首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
During bacterial infections, both the immune system and the hypothalamus-pituitary-adrenal (HPA) axis are activated. The role of IL-6 in the activation of the HPA axis during bacterial sepsis is not fully understood. The aim of the present study was to investigate the role of endogenous IL-6 in a potentially lethal infection with Klebsiella pneumoniae and the concomitant activation of the HPA axis. We examined the mortality of IL-6-/- and IL-6+/+ mice after intravenous (i.v.) infection with K. pneumoniae as well as the bacterial outgrowth in several organs. Subsequently, the influence of endogenous IL-6 on the effect of i.v. administration of K. pneumoniae on the plasma levels of corticosterone and the pro-inflammatory cytokines TNF-alpha and IL-1alpha was investigated in these mice. The present study demonstrates that IL-6-/- mice are more susceptible than IL-6+/+ mice to a systemic Gram-negative infection with K. pneumoniae, leading to increased outgrowth of microorganisms in the organs of the mice. Moreover, this infection is associated with a reduced adrenal response in IL-6-/- mice. We conclude that IL-6-/- mice are more susceptible to Gram-negative bacterial infections, which is mainly due to an impaired recruitment of granulocytes to the site of infection in the absence of IL-6. Furthermore, the reduced adrenal response may be an explanation for the strong inflammatory response with higher TNF-alpha plasma levels in IL-6-/- mice.  相似文献   

3.
TRH is a neuropeptide with a variety of hormonal and neurotransmitter/neuromodulator functions. In particular, TRH has pronounced acute antidepressant effects in both humans and animals and has been implicated in the mediation of the effects of other antidepressive therapies. Two G protein-coupled receptors, TRH receptor 1 (TRH-R1) and TRH-R2, have been identified. Here we report the generation and phenotypic characterization of mice deficient in TRH-R1. The TRH-R1 knockout mice have central hypothyroidism and mild hyperglycemia but exhibit normal growth and development and normal body weight and food intake. Behaviorally, the TRH-R1 knockout mice display increased anxiety and depression levels while behaving normally in a number of other aspects examined. These results provide the first direct evidence that the endogenous TRH system is involved in mood regulation, and this function is carried out through TRH-R1-mediated neural pathways.  相似文献   

4.
Matrix metalloproteinases (MMPs) are a family of extracellular proteases that are responsible for the degradation of the extracellular matrix during tissue remodeling. We have used a mouse model of allergen-induced airway remodeling to determine whether MMP-9 plays a role in airway remodeling. MMP-9-deficient and wild-type (WT) mice were repetitively challenged intranasally with ovalbumin (OVA) antigen to develop features of airway remodeling including peribronchial fibrosis and increased thickness of the peribronchial smooth muscle layer. OVA-challenged MMP-9-deficient mice had less peribronchial fibrosis and total lung collagen compared with OVA-challenged WT mice. There was no reduction in mucus expression, smooth muscle thickness, or airway responsiveness in OVA-challenged MMP-9-deficient compared with OVA-challenged WT mice. OVA-challenged MMP-9-deficient mice had reduced levels of bronchoalveolar lavage (BAL) regulated on activation, normal T cell expressed, and secreted (RANTES), as well as reduced numbers of BAL and peribronchial eosinophils compared with OVA-challenged WT mice. There were no significant difference in levels of BAL eotaxin, thymus- and activation-regulated chemokine (TARC), or macrophage-derived chemokine (MDC) in OVA-challenged WT compared with MMP-9-deficient mice. Overall, this study demonstrates that MMP-9 may play a role in mediating selected aspects of allergen-induced airway remodeling (i.e., modest reduction in levels of peribronchial fibrosis) but does not play a significant role in mucus expression, smooth muscle thickness, or airway responsiveness.  相似文献   

5.
Chronic secretion of interleukin-6 (IL-6) in mice causes metabolic alteration in the liver, leading to increased synthesis of hepatic cholesterol and fatty acids (FA). Mice were injected with allogeneic tumor cells transduced with the murine IL-6 gene. During the 3 wk after tumor inoculation, elevated serum IL-6 levels were associated with increased spleen and liver weight. Histological examination of sections from the liver showed increased hepatocyte proliferation, resulting in liver enlargement. Body composition analysis revealed that IL-6 caused a significant loss in fat tissue without affecting lean body mass and water content. Hepatic de novo synthesis of FA and cholesterol, as measured by (3)H(2)O incorporation, was three to five times as high in mice secreting IL-6 (IL-6 mice) as in pair-fed mice bearing nonsecreting tumors. This increase in FA and cholesterol synthesis is sufficient to maintain hepatic triglyceride secretion at levels comparable with those of pair-fed mice bearing nonsecreting tumors and, presumably, is the main source of cholesterol and FA-phospholipids necessary for hepatocyte proliferation.  相似文献   

