown that the structure of the hydration shell of the minor groove greatly depends on its width. In conformations with a narrowed minor groove, the first layer of the hydration shell of this groove has only one molecule per nucleotide pair that forms H bonds with purine N3 of one pair and pyrimidine O2 of the next pair. The second layer of the hydration shell of such conformations contains molecules that form H bonds between two adjacent molecules of the first layer. The probability of formation of hydration spine is about 20% while the bridges of the first layer are formed with a probability of about 70%. In the first layer of the minor groove of the B-DNA conformation with wide minor groove there are approximately two water molecules per base pair that form H bonds with purine N3 or pyrimidine O2 and with the sugar ring oxygen of the adjacent nucleotide. The probability of simultaneous H bonding of a water molecule with N3 (or O2) and O of sugar ring is about 30%. The results of simulation suggest that hydration spine proposed for the narrowed minor groove of oligonucleotide crystals [H. R. Drew, and R. E. Dickerson (1981) Journal of Molecular Biology, Vol. 151, pp. 535-556] can be formed in fibers of poly(dA).poly(dT), poly(dA).poly(dU), and poly(dA-dI).poly(dT-dC) as well as in DNA fragments of these sequences in solution.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Synthetic polycarboxamides consisting of N-methylpyrrole (Py), N-methylimidazole (Im), N-methyl-3-hydroxypyrrole (Hp) and beta-alanine (beta) show strong and sequence-specific interaction with the DNA minor groove when they form hairpin structures with side-by-side antiparallel motifs. In the present paper, new conjugates containing two ligands linked to the same terminal phosphate of DNA strand were constructed. The paper describes optimized synthesis and properties of oligonucleotide-linked polyamide strands that insert into the minor groove of a duplex in a parallel or antiparallel orientation. Strong stabilization of DNA duplexes by two attached minor groove ligands is demonstrated by the thermal denaturation method. The unmodified duplex 5'-CGTTTATTp-3'/5'-AATAAACG-3' melts at 20 degrees C. When one tetra(Py) residue was attached to the first strand of this duplex, denaturation temperature was increased to 46 degrees C; attachment of the second tetra(Py) in a parallel orientation resulted in denaturation temperature of 60 degrees C. It is even higher than in case of "classic" octapyrrole hairpin ligand (Tm = 58 degrees C). Sequence-specific character of stabilization by two conjugated ligands was demonstrated for G:C-containing oligonucleotides attached to tetracarboxamide and octacarboxamide ligands constructed from Py, Im and beta units according to established recognition rules (deltaTm = 20 degrees C). The two-strand parallel minor groove binder constructions attached to addressing oligonucleotides could be considered as site-specific ligands recognizing single- and double-stranded DNA similarly to already described hairpin MGB structures with antiparallel orientation of carboxamide units.  相似文献   

7.
The structures of 3,3,3-trifluoromethyl ketene and 3,3-difluoromethyl ketene were studied by utilizing ab initio calculations with the 6-311++G** basis set at the (B3LYP) Density Functional level. Full optimization was performed for both molecules in their ground and transition states. Energy optimization of the systems under investigation shows that trifluoromethyl ketene exists only in the cis conformation (fluorine atom eclipses the ketene group). Difluoromethyl ketene was predicted to have two stable conformations: the cis (hydrogen atom eclipses the ketene group) and the gauche (fluorine atom eclipses the ketene group) form. The conformational stability of the molecules was found to be governed mainly by electrostatic and molecular orbital interactions. The vibrational frequencies were computed and complete assignments were provided on the basis of normal coordinate calculations and comparison with similar molecules. The potential energy distributions (PED) among symmetry coordinates were derived for the stable conformations of the two molecules.  相似文献   

