首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipid signaling   总被引:5,自引:0,他引:5  
Various lipids are involved in mediating plant growth, development and responses to biotic and abiotic cues, and their production is regulated by lipid-signaling enzymes. Lipid-hydrolyzing enzymes play a pivotal role both in the production of lipid messengers and in other processes, such as cytoskeletal rearrangement, membrane trafficking, and degradation. Studies on the downstream targets and modes of action of lipid signals in plants are still in their early stages but distinguishing features of plant lipid-based signaling are being recognized. Phospholipase D enzymes and phosphatidic acid may play a broader role in lipid signaling in plants than in other systems.  相似文献   

2.
Ral is a multifunctional small GTPase involved in tumorigenesis and in controlling intracellular membrane trafficking. It is mainly activated by factors downstream of Ras, or independently of these factors and operates by protein-protein interactions with an expanding repertoire of partners. RalA is a positive regulator of calcium-evoked exocytosis via binding phospholipase D and is involved in G protein coupled receptor signalling by binding phospholipase C-delta1. The binding of Ral to calmodulin links to intracellular trafficking events. Another link is direct binding of activated Ral (Ral-GTP) to the endocytic and exocytic machineries. Ral-GTP binds RalBP1, which connects to receptor-mediated endocytosis via AP-2. Alternatively, Ral-GTP binds the exocyst complex, which controls secretory vesicle trafficking in regulated secretion and filopodia formation. Thus, Ral-GTP "chooses" between different membrane trafficking pathways. Other Ral partners are still being uncovered that may provide further mechanistic insights into how Ral controls diverse membrane trafficking pathways.  相似文献   

3.
It has been suggested that localization of signal-transduction proteins close to the cell membrane causes an increase in their rate of encounter after activation. We maintain that such an increase in the first-encounter rate is too small to be responsible for truly enhanced signal transduction. Instead, the function of membrane localization is to increase the number (or average lifetime) of complexes between cognate signal transduction proteins and hence increase the extent of activation of downstream processes. This is achieved by concentrating the proteins in the small volume of the area just below the plasma membrane. The signal-transduction chain is viewed simply as operating at low default intensity because one of its components is present at a low concentration. The steady signalling level of the chain is enhanced 1000-fold by increasing the concentration of that component. This occurs upon 'piggyback' binding to a membrane protein, such as the activated receptor, initiating the signal-transduction chain. For the effect to occur, the protein translocated to the membrane cannot be free but has to remain organized by being piggyback bound to a receptor, membrane lipid(s) or scaffold. We discuss an important structural constraint imposed by this mechanism on signal transduction proteins that might also account for the presence of adaptor proteins.  相似文献   

4.
Ras proteins regulate signaling pathways important for cell growth, differentiation, and survival. Oncogenic mutant Ras proteins are commonly expressed in human tumors, with mutations of the K-Ras isoform being most prevalent. To be active, K-Ras must undergo posttranslational processing and associate with the plasma membrane. We therefore devised a high-content screening assay to search for inhibitors of K-Ras plasma membrane association. Using this assay, we identified fendiline, an L-type calcium channel blocker, as a specific inhibitor of K-Ras plasma membrane targeting with no detectable effect on the localization of H- and N-Ras. Other classes of L-type calcium channel blockers did not mislocalize K-Ras, suggesting a mechanism that is unrelated to calcium channel blockade. Fendiline did not inhibit K-Ras posttranslational processing but significantly reduced nanoclustering of K-Ras and redistributed K-Ras from the plasma membrane to the endoplasmic reticulum (ER), Golgi apparatus, endosomes, and cytosol. Fendiline significantly inhibited signaling downstream of constitutively active K-Ras and endogenous K-Ras signaling in cells transformed by oncogenic H-Ras. Consistent with these effects, fendiline blocked the proliferation of pancreatic, colon, lung, and endometrial cancer cell lines expressing oncogenic mutant K-Ras. Taken together, these results suggest that inhibitors of K-Ras plasma membrane localization may have utility as novel K-Ras-specific anticancer therapeutics.  相似文献   