6.
Reduced early alcohol-induced liver injury in CD14-deficient mice   总被引:11,自引:0,他引:11  
Activation of Kupffer cells by gut-derived endotoxin is associated with alcohol-induced liver injury. Recently, it was shown that CD14-deficient mice are more resistant to endotoxin-induced shock than wild-type controls. Therefore, this study was designed to investigate the role of CD14 receptors in early alcohol-induced liver injury using CD14 knockout and wild-type BALB/c mice in a model of enteral ethanol delivery. Animals were given a high-fat liquid diet continuously with ethanol or isocaloric maltose-dextrin as control for 4 wk. The liver to body weight ratio in wild-type mice (5.8 +/- 0.3%) was increased significantly by ethanol (7.3 +/- 0.2%) but was not altered by ethanol in CD14-deficient mice. Ethanol elevated serum alanine aminotransferase levels nearly 3-fold in wild-type mice, but not in CD14-deficient mice. Wild-type and knockout mice given the control high-fat diet had normal liver histology, whereas ethanol caused severe liver injury (steatosis, inflammation, and necrosis; pathology score = 3.8 +/- 0.4). In contrast, CD14-deficient mice given ethanol showed minimal hepatic changes (score = 1.6 +/- 0.3, p < 0.05). Additionally, NF-kappa B, TGF-beta, and TNF-alpha were increased significantly in wild-type mice fed ethanol but not in the CD14 knockout. Thus, chronic ethanol feeding caused more severe liver injury in wild-type than CD14 knockouts, supporting the hypothesis that endotoxin acting via CD14 plays a major role in the development of early alcohol-induced liver injury.  相似文献   

7.
Vascular dysfunction in response to reactive oxygen species (ROS) plays an important role in the development and progression of atherosclerotic lesions. In most cells, mitochondria are the major source of cellular ROS during aerobic respiration. Under most conditions the rates of ROS formation and elimination are balanced through mechanisms that sense relative ROS levels. However, a chronic imbalance in redox homeostasis is believed to contribute to various chronic diseases, including atherosclerosis. Uncoupling protein-2 (UCP2) is a mitochondrial inner membrane protein shown to be a negative regulator of macrophage ROS production. In response to a cholesterol-containing atherogenic diet, C57BL/6J mice significantly increased expression of UCP2 in the aorta, while mice lacking UCP2, in the absence of any other genetic modification, displayed significant endothelial dysfunction following the atherogenic diet. Compared with wild-type mice, Ucp2(-/-) mice had decreased endothelial nitric oxide synthase, an increase in vascular cell adhesion molecule-1 expression, increased ROS production, and an impaired ability to increase total antioxidant capacity. These changes in Ucp2(-/-) mice were associated with increased aortic macrophage infiltration and more numerous and larger atherosclerotic lesions. These data establish that in the vasculature UCP2 functions as an adaptive antioxidant defense to protect against the development of atherosclerosis in response to a fat and cholesterol diet.  相似文献   

8.
G protein-coupled receptors (GPCR) are involved in the regulation of numerous physiological functions. Therefore, GPCR variants may have conferred important selective advantages during periods of human evolution. Indeed, several genomic loci with signatures of recent selection in humans contain GPCR genes among them the X-chromosomally located gene for GPR82. This gene encodes a so-called orphan GPCR with unknown function. To address the functional relevance of GPR82 gene-deficient mice were characterized. GPR82-deficient mice were viable, reproduced normally, and showed no gross anatomical abnormalities. However, GPR82-deficient mice have a reduced body weight and body fat content associated with a lower food intake. Moreover, GPR82-deficient mice showed decreased serum triacylglyceride levels, increased insulin sensitivity and glucose tolerance, most pronounced under Western diet. Because there were no differences in respiratory and metabolic rates between wild-type and GPR82-deficient mice our data suggest that GPR82 function influences food intake and, therefore, energy and body weight balance. GPR82 may represent a thrifty gene most probably representing an advantage during human expansion into new environments.  相似文献   

