首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The dedB gene of Escherichia coli has sequence similarity to the zfpA gene of the chloroplast chromosome. The functions of dedB and zfpA are unknown. We constructed derivatives of temperature-sensitive polA strains into whose chromosomes a plasmid containing the disrupted dedB gene was integrated by homologous recombination. These strains contained normal and disrupted dedB genes in their chromosomes. We then selected plasmid-segregated strains and found no cells containing the disrupted dedB gene, indicating that disruption of the dedB gene was lethal in polA strains of E. coli.  相似文献   

2.
3.
2-Aminopurine (2AP), a base analog, causes both transition and frameshift mutations in Escherichia coli. The analog is thought to cause mutations by two mechanisms: directly, by mispairing with cytosine, and indirectly, by saturation of mismatch repair (MMR). The goal of this work was to measure the relative contribution of these two mechanisms to the occurrence of transition mutations. Our data suggest that, in contrast to 2-aminopurine-stimulated frameshift mutations, the majority of transition mutations are a direct effect of base mispairing.  相似文献   

4.
Summary The glutamine permease operon encoding the high-affinity transport system of glutamine in Escherichia coli could be cloned in one of the mini F plasmids, but not in pBR322 or pACYC184, by selection for restoration of the Gln+ phenotype, the ability to utilize glutamine as a sole carbon source. We determined the nucleotide sequence of the glutamine permease operon, which contains the structural gene of the periplasmic glutamine-binding protein (glnH), an indispensable component of the permease activity. The N-terminal amino acid sequence and the overall amino acid composition of the purified glutamine-binding protein were in good agreement with those predicted from the nucleotide sequence, if the N-terminal 22 amino acid residues were discounted. The latter comprised two Lys residues (nos. 2 and 6) followed by 16 hydrophobic amino acid residues and was assumed to be a signal peptide for transport into the periplasmic space. There were two additional reading frames (glnP and glnQ) downstream of glnH sharing a common promoter. It was concluded that the glnP and glnQ proteins as well as the glnH protein are essential for glutamine permease activity.  相似文献   

5.
The DNA of growing cells of Escherichia coli occurs in one or a few lobular bodies known as nucleoids. Upon exposure to chloramphenicol, the nucleoids assume compact, rounded forms ("cm-nucleoids") that have been described as ring- or sphere-shaped. Multiple views of single cells or spheroplasts, however, support a different, curved toroid shape for cm-nucleoids. The multiple views were obtained either by DNA fluorescence imaging as the cells or spheroplasts reoriented in liquid medium or by optical sectioning using phase-contrast or fluorescence imaging of immobilized cells. The curved toroid shape is consistent with electron microscope images of thin sections of chloramphenicol-treated cells. The relationship of this structure to active and inactive nucleoids and to the smaller toroidal forms made by in vitro DNA condensation is discussed.  相似文献   

6.
Summary Efficient in vivo expression of the biodegradative threonine dehydratase (tdc) operon of Escherichia coli is dependent on a regulatory gene, tdcR. The tdcR gene is located 198 base pairs upstream of the tdc operon and is transcribed divergently from this operon. The nucleotide sequence of tdcR and two unrelated reading frames has been determined. The deduced amino acid sequence of TdcR indicates that is is a polypeptide of Mr 12000 with 99 amino acid residues and contains a potential helix-turnhelix DNA binding motif. Deletion analysis and minicell expression of the tdcR gene suggest that TdcR may serve as a trans-acting positive activator for the tdc operon.  相似文献   

7.
8.
Escherichia coli mutants, unable to grown on 4-hydroxyphenylacetate, have been isolated and found to be defective in the NAD-dependent succinate semialdehyde dehydrogenase. When the mutants are grown with 4-aminobutyrate as sole nitrogen source an NAD-dependent succinate semialdehyde dehydrogenase seen in the parental strain is absent but, as in the parental strain, an NADP-dependent enzyme is induced. Growth of the mutants is inhibited by 4-hydroxyphenylacetate due to the accumulation of succinate semialdehyde. The mutants are more sensitive to inhibition by exogenous succinate semialdehyde than is the parental strain. Secondary mutants able to grow in the presence of 4-hydroxyphenylacetate but still unable to use it as sole carbon source were defective in early steps of 4-hydroxyphenylacetate catabolism and so did not form succinate semialdehyde from 4-hydroxyphenylacetate. The gene encoding the NAD-dependent succinate semialdehyde dehydrogenase of Escherichia coli K-12 was located at min 34.1 on the genetic map.  相似文献   