5.
Clathrin and the endocytosis machinery has recently been described as being required in mammalian cells for the internalization of large particles including pathogenic bacteria, fungi, and large viruses. These apparently unexpected observations, within the framework of the classical mechanisms for the formation of clathrin‐coated vesicles, are now considered as examples of a new non‐classical function of clathrin, which can promote the internalization of membrane domains associated to planar clathrin lattices. The role of actin downstream of clathrin seems to be critical for this still poorly characterized process. The historical frontier between endocytosis and phagocytosis is vanishing in the light of this new role for clathrin.  相似文献   

6.
While investigating the mechanism of action of the novel antitumor drug Aplidin, we have discovered a potent and novel cell-killing mechanism that involves the formation of Fas/CD95-driven scaffolds in membrane raft clusters housing death receptors and apoptosis-related molecules. Fas, tumor necrosis factor-receptor 1, and tumor necrosis factor-related apoptosis-inducing ligand receptor 2/death receptor 5 were clustered into lipid rafts in leukemic Jurkat cells following Aplidin treatment, the presence of Fas being essential for apoptosis. Preformed membrane-bound Fas ligand (FasL) as well as downstream signaling molecules, including Fas-associated death domain-containing protein, procaspase-8, procaspase-10, c-Jun amino-terminal kinase, and Bid, were also translocated into lipid rafts, connecting death receptor extrinsic and mitochondrial intrinsic apoptotic pathways. Blocking Fas/FasL interaction partially inhibited Aplidin-induced apoptosis. Aplidin was rapidly incorporated into membrane rafts, and drug uptake was inhibited by lipid raft disruption. Actin-linking proteins ezrin, moesin, RhoA, and RhoGDI were conveyed into Fas-enriched rafts in drug-treated leukemic cells. Disruption of lipid rafts and interference with actin cytoskeleton prevented Fas clustering and apoptosis. Thus, Aplidin-induced apoptosis involves Fas activation in both a FasL-independent way and, following Fas/FasL interaction, an autocrine way through the concentration of Fas, membrane-bound FasL, and signaling molecules in membrane rafts. These data indicate a major role of actin cytoskeleton in the formation of Fas caps and highlight the crucial role of the clusters of apoptotic signaling molecule-enriched rafts in apoptosis, acting as concentrators of death receptors and downstream signaling molecules and as the linchpin from which a potent death signal is launched.  相似文献   

7.
We have shown here that the apoptosis inducer staurosporine causes an early decrease in the endogenous respiration rate in intact 143B.TK(-) cells. On the other hand, the activity of cytochrome c oxidase is unchanged for the first 8 h after staurosporine treatment, as determined by oxygen consumption measurements in intact cells. The decrease in the endogenous respiration rate precedes the release of cytochrome c from mitochondria. Moreover, we have ruled out caspases, permeability transition, and protein kinase C inhibition as being responsible for the decrease in respiration rate. Furthermore, overexpression of the gene for Bcl-2 does not prevent the decrease in respiration rate. The last finding suggests that Bcl-2 acts downstream of the perturbation in respiration. The evidence of normal enzymatic activities of complex I and complex III in staurosporine-treated 143B.TK(-) osteosarcoma cells indicates that the cause of the respiration decrease is probably an alteration in the permeability of the outer mitochondrial membrane. Presumably, the voltage-dependent anion channel closes, thereby preventing ADP and oxidizable substrates from being taken up into mitochondria. This interpretation was confirmed by another surprising finding, namely that, in staurosporine-treated 143B.TK(-) cells permeabilized with digitonin at a concentration not affecting the mitochondrial membranes in naive cells, the outer mitochondrial membrane loses its integrity; this leads to a reversal of its impermeability to exogenous substrates. The loss of outer membrane integrity leads also to a massive premature release of cytochrome c from mitochondria. Most significantly, Bcl-2 overexpression prevents the staurosporine-induced hypersensitivity of the outer membrane to digitonin. Our experiments have thus revealed early changes in the outer mitochondrial membrane, which take place long before cytochrome c is released from mitochondria in intact cells.  相似文献   