9.
Osteoporosis in MCHR1-deficient mice   总被引:2,自引:0,他引:2  
It is well recognized that the hypothalamus is of central importance in the regulation of food intake and fat mass. Recent studies indicate that it also plays an important role in the regulation of bone mass. Melanin concentrating hormone (MCH) is highly expressed in the hypothalamus and has been implicated in regulation of energy homeostasis. We developed MCHR1 inactivated mice to evaluate the physiological role of this receptor. Interestingly, the MCHR1(-/-) mice have osteoporosis, caused by a reduction in the cortical bone mass, while the amount of trabecular bone is unaffected. The reduction in cortical bone mass is due to decreased cortical thickness. Serum levels of c-telopeptide, a marker of bone resorption, are increased in MCHR1(-/-) mice, indicating that the MCHR1(-/-) mice have a high bone turnover osteoporosis. In conclusion, the MCHR1(-/-) mice have osteoporosis, indicating that MCHR1-signalling is involved in a tonic stimulation of bone mass.  相似文献   

10.
Caveolin proteins are structural components of caveolae and are involved in the regulation of many biological processes. Recent studies have shown that caveolin-1 modulates inflammatory responses and is important for sepsis development. In the present study, we show that caveolin-1 and caveolin-2 have opposite roles in lipopolysaccharide (LPS)-induced sepsis using caveolin-deficient (Cav-1-/- and Cav-2-/-) mice for each of these proteins. While Cav-1-/- mice displayed delayed mortality following challenge with LPS, Cav-2-/- mice were more sensitive to LPS compared to wild-type (WT). With Cav-2-/- mice, this effect was associated with increased intestinal injury and increased intestinal permeability. This negative outcome was also correlated with enhanced expression of iNOS in epithelial intestinal cells, and enhanced production of nitric oxide (NO). By contrast, Cav-1-/- mice demonstrated a decrease in iNOS expression with decreased NO production, but no alteration in intestinal permeability. The differential expression of iNOS was associated with a significant increase of STAT-1 activation in these mice. Intestinal cells of Cav-2-/- mice showed increased phosphorylation of STAT-1 at tyrosine 701 compared to wild-type. However, Cav-1-/- mice-derived intestinal cells showed decreased levels of phosphorylation of STAT-1 at tyrosine 701. Since caveolin-2 is almost completely absent in Cav-1-/- mice, we conclude that it is not just the absence of caveolin-2 that is responsible for the observed effects, but that the balance between caveolin-1 and caveolin-2 is important for iNOS expression and ultimately for sepsis outcome.  相似文献   

11.
S100 proteins comprise a family of Ca(2+) binding proteins of at least 21 members. They are distinctly expressed in a variety of cell types and tissues and are thought to play unique roles, although they share a high degree of sequence homology and expression overlap. S100A1 is prominently expressed in the heart, where it takes part in Ca(2+)-cycling. Its role in the central nervous system (CNS) is largely unknown. We have generated S100A1-deficient mice by gene trap mutagenesis to study the involvement of S100A1 in the cytoarchitecture of the brain, in learning and memory, and in avoidance-approach behavior. S100A1 knock out (KO) mice develop well and their brains present with normal morphology. In wild type (Wt) mice, S100A1 protein was found in the hippocampus, cerebral cortex and amygdala, and partially co-localized with the astrocyte marker glial fibrillary acidic protein (GFAP) in the stratum radiatum of the hippocampus. Astrocytes and neurons of S100A1KO mice did not differ from those of Wt mice regarding shape, distribution and density. In the water maze, S100A1KO mice performed equally well as Wt, implying that S100A1 is not involved in spatial learning and memory. In avoidance-approach tests, predominantly male S100A1KO mice showed reduced anxiety-like responses and enhanced explorative activities. We conclude that S100A1 plays a role in modulating innate fear and exploration of novel stimuli.  相似文献   