9.
10.
A recombinant Escherichia coli strain (E. coli NO3) containing genomic DNA fragments from azo-reducing wild-type Pseudomonas luteola strain decolorized a reactive azo dye (C.I. Reactive Red 22) at approx. 17 mg dye h–1 g cell. The ability to decolorize the azo dye probably did not originate from the plasmid DNA. Acclimation in azo-dye-containing media gave a nearly 10% increase in the decolorization rate of E. coli NO3. Growth with 1.25 g glucose l–1 completely stopped the decolorization activity. When the decolorization metabolites from E. coli NO3 were analyzed by HPLC and MS, the results suggested that decolorization of the azo dye may be due to cleavage of the azo bond.  相似文献   

11.
Summary In the course of an attempt to identify genes that encode Escherichia coli dihydropteridine reductase (DHPR) activities, a chromosomal DNA fragment that directs synthesis of two soluble polypeptides of Mr 44000 and 46000 was isolated. These proteins were partially purified and were identified by determination of their N-terminal amino acid sequences. The larger was serine hydroxymethyltransferase, encoded by the glyA gene, while the smaller was the previously described product of an unnamed gene closely linked to glyA, and transcribed in the opposite direction. Soluble extracts of E. coli cells that overproduced the 44 kDa protein had elevated DHPR activity, and were yellow in colour. Their visible absorption spectra were indicative of a CO-binding b-type haemoprotein that is high-spin in the reduced state. The sequence of the N-terminal 139 residues of the protein, deduced from the complete nucleotide sequence of the gene, had extensive homology to almost all of Vitreoscilla haemoglobin. We conclude that E. coli produces a soluble haemoglobin-like protein, the product of the hmp gene (for haemoprotein). Although the protein has DHPR activity, it is distinct from the previously purified E. coli DHPR.  相似文献   

12.
Summary Overexpression of DnaA protein from a multicopy plasmid accompanied by a shift to 42°C causes initiation of one extra round of replication in a dnaA + strain grown in glycerol minimal medium. This extra round of replication does not lead to an extra cell division, such that cells contain twice the normal number of chromosomes.  相似文献   

13.
Summary A Co2+-dependent dipeptidase from E. coli strain AJ005, a peptidase-deficient mutant, was purified with streptomycin sulfate, ammonium sulfate and DEAE-cellulose. The purified dipeptidase increased by about 106-fold in specific activity, with dilysine as a substrate. The dipeptidase cleaved dilysine to two lysines among the lysine homopolymers, the possibility remaining that it is active toward peptides other than dilysine, since it was investigated in the present study only for activity toward lysine homopolymers. Activity was inhibited 54% by 10–3 M KCN and completely by 10–3 M PCMB, EDTA and benzethonium chloride, but not at all by soybean trypsin inhibitors. 78% and 95% of its activity was lost with 30 minutes' treatment at 45°C and 50°C, respectively. The apparent Km value was 6.7 × 10–4 M for dilysine. It is probable that the dipeptidase differs from dipeptidase DP.Abbreviations EDTA Ethylenediaminetetraacetate - PCMB pchloromercuribenzoate  相似文献   

14.
15.
Summary The complete nucleotide sequence of the Escherichia coli cybB gene for diheme cytochrome b 561 and its flanking region was determined. The cybB gene comprises 525 nucleotides and encodes a 175 amino acid polypeptide with a molecular weight of 20160. From its deduced amino acid sequence, cytochrome b 561 is predicted to be very hydrophobic (polarity 33.7%) and to have three membrane spanning regions. Histidines, canonical ligand residues for protohemes, are localized in these regions, and the heme pockets are thought to be in the cytoplasmic membrane. No significant homology of the primary structure of cytochrome b 561 with those of other bacterial b-type cytochromes was observed.  相似文献   