8.
In yeast, external alkalization and alteration in plasma membrane lipid asymmetry are sensed by the Rim101 pathway. It is currently under debate whether the signal elicited by external alkalization is transduced to downstream molecules at the plasma membrane or via endocytosis of the Rim21 sensor protein at the late endosome. We found that the downstream molecules, including arrestin-related protein Rim8, calpain-like protein Rim13, and scaffold protein Rim20, accumulated at the plasma membrane upon external alkalization and that the accumulation was dependent on Rim21. Snf7, an endosomal sorting complex required for transport (ESCRT) III subunit also essential for the Rim101 pathway, localized to the plasma membrane, in addition to the late endosome, under alkaline conditions. Snf7 at the plasma membrane but not at the late endosome was shown to be involved in Rim101 signaling. In addition, the Rim101 pathway was normally activated, even when endocytosis was severely impaired. Considering this information as a whole, we propose that Rim101 signaling proceeds at the plasma membrane. We also found that activity of the Rsp5 ubiquitin ligase was required for recruiting the downstream molecules to the plasma membrane, suggesting that ubiquitination mediates Rim101 signaling at the plasma membrane.  相似文献   

9.
Assembly of human immunodeficiency virus type 1 (HIV-1) particles occurs at the plasma membrane of infected cells. Myristylation of HIV-1 Gag precursor polyprotein Pr55Gag is required for stable membrane binding and for assembly of viral particles. We expressed a series of proteins representing major regions of the HIV-1 Gag protein both with and without an intact myristyl acceptor glycine and performed subcellular fractionation studies to identify additional regions critical for membrane binding. Myristylation-dependent binding of Pr55Gag was demonstrated by using the vaccinia virus/T7 hybrid system for protein expression. Domains within the matrix protein (MA) region downstream of the initial 15 amino acids were required for membrane binding which was resistant to a high salt concentration (1 M NaCl). A myristylated construct lacking most of the matrix protein did not associate with the plasma membrane but formed intracellular retrovirus-like particles. A nonmyristylated construct lacking most of the MA region also was demonstrated by electron microscopy to form intracellular particles. Retrovirus-like extracellular particles were produced with a Gag protein construct lacking all of p6 and most of the nucleocapsid region. These studies suggest that a domain within the MA region downstream from the myristylation site is required for transport of Gag polyprotein to the plasma membrane and that stable plasma membrane binding requires both myristic acid and a downstream MA domain. The carboxyl-terminal p6 region and most of the nucleocapsid region are not required for retrovirus-like particle formation.  相似文献   

10.
In various cell types, depletion of intracellular Ca(2+)-stores results in store-operated Ca(2+)-entry (SOCE) across the cellular membrane. However, the effects of SOCE on neuronal membrane excitability and mitochondrial functions in central neurons are not well defined. We investigated such cellular downstream effects in pyramidal neurons of rat organotypic hippocampal slice cultures by applying electrophysiological and fluorescence imaging techniques. We report that SOCE is associated with (i) elevations of Ca(2+)-concentration in individual neuronal mitochondria ([Ca(2+)](m)). In addition, SOCE can result in (ii) hyperpolarizing neuronal membrane currents, (iii) increase in extracellular K(+)-concentration ([K(+)](o)), (iv) mitochondrial membrane depolarization, and (v) changes in intracellular redox state (NAD(P)H and FAD fluorescence), the latter reflecting responses of energy metabolism. These additional downstream effects of SOCE required concomitant muscarinic receptor activation by carbachol or acetylcholine, and were suppressed by agonist washout or application of antagonist, atropine. We conclude that muscarinic receptor activation determines the downstream effects of SOCE on neuronal membrane excitability and energy metabolism. This mechanism might have significant impact on information processing and neurometabolic coupling in central neurons.  相似文献   