8.
Binding of an antitumor drug to DNA, Netropsin and C-G-C-G-A-A-T-T-BrC-G-C-G   总被引:27,自引:0,他引:27  
The antitumor antibiotic netropsin has been co-crystallized with a double-helical B-DNA dodecanucleotide of sequence: C-G-C-G-A-A-T-T-BrC-G-C-G, and the structure of the complex has been solved by X-ray diffraction at a resolution of 2.2 A. The structure has been refined independently by Jack-Levitt and Hendrickson-Konnert least-squares methods, leading to a final residual error of 0.257 by the Jack-Levitt approach (0.211 for two-sigma data) or 0.248 by the Hendrickson-Konnert approach, with no significant difference between refined structures. The netropsin molecule displaces the spine of hydration and fits snugly within the minor groove in the A-A-T-T center. It widens the groove slightly and bends the helix axis back by 8 degrees, but neither unwinds nor elongates the double helix. The drug molecule is held in place by amide NH hydrogen bonds that bridge adenine N-3 and thymine O-2 atoms, exactly as with the spine of hydration. The requirement of A X T base-pairs in the binding site arises because the N-2 amino group of guanine would demand impermissibly close contacts with netropsin. It is proposed that substitution of imidazole for pyrrole in netropsin should create a family of "lexitropsins" capable of reading G X C-containing base sequences.  相似文献   

9.
The crystal structure of r(GCCACCCUG).r(CAGGGUCGGC), helix II of the Xenopus laevis 5S rRNA with a cytosine bulge (underlined), has been determined in two forms at 2.2 A (Form I, space group P4(2)2(1)2, a = b = 57.15 A and c = 43.54 A) and 1.7 A (Form II, space group P4(3)2(1)2, a = b = 32.78 A and c = 102.5 A). The helical regions of the nonamers are found in the standard A-RNA conformations and the two forms have an RMS deviation of 0.75 A. However, the cytosine bulge adopts two significantly different conformations with an RMS deviation of 3.9 A. In Form I, the cytosine bulge forms an intermolecular C+*G.C triple in the major groove of a symmetry-related duplex with intermolecular hydrogen bonds between N4C and O6G, and between protonated N3+C and N7G. In contrast, a minor groove C*G.C triple is formed in Form II with intermolecular hydrogen bonds between O2C and N2G, and between N3C and N3G with a water bridge. A partial major groove opening was observed in Form I structure at the bulge site. Two Ca2+ ions were found in Form I helix whereas there were none in Form II. The structural comparison of these two forms indicates that bulged residues can adopt a variety of conformations with little perturbation to the global helix structure. This suggests that bulged residues could function as flexible latches in bridging double helical motifs and facilitate the folding of large RNA molecules.  相似文献   

10.
Ab initio RHF and DFT/B3LYP calculations at the 6-31G** level have been performed to study possible conformations of the cyclopropyl retinal Schiff base analog 3 of known absolute configuration. In both the free base and the protonated form, the geometries are determined on the diene side by optimum conjugative interaction with the three-membered ring, on the triene side by repulsive interaction with the 9-methyl group. There are three low energy conformations, in which the seven-membered ring is either in a chair or in a twist-chair conformation. To decide between these alternatives, chiroptical parameters were calculated employing the GAUSSIAN/CIS routines and compared with the CD spectrum obtained by Nakanishi et al. Of the energy-minimized geometries only two fit the experimental data. In both, the dihedral angle C12-C13, which is indicative of the relative orientation of the two chromophores, is positive.  相似文献   

11.
The crystal structure of a self-complementary RNA duplex r(GGGCGCUCC)2with non-adjacent G*U and U*G wobble pairs separated by four Watson-Crick base pairs has been determined to 2.5 A resolution. Crystals belong to the space group R3; a = 33.09 A,alpha = 87.30 degrees with a pseudodyad related duplex in the asymmetric unit. The structure was refined to a final Rworkof 17.5% and Rfreeof 24.0%. The duplexes stack head-to-tail forming infinite columns with virtually no twist at the junction steps. The 3'-terminal cytosine nucleosides are disordered and there are no electron densities, but the 3' penultimate phosphates are observed. As expected, the wobble pairs are displaced with guanine towards the minor groove and uracil towards the major groove. The largest twist angles (37.70 and 40.57 degrees ) are at steps G1*C17/G2*U16 and U7*G11/C8*G10, while the smallest twist angles (28.24 and 27.27 degrees ) are at G2*U16/G3*C15 and C6*G12/U7*G11 and conform to the pseudo-dyad symmetry of the duplex. The molecule has two unequal kinks (17 and 11 degrees ) at the wobble sites and a third kink at the central G5 site which may be attributed to trans alpha (O5'-P), trans gamma (C4'-C5') backbone conformations. The 2'-hydroxyl groups in the minor groove form inter-column hydrogen bonding, either directly or through water molecules.  相似文献   