16.
The mutagenic potentials of DNAs containing site- and stereospecific intrastrand DNA crosslinks were evaluated in Escherichia coli cells that contained a full complement of DNA polymerases or were deficient in either polymerases II, IV, or V. Crosslinks were made between adjacent N(6)-N(6) adenines and consisted of R,R- and S,S-butadiene crosslinks and unfunctionalized 2-, 3-, and 4-carbon tethers. Although replication of single-stranded DNAs containing the unfunctionalized 3- and 4-carbon tethers were non-mutagenic in all strains tested, replication past all the other intrastrand crosslinks was mutagenic in all E. coli strains, except the one deficient in polymerase II in which no mutations were ever detected. However, when mutagenesis was analyzed in cells induced for SOS, mutations were not detected, suggesting a possible change in the overall fidelity of polymerase II under SOS conditions. These data suggest that DNA polymerase II is responsible for the in vivo mutagenic bypass of these lesions in wild-type E. coli.  相似文献   

17.
18.
Multidrug resistance is a major cause of clinical failure in treating bacterial infections. Increasing evidence suggests that bacteria can resist multiple antibiotics through intrinsic mechanisms that rely on gene products such as efflux pumps that expel antibiotics and special membrane proteins that block the penetration of drug molecules. In this study, Escherichia coli was used as a model system to explore the genetic basis of intrinsic multidrug resistance. A random mutant library was constructed in E. coli EC100 using transposon mutagenesis. The library was screened by growth measurement to identify the mutants with enhanced or reduced resistance to chloramphenicol (Cm). Out of the 4,000 mutants screened, six mutants were found to be more sensitive to Cm and seven were more resistant compared to the wild-type EC100. Mutations in 12 out of the 13 mutants were identified by inverse polymerase chain reaction. Mutants of the genes rob, garP, bipA, insK, and yhhX were more sensitive to Cm compared to the wild-type EC100, while the mutation of rhaB, yejM, dsdX, nagA, yccE, atpF, or htrB led to higher resistance. Overexpression of rob was found to increase the resistance of E. coli biofilms to tobramycin (Tob) by 2.7-fold, while overexpression of nagA, rhaB, and yccE significantly enhanced the susceptibility of biofilms by 2.2-, 2.5-, and 2.1-fold respectively.  相似文献   

19.
Intracellular pool sizes of deoxyribonucleoside triphosphates (dNTPs) are highly regulated. Unbalanced dNTP pools, created by abnormal accumulation or deficiency of one nucleotide, are known to be mutagenic and to have other genotoxic consequences. Recent studies in our laboratory on DNA replication in vitro suggested that balanced accumulation of dNTPs, in which all four pools increase proportionately, also stimulates mutagenesis. In this paper, we ask whether proportional dNTP pool increases are mutagenic also in living cells. Escherichia coli was transformed with recombinant plasmids that overexpress E. coli genes nrdA and nrdB, which encode the two protein subunits of aerobic ribonucleotide reductase. Roughly proportional dNTP pool expansion, by factors of 2- to 6-fold in different experiments, was accompanied by increases in spontaneous mutation frequency of up to 40-fold. Expression of a catalytically inactive ribonucleotide reductase had no effect on either dNTP pools or mutagenesis, suggesting that accumulation of dNTPs is responsible for the increased mutagenesis. Preliminary experiments with strains defective in SOS regulon induction suggest a requirement for one or more SOS functions in the dNTP-enhanced mutagenesis. Because a replisome extending from correctly matched 3'-terminal nucleotides is almost certainly saturated with dNTP substrates in vivo, whereas chain extension from mismatched nucleotides almost certainly proceeds at sub-saturating rates, we propose that the mutagenic effect of proportional dNTP pool expansion is preferential stimulation of chain extension from mismatches as a result of increases in intracellular dNTP concentrations.  相似文献   

20.
Hepcidin is a low-molecular-weight, highly disulfide bonded peptide relevant to small intestine iron absorption and body iron homeostasis. In this work, hepcidin was expressed in Escherichia coli as a 10.5 kDa fusion protein (His-hepcidin) with a N-terminal hexahistidine tag. The expressed His-hepcidin existed in the form of inclusion bodies and was purified by IMAC under denaturation condition. Since the fusion partner for hepcidin did not contain other cysteine residues, the formation of disulfide bonds was performed before the His-tag was removed. Then, the oxidized His-hepcidin monomer was separated from protein multimers through gel filtration. Following monomer refolding, hepcidin was cleaved from fusion protein by enterokinase and purified with reverse-phase chromatography. The recombinant hepcidin exhibited obvious antibacterial activity against Bacillus subtilis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号