11.
Impairment of mitochondrial protein homeostasis disrupts mitochondrial function and causes human diseases and aging, but the molecular mechanisms of protein synthesis and quality control in mammalian mitochondria are not fully understood. Here we demonstrate in human cells that misincorporation of an arginine analog, canavanine, during mitochondrial protein synthesis, induced aberrant translation products and destabilized the mtDNA-encoded proteome, leading to loss of mitochondrial respiratory chain complexes. Furthermore, in the presence of a high concentration of canavanine, mitoribosome stalling could be demonstrated. The stalling did not, however, occur at arginine codons, but downstream of those codons. In particular, two adjacent arginines induced the most prominent downstream stalling effect, with the distance between the arginine codons and the stalling peak corresponding roughly to the length of the ribosomal exit tunnel. These results suggest that misincorporated canavanine disrupted the proper folding of the hydrophobic nascent polypeptides within the exit tunnel or while being inserted into the inner mitochondrial membrane. The canavanine treatment provides a model system for studying the consequences of mitoribosome stalling and the responses to misfolded proteins exiting the mitochondrial ribosome.  相似文献   

12.
K-Ras4B, a small GTPase and a key oncogene, plays a central role in the early steps of signal transduction from activated receptor tyrosine kinases by recruiting its downstream effectors to the cell membrane. Specific posttranslational modifications of K-Ras4B, including the addition of C-terminal farnesyl and methyl groups, mediate its proper membrane localization and signaling activity. The mechanism and molecular determinants underlying this selective membrane localization and molecular interactions with its many regulators and downstream effectors are largely unknown. Preparative amounts of the posttranslationally processed K-Ras4B protein are necessary to carry out structural, functional, and cell biological studies of this important oncogene. In this work we describe a simple and efficient method for synthesis of milligram quantities of functionally active, fully processed K-Ras4B. Using this preparation, we observe K-Ras4B dimerization in vitro; this has not been observed previously and could be important for its activity, membrane anchoring, and translocation between different cellular membranes.  相似文献   

13.
Protein kinase B (PKB or Akt), a downstream effector of phosphoinositide 3-kinase (PI 3-kinase), has been implicated in insulin signaling and cell survival. PKB is regulated by phosphorylation on Thr308 by 3-phosphoinositide-dependent protein kinase 1 (PDK1) and on Ser473 by an unidentified kinase. We have used chimeric molecules of PKB to define different steps in the activation mechanism. A chimera which allows inducible membrane translocation by lipid second messengers that activate in vivo protein kinase C and not PKB was created. Following membrane attachment, the PKB fusion protein was rapidly activated and phosphorylated at the two key regulatory sites, Ser473 and Thr308, in the absence of further cell stimulation. This finding indicated that both PDK1 and the Ser473 kinase may be localized at the membrane of unstimulated cells, which was confirmed for PDK1 by immunofluorescence studies. Significantly, PI 3-kinase inhibitors prevent the phosphorylation of both regulatory sites of the membrane-targeted PKB chimera. Furthermore, we show that PKB activated at the membrane was rapidly dephosphorylated following inhibition of PI 3-kinase, with Ser473 being a better substrate for protein phosphatase. Overall, the results demonstrate that PKB is stringently regulated by signaling pathways that control both phosphorylation/activation and dephosphorylation/inactivation of this pivotal protein kinase.  相似文献   

14.
Abassi YA  Vuori K 《The EMBO journal》2002,21(17):4571-4582
The adaptor protein CrkII plays a central role in signal transduction cascades downstream of a number of different stimuli. We and others have previously shown that CrkII mediates attachment-induced JNK activation, membrane ruffling and cell motility in a Rac-dependent manner. We report here that cell attachment leads to tyrosine phosphorylation of CrkII on Y221, and that CrkII-Y221F mutant demonstrates enhanced association with the Crk-binding partners C3G and paxillin. Despite this enhanced signaling complex formation, CrkII-Y221F fails to induce JNK and PAK activation, membrane ruffling and cell migration, suggesting that it is defective in activating Rac signaling. Wild-type CrkII has no effect on adhesion-induced GTP loading of Rac, but its expression results in enhanced membrane localization of Rac, which is known to be required for Rac signaling. In contrast, CrkII-Y221F is deficient in enhancing membrane localization of Rac. Mutations in Rac and CrkII-Y221F that force membrane targeting of these molecules restore Rac signaling in adherent cells. Together, these results indicate that the Y221 site in CrkII regulates Rac membrane translocation upon cell adhesion, which is necessary for activation of downstream Rac signaling pathways.  相似文献   