12.
Synthetic polycarboxamides consisting of N‐methylpyrrole (Py), N‐methylimidazole (Im), N‐methyl‐3‐hydroxypyrrole (Hp) and β‐alanine (β) show strong and sequence‐specific interaction with the DNA minor groove when they form hairpin structures with side‐by‐side antiparallel motifs. In the present paper, new conjugates containing two ligands linked to the same terminal phosphate of DNA strand were constructed. The paper describes optimized synthesis and properties of oligonucleotide‐linked polyamide strands that insert into the minor groove of a duplex in a parallel or antiparallel orientation. Strong stabilization of DNA duplexes by two attached minor groove ligands is demonstrated by the thermal denaturation method. The unmodified duplex 5′‐CGTTTATTp‐3′/5′‐AATAAACG‐3′ melts at 20°C. When one tetra(Py) residue was attached to the first strand of this duplex, denaturation temperature was increased to 46°C; attachment of the second tetra(Py) in a parallel orientation resulted in denaturation temperature of 60°C. It is even higher than in case of “classic” octapyrrole hairpin ligand (Tm = 58°C). Sequence‐specific character of stabilization by two conjugated ligands was demonstrated for G:C‐containing oligonucleotides attached to tetracarboxamide and octacarboxamide ligands constructed from Py, Im and β units according to established recognition rules (ΔTm = 20°C). The two‐strand parallel minor groove binder constructions attached to addressing oligonucleotides could be considered as site‐specific ligands recognizing single‐ and double‐stranded DNA similarly to already described hairpin MGB structures with antiparallel orientation of carboxamide units.  相似文献   

13.
The synthesis and characterization of a series of compounds that contain an N-alkyl-N-nitrosourea functionality linked to DNA minor groove binding bi- and tripeptides (lexitropsins or information-reading peptides) based on methylpyrrole-2-carboxamide subunits are described. The lexitropsins (lex) synthesized have either a 3-(dimethylamino)propyl or propyl substituent on the carboxyl terminus. The preferred DNA affinity binding sequences of these compounds were footprinted in 32P-end-labeled restriction fragments with methidiumpropyl-EDTA.Fe(II), and in common with other structural analogues, e.g., distamycin and netropsin, these nitrosoureas recognize A-T-rich runs. The affinity binding of the compound with the dimethylamino terminus, which is ionized at near-neutral pH, appeared stronger than that observed for the neutral dipeptide. The sequence specificity for DNA alkylation by (2-chloroethyl)nitrosourea-lex dipeptides (Cl-ENU-lex), with neutral and charged carboxyl termini, using 32P-end-labeled restriction fragments, was determined by the conversion of the adducted sites into single-strand breaks by sequential heating at neutral pH and exposure to base. The DNA cleavage sites were visualized by polyacrylamide gel electrophoresis and autoradiography. The alkylation of DNA by Cl-ENU-lex was compared to that by N-(2-chloroethyl)-N'-cyclohexyl-N-nitrosourea (CCNU), which has no DNA affinity binding properties. While all the Cl-ENU compounds generate DNA breaks as a consequence of the formation of N7-alkyl-guanine, the Cl-ENU-lex compounds induced, in a time- and dose-dependent fashion, intense DNA cleavage bands at adenine, cytosine, and thymine residues associated with affinity binding sites. These non-G cleavages induced by Cl-ENU-lex were inhibited by the coaddition of distamycin at concentrations that did not affect G alkylation break sites. CCNU, even at much higher concentrations, does not generate any similar detectable lesions at non-G sites. Therefore, linking the Cl-ENU moiety to minor groove binders is a viable strategy to qualitatively and quantitatively control the delivery and release of the ultimate DNA alkylating agent in a sequence-dependent fashion.  相似文献   