12.
Interleukin-6 (IL-6) deficient (-/-) mice develop mature onset obesity. Pharmacological studies have shown that IL-6 has direct lipolytic effects and when administered centrally increases sympathetic outflow. However, the metabolic functions of endogenous IL-6 are not fully elucidated. We aimed to investigate the effect of IL-6 deficiency with respect to cold exposure and cage-switch stress, that is, situations that normally increase sympathetic outflow. Energy metabolism, core temperature, heart rate, and activity were investigated in young preobese IL-6-/- mice by indirect calorimetry together with telemetry. Baseline measurements and the effect of cage-switch stress were investigated at thermoneutrality (30 degrees C) and at room temperature (20 degrees C). The effect of cold exposure was investigated at 4 degrees C. At 30 degrees C, the basal core temperature was 0.6 +/- 0.24 degrees C lower in IL-6-/- compared with wild-type mice, whereas the oxygen consumption did not differ significantly. The respiratory exchange ratio at 20 degrees C was significantly higher and the calculated fat utilization rate was lower in IL-6-/- mice. In response to cage-switch stress, the increase in oxygen consumption at both 30 and 20 degrees C was lower in IL-6-/- than in wild-type mice. The increase in heart rate was lower in IL-6-/- mice at 30 degrees C. At 4 degrees C, both the oxygen consumption and core temperature were lower in IL-6-/- compared with wild-type mice, suggesting a lower cold-induced thermogenesis in IL-6-/- mice. The present results indicate that endogenous IL-6 is of importance for stress- and cold-induced energy expenditure in mice.  相似文献   

13.
14.
Summary Five generations of divergent selection for plasma concentration of insulin-like growth factor-1 (IGF-1) and for 12-week body weight were carried out in mice, including randomly selected control lines for each trait. All lines were replicated once (12 lines in total). Each replicate line consisted of eight male and eight female parents per generation. Litter size was standardized to eight pups at birth. Mass selection was applied in the selected lines and within-family random selection in the control lines. Blood was taken from the orbital sinus of individual mice at 12 weeks of age for IGF-1 assay. Realized heritabilities were 0.10±0.01 for IGF-1 and 0.41 ± 0.02 for 12-week weight. The realized genetic correlation between IGF-1 and 12-week weight was 0.58 ± 0.01, with a phenotypic correlation of 0.38. Although the genetic correlation between IGF-1 and body weight in mice is moderately positive, 12-week weight responded 3.5 times as fast to weight selection as to selection for IGF-1.  相似文献   

15.
Tyrosine O-sulfation is a post-translational modification catalyzed by two tyrosylprotein sulfotransferases (TPST-1 and TPST-2) in the trans-Golgi network. Tpst2-deficient mice have male infertility, sperm motility defects, and possible abnormalities in sperm-egg membrane interactions. Studies here show that compared with wild-type sperm, fewer Tpst2-null sperm bind to the egg membrane, but more of these bound sperm progress to membrane fusion. Similar outcomes were observed with wild-type sperm treated with the anti-sulfotyrosine antibody PSG2. The increased extent of sperm-egg fusion is not due to a failure of Tpst2-null sperm to trigger establishment of the egg membrane block to polyspermy. Anti-sulfotyrosine staining of sperm showed localization similar to that of IZUMO1, a sperm protein that is essential for gamete fusion, but we detected little to no tyrosine sulfation of IZUMO1 and found that IZUMO1 expression and localization were normal in Tpst2-null sperm. Turning to a discovery-driven approach, we used mass spectrometry to characterize sperm proteins that associated with PSG2. This identified ADAM6, a member of the A disintegrin and A metalloprotease (ADAM) family; members of this protein family are associated with multiple sperm functions. Subsequent studies revealed that Tpst2-null sperm lack ADAM6 and ADAM3. Loss of ADAM3 is strongly associated with male infertility and is observed in knockouts of male germ line-specific endoplasmic reticulum-resident chaperones, raising the possibility that TPST-2 may function in quality control in the secretory pathway. These data suggest that TPST-2-mediated tyrosine O-sulfation participates in regulating the sperm surface proteome or membrane order, ultimately affecting male fertility.  相似文献   

16.
Altered myogenesis in Six1-deficient mice   总被引:6,自引:0,他引:6  
Six homeoproteins are expressed in several tissues, including muscle, during vertebrate embryogenesis, suggesting that they may be involved in diverse differentiation processes. To determine the functions of the Six1 gene during myogenesis, we constructed Six1-deficient mice by replacing its first exon with the lacZ gene. Mice lacking Six1 die at birth because of severe rib malformations and show extensive muscle hypoplasia affecting most of the body muscles in particular certain hypaxial muscles. Six1(-/-) embryos have impaired primary myogenesis, characterized, at E13.5, by a severe reduction and disorganisation of primary myofibers in most body muscles. While Myf5, MyoD and myogenin are correctly expressed in the somitic compartment in early Six1(-/-) embryos, by E11.5 MyoD and myogenin gene activation is reduced and delayed in limb buds. However, this is not the consequence of a reduced ability of myogenic precursor cells to migrate into the limb buds or of an abnormal apoptosis of myoblasts lacking Six1. It appears therefore that Six1 plays a specific role in hypaxial muscle differentiation, distinct from those of other hypaxial determinants such as Pax3, cMet, Lbx1 or Mox2.  相似文献   