15.
《Biophysical journal》2021,120(20):4360-4377
Membrane binding and unbinding dynamics play a crucial role in the biological activity of several nonintegral membrane proteins, which have to be recruited to the membrane to perform their functions. By localizing to the membrane, these proteins are able to induce downstream signal amplification in their respective signaling pathways. Here, we present a 3D computational approach using reaction-diffusion equations to investigate the relation between membrane localization of focal adhesion kinase (FAK), Ras homolog family member A (RhoA), and signal amplification of the YAP/TAZ signaling pathway. Our results show that the theoretical scenarios in which FAK is membrane bound yield robust and amplified YAP/TAZ nuclear translocation signals. Moreover, we predict that the amount of YAP/TAZ nuclear translocation increases with cell spreading, confirming the experimental findings in the literature. In summary, our in silico predictions show that when the cell membrane interaction area with the underlying substrate increases, for example, through cell spreading, this leads to more encounters between membrane-bound signaling partners and downstream signal amplification. Because membrane activation is a motif common to many signaling pathways, this study has important implications for understanding the design principles of signaling networks.  相似文献   

16.
The development of a downstream process for the isolation of bovine lactoferrin (bLF) from sweet whey is presented. Whey is a by‐product from the cheese manufacturing process that is often used to produce whey protein concentrate powders for food applications. Besides the major whey proteins such as lactalbumin or BSA, minor whey proteins are present such as lactoperoxidase and bLF. In addition to the well‐known biological functions as an antimicrobial and antiviral agent, bLF shows immunomodulatory functions in the host defence system. For the isolation of bLF, a two‐step downstream process was developed based on membrane systems. This paper discusses the application of several membrane types for a crossflow filtration of sweet whey to remove insoluble particles and lipids from the whey with the aim of obtaining a permeate which can be directly used for downstreaming the minor component via ion exchange membrane adsorber systems. The application of such a membrane adsorber is demonstrated.  相似文献   

17.
The need to intensify downstream processing of monoclonal antibodies to complement the advances in upstream productivity has led to increased attention toward implementing membrane technologies. With the industry moving toward continuous operations and single use processes, membrane technologies show promise in fulfilling the industry needs due to their operational flexibility and ease of implementation. Recently, the applicability of membrane-based unit operations in integrating the downstream process has been explored. In this article, the major developments in the application of membrane-based technologies in the bioprocessing of monoclonal antibodies are reviewed. The recent progress toward developing intensified end-to-end bioprocesses and the critical role membrane technology will play in achieving this goal are focused upon.  相似文献   

18.
Proteomic analysis of complex samples can be facilitated by protein fractionation prior to enzymatic or chemical fragmentation combined with MS-based identification of peptides. Although aqueous soluble protein fractionation by liquid chromatography is relatively straightforward, membrane protein separations have a variety of technical challenges. Reversed-phase high performance liquid chromatography (RP-HPLC) separations of membrane proteins often exhibit poor recovery and bandwidths, and generally require extensive pretreatment to remove lipids and other membrane components. Human brain tissue lipid raft protein preparations have been used as a model system to develop RP-HPLC conditions that are effective for protein fractionation, and are compatible with downstream proteomic analytical workflows. By the use of an appropriate RP column material and operational conditions, human brain membrane raft proteins were successfully resolved by RP-HPLC and some of the protein components, including specific integral membrane proteins, identified by downstream SDS-PAGE combined with in-gel digestion, or in-solution digestion and LC-MS/MS analysis of tryptic fragments. Using the described method, total protein recovery was high, and the repeatability of the separation maintained after repeated injections of membrane raft preparations.  相似文献   

19.
20.
Loss-of-function mutations in the gene ced-8 lead to the late appearance of cell corpses during embryonic development in C. elegans. ced-8 functions downstream of or in parallel to-the regulatory cell death gene ced-9 and may function as a cell death effector downstream of the caspase encoded by the programmed cell death killer gene ced-3. In ced-8 mutants, embryonic programmed cell death probably initiates normally but proceeds slowly. ced-8 encodes a transmembrane protein that appears to be localized to the plasma membrane. The CED-8 protein is similar to human XK, a putative membrane transport protein implicated in McLeod Syndrome, a form of hereditary neuroacanthocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号