14.
Abstract

Monte-Carlo simulation of poly(dA) · poly(dT) hydration by 30 water molecules per nucleotide pair has been performed. Two B-family conformations, both with a 36° helical twist but with different minor groove widths, were considered. One conformation is Arnott's standard B form, the other one is specific for poly(dA) · poly(dT) B′ form with a narrowed minor groove. The mean energies and the mean numbers of water-water and water-DNA hydrogen bonds are close for the two conformations. Nevertheless, the hydration shell of the B' form differs drastically from that of the standard B form. The water arrangement in the minor groove of the B′ form resembles the spine of hydration in the central part of Dickerson's dodecamer d(CGCGAATTCGCG). No such spine is formed in the hydration shell of the usual B form with a wider minor groove. In this conformation water bridges between adenine N3 or thymine O2 and oxygen of the sugar ring of the neighbouring nucleotide along the chain can be formed (“strings” in Dickerson's decamer d(CCAAGATTGG)).  相似文献   

15.
The structural and dynamic aspects of the interaction of the thiazole containing lexitropsin (1) with an oligodeoxyribonucleotide were studied by high field 1H-NMR spectroscopy. Complete assignment of the 1H-NMR resonances of lexitropsin 1 was accomplished by 2D-NMR techniques. The complexation-induced chemical shifts and NOE cross peaks in the NOESY map of the 1:1 complex of lexitropsin (1) and d-[CGCAATTGCG]2 reveal that the thiazole ring of the lexitropsin (1) intercalates between dA4.A5 bases and the rest of the ligand resides in the minor groove of the AT rich core of decamer, thus occupying the 5'-AATT sequence on the DNA. Intercalation of the thiazole moiety of the drug has been detected by the presence of intermolecular NOEs both in the major and the minor groove of the decamer helix. The absence of intranucleotide NOEs between base protons and H1'/H2' protons suggested local unwinding of the binding site on the DNA. From COSY and NOESY methods of 2D-NMR, it was established that the N-formyl (amino) terminus of the thiazole lexitropsin (1) is projecting into the major groove towards A5H8 while the amidinium terminus lies in the minor groove towards the T7G8 base pairs of the opposite strand. The expected intranucleotide NOEs confirmed that the decadeoxyribonucleotide in the 1:1 complex exists in a right handed B-conformation. The presence of exchange signals along the binding site 5'-AATT indicated an exchange of the bound drug process wherein the rate of exchange between the two equivalent sites was estimated to be congruent to 130 s-1 at 30 degrees C and with delta G degrees of 62.4 kJ mol-1. Force field and Pi calculations permitted a rationalization of the experimentally observed binding mode in terms of preferred conformation of the ligand and repeat length in lexitropsins compared with the DNA receptor.  相似文献   

16.
Abstract

We have investigated the minor groove binders netropsin (Nt) and related lexitropsins for possible interactions with parallel-stranded DNA (ps-DNA). The fluorescence emission spectra and their temperature dependence between 4°C and 30°C led to two conclusions: (i) The specific ligand Nt induces a conversion of the ps-DNA to an antiparallel-stranded DNA (aps-DNA) with mismatched base pairs, a reaction which is much less pronounced for the imidazole-containing analogs, (ii) The more weakly binding imidazole-bearing netropsin-analogs may bind to ps-DNA.  相似文献   