17.
《Reproductive biology》2022,22(2):100646
The birthweight after frozen embryo transfer (FET) was significantly higher compared with fresh embryo transfer (fresh ET), while the mechanism remains unclear. In this study, we transferred vitrified-warmed or fresh mice blastocysts into pseudopregnant recipients (n = 11 each group) produced by natural mating to avoid the influence of superovulation. The fetal weight, placental weight, placental efficiency and placental architecture were studied at E18.5. Placental RNA-Seq analysis was used to identify candidate different lncRNAs and mRNAs between the FET group and the fresh ET group. We found that the fetal weight was increased in the FET group, with increased placental efficiency and the proportion of placental function related labyrinth zone area. 554 lncRNAs and 1012 mRNAs were differentially expressed. KEGG and GO enrichment analyses showed these differentially expressed lncRNAs and their targeted mRNAs might be related to placental morphogenesis. Furthermore, the most differentially expressed 15 lncRNAs and 15 mRNAs were validated by qRT-PCR, we found the LncRNA embryonic stem cells expressed 1 (Lncenc1) was significantly decreased, and Gjb5, which played an important role in labyrinth zone development, was increased. Gjb5 protein increase was further confirmed by Western blot. Lncenc1 and Gjb5 had 48 predicted co-targeted miRNAs, while the correlation analysis of Lncenc1 and Gjb5 mRNA showed a significant inverse correlation. The results showed that FET treatment might enhance the placental function to increase mouse fetal weight via the network diagram of Lncenc1-miRNA-Gjb5.  相似文献   

18.
Replicated selection for body weight in mice   总被引:6,自引:0,他引:6  
  相似文献   

19.
We previously demonstrated that cAMP-dependent protein kinase was reduced in the dendrites of MAP2-deficient mice. In this study, we compared the expression of various protein phosphatases (PPs) between wild-type and map2(-/-) dendrites. Kinase-associated phosphatase (KAP) was the only PP which showed difference between the two phenotypes: (1) the expression of KAP was reduced in map2(-/-) cortical dendrites, and (2) the amount of KAP bound to microtubules was reduced in map2(-/-) brains. We also demonstrated in cultured neuroblastoma cells that KAP is not only expressed in dividing cells, but also in the neurites of differentiated cells. Our findings propose that KAP, which has been reported to function in cell-cycle control, has an as yet uncovered role in regulating dendritic functions. We also propose MAP2-deficient mice as an ideal system for identifying protein phosphatases essential for dendritic functions.  相似文献   

20.
Spermatogonia in the mouse testis arise from early postnatal gonocytes that are derived from primordial germ cells (PGCs) during embryonic development. The proliferation, self-renewal, and differentiation of spermatogonial stem cells provide the basis for the continuing integrity of spermatogenesis. We previously reported that Pin1-deficient embryos had a profoundly reduced number of PGCs and that Pin1 was critical to ensure appropriate proliferation of PGCs. The current investigation aimed to elucidate the function of Pin1 in postnatal germ cell development by analyzing spermatogenesis in adult Pin1-/- mice. Although Pin1 was ubiquitously expressed in the adult testis, we found it to be most highly expressed in spermatogonia and Sertoli cells. Correspondingly, we show here that Pin1 plays an essential role in maintaining spermatogonia in the adult testis. Germ cells in postnatal Pin1-/- testis were able to initiate and complete spermatogenesis, culminated by production of mature spermatozoa. However, there was a progressive and age-dependent degeneration of the spermatogenic cells in Pin1-/- testis that led to complete germ cell loss by 14 mo of age. This depletion of germ cells was not due to increased cell apoptosis. Rather, detailed analysis of the seminiferous tubules using a germ cell-specific marker revealed that depletion of spermatogonia was the first step in the degenerative process and led to disruption of spermatogenesis, which resulted in eventual tubule degeneration. These results reveal that the presence of Pin1 is required to regulate proliferation and/or cell fate of undifferentiated spermatogonia in the adult mouse testis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号