17.
Ab initio quantum chemical calculations of the benzene dimer, benzene dimer 5,7-chlorination of one aromatic ring, 3-hydroxykynurenine, and kynurenic acid molecules located above the Phe484 aromatic ring of a fragment of the receptor binding site were performed to study the role of stacking interaction in the binding of agonists and antagonists with the glycine binding site of the NR1 subunit of the NMDA receptor. The GAMESS 6.4 software in the 6–31G** basis set with complete optimization of the geometry and with account of electron correlation within the second-order Moller-Plesset perturbation theory was used for all calculations. It was shown that parallel shifted conformations of the benzene dimer were the most favorable in energy. Successive substitution of chlorine atoms for protons of one aromatic ring at positions 7 and 5 led to an increase in the stacking-interaction energy and mutual displacement of aromatic rings. In the case of kynurenic acid and its chlorinated derivatives, which are NMDA receptor antagonists, the increase in the stacking interaction energy further suppressed the ion channel, whereas 3-hydroxykynurenine was neither an agonist nor an antagonist of the glycine site because of steric constraints.  相似文献   

18.
Solvent-accessible surfaces of nucleic acids   总被引:14,自引:0,他引:14  
Static solvent-accessible surface areas were calculated for DNA and RNA double helices of varied conformation, composition and sequence, for the single helix of poly(rC), and for a transfer RNA. The results show that for DNA and RNA double helices, two thirds of the water-accessible surface area become buried on double helix formation; phosphate oxygens retain near maximal exposure while the bases are 80% buried. Transfer RNA exposes slightly less surface per residue than does double-helical RNA, despite the presence of several additional “modified” groups, all of which are exposed significantly.When a probe corresponding to a single water molecule is used, both the total and atom type exposures are very similar for A-DNA and B-DNA, although marked differences appear in the major and minor groove exposures between the two conformations. For a given base-pair, the accessible surface area buried upon double-helical stacking is nearly constant (within 5%) for different sequences of neighboring base-pairs.For probes larger than single water molecules, there exist considerable differences in the total and atom type exposures of A-DNA and B-DNA. Conformational transitions between the A-DNA and B-DNA helical forms can thus be related to differences in the accessible areas for “structured” water, or a secondary hydration shell, rather than to interactions with individual water molecules of the primary hydration shell. The base-composition dependence of DNA helical conformation can be explained in terms of the opposing effects of thymine methyl groups of A · T base-pairs and the amino groups of G · C base-pairs upon the solvent within the grooves.The area calculations show that primarily the major groove of B-DNA and the minor groove of A-DNA have sufficient accessible surface area to be recognized by a probe size corresponding to the side-chains of amino acids.  相似文献   

19.
20.
The Hin recombinase of Salmonella catalyzes a site-specific recombination event which leads to flagellar phase variation. Starting with a fully symmetrical recombination site, hixC, a set of 40 recombination sites which vary by pairs of single base substitutions was constructed. This set was incorporated into the Salmonella-specific bacteriophage P22 based challenge phage selection and used to define the DNA sequence determinants for the binding of Hin to DNA in vivo. The critical sequence-specific contacts between a Hin monomer and a 13 bp hix half-site are at two T:A base pairs in the major groove of the DNA which are separated by one base pair, and two consecutive A:T contacts in the minor groove. The base substitutions in the major groove recognition portion which were defective in binding Hin still retained residual binding capability in vivo, while the base pair substitutions affecting the minor groove recognition region lost all in vivo binding. Using in vitro binding assays, Hin was found to bind to hix symmetrical sites with A:T base pairs or I:C base pairs in the minor groove recognition sequences, but not to G:C base pairs. In separate in vitro binding assays, Hin was equally defective in binding to either a G:C or a I:C contact in a major groove recognition sequence. Results from in vitro binding assays to hix sites in which 3-deazaadenine was substituted for adenine are consistent with Hin making a specific contact to either the N3 of adenine or O2 of thymine in the minor groove within the hix recombination site on each symmetric half-site. These results taken with the results of previous studies on the DNA binding domain of Hin suggest a sequence-specific minor groove DNA binding motif.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号