首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dendritic cells (DCs) are key elements of the immune system, which function as sentinel in the periphery and alert T lymphocytes about the type of invading antigen and address their polarisation, in order to mount an efficacious immune response. Leishmania spp. are parasitic protozoa which may cause severe disease in humans and domestic animals. In this work, the main studies concerning the role of DCs in Leishmania infection are reviewed, in both the murine and human models. In particular, the importance of the genetic status of the hosts and of the different Leishmania species in modulating DC-mediated immune response is examined. In addition, different approaches of DC-based vaccination against experimental leishmaniasis, which could have important future applications, are summarised.  相似文献   

2.
Dendritic cells and host resistance to infection   总被引:4,自引:1,他引:4  
Host defence against infection requires an integrated response of both the innate and adaptive arms of the immune system. Emerging data indicate that dendritic cells contribute an essential part to the initiation and regulation of adaptive immunity. Dendritic cells guard the sites of pathogen entry to the host and are uniquely suited to detect and capture invading microbes. Upon recognition of microbial structures and appropriate activation, a maturation programme is triggered and dendritic cells migrate to lymphoid organs to stimulate a primary cell-mediated immune response. Moreover, dendritic cells play a critical role in shaping the emerging response, thereby controlling the course of infection. They can discriminate between various types of microorganisms and are capable of producing different cytokines in response to different microbial stimuli. On the other hand, pathogens developed numerous strategies to evade and subvert dendritic cell functions. Elucidating the interactions of dendritic cells with microbial pathogens may lead to novel strategies for combating infectious diseases by dendritic cell-based vaccination and immunotherapy. This review highlights recent advances in our knowledge of the unique role of dendritic cells in counteracting microbial infections.  相似文献   

3.
Dendritic cells (DCs) are key elements of the immune system, which function as sentinel in the periphery and alert T lymphocytes about the type of invading antigen and address their polarisation, in order to mount an efficacious immune response. Leishmania spp. are parasitic protozoa which may cause severe disease in humans and domestic animals. In this work, the main studies concerning the role of DCs in Leishmania infection are reviewed, in both the murine and human models. In particular, the importance of the genetic status of the hosts and of the different Leishmania species in modulating DC-mediated immune response is examined. In addition, different approaches of DC-based vaccination against experimental leishmaniasis, which could have important future applications, are summarised.  相似文献   

4.
The activation and maintenance of Ag-specific CD8(+) T cells is central to the long-term control of persistent infections. These killer T cells act to continuously scan and remove reservoirs of pathogen that have eluded the acute immune response. Acutely cleared viral infections depend almost exclusively on dendritic cells (DC) to present Ags to, and to activate, the CD8(+) T cell response. Paradoxically, persistent pathogens often infect professional APCs such as DC, in addition to infecting a broad range of nonprofessional APC, raising the possibility that many cell types could present viral Ags and activate T cells. We addressed whether in persistent viral infection with murine gammaherpesviruses, DC or non-DC, such as B cells and macrophages, were required to maintain the continued activation of Ag-specific CD8(+) T cells. We found that presentation of the surrogate Ag, OVA, expressed under a lytic promoter to CD8(+) T cells during persistent infection was largely restricted to DC, with little contribution from other lymphoid resident cells, such as B cells. This is despite the fact that B cells harbor a very large reservoir of latent virus. Our results support that, during persistent viral infection, continual presentation of lytic Ags by DC leads to T cell activation critical for maintaining CD8(+) T cells capable of limiting persistent viral infection.  相似文献   

5.
We applied nucleic acid-based molecular methods, combined with estimates of biomass (ATP), pigments, and microelectrode measurements of chemical gradients, to map microbial diversity vertically on a millimeter scale in a hypersaline microbial mat from Guerrero Negro, Baja California Sur, Mexico. To identify the constituents of the mat, small-subunit rRNA genes were amplified by PCR from community genomic DNA extracted from layers, cloned, and sequenced. Bacteria dominated the mat and displayed unexpected and unprecedented diversity. The majority (1,336) of the 1,586 bacterial 16S rRNA sequences generated were unique, representing 752 species (> or =97% rRNA sequence identity) in 42 of the main bacterial phyla, including 15 novel candidate phyla. The diversity of the mat samples differentiated according to the chemical milieu defined by concentrations of O(2) and H(2)S. Bacteria of the phylum Chloroflexi formed the majority of the biomass by percentage of bulk rRNA and of clones in rRNA gene libraries. This result contradicts the general belief that cyanobacteria dominate these communities. Although cyanobacteria constituted a large fraction of the biomass in the upper few millimeters (>80% of the total rRNA and photosynthetic pigments), Chloroflexi sequences were conspicuous throughout the mat. Filamentous Chloroflexi bacteria were identified by fluorescence in situ hybridization within the polysaccharide sheaths of the prominent cyanobacterium Microcoleus chthonoplastes, in addition to free living in the mat. The biological complexity of the mat far exceeds that observed in other polysaccharide-rich microbial ecosystems, such as the human and mouse distal guts, and suggests that positive feedbacks exist between chemical complexity and biological diversity. The sequences determined in this study have been submitted to the GenBank database and assigned accession numbers DQ 329539 to DQ 331020, and DQ 397339 to DQ 397511.  相似文献   

6.
7.
Iron and microbial infection   总被引:12,自引:0,他引:12  
The use of iron as a cofactor in basic metabolic pathways is essential to both pathogenic microorganisms and their hosts. It is also a pivotal component of the innate immune response through its role in the generation of toxic oxygen and nitrogen intermediates. During evolution, the shared requirement of micro- and macroorganisms for this important nutrient has shaped the pathogen-host relationship. Here, we discuss how pathogens compete with the host for iron, and also how the host uses iron to counteract this threat.  相似文献   

8.
《Cytokine》2015,74(2):198-206
The roles of dendritic cells (DCs) in mediating immunity against Plasmodium infection have been extensively investigated, but immune response during pathogenesis of malaria is still poorly understood. In the present study, we compared the splenic DCs phenotype and function during P. berghei ANKA (PbA) or P. yoelii (P. yoelii) infection in Swiss mice. We observed that PbA-infected mice developed more myeloid and mature DCs capable of secreting IL-12, while P. yoelii-infected mice had more plasmacytoid and immature DCs secreting higher levels of IL-10. Expression of FoxP3, IL-17, TGF-β and IL-6 were also different between these two infections. Thus, these results suggest that the phenotypic and functional subsets of splenic DCs are key factors for regulating immune responses to PbA and P. yoelii infections.  相似文献   

9.
Gottenberg JE  Chiocchia G 《Biochimie》2007,89(6-7):856-871
Dendritic cells (DCs) are central cells of the immune responses. They can be considered as the most influential antigen-presenting cells in the body because of their unique role in initiating immunity against most types of antigens. Recent studies have clearly established that the state of maturation of DC can be crucial for the ability of these antigen-presenting cells to inhibit or induce T-cell-mediated autoimmune diseases. Type I interferon has been shown to be produced at very high amounts by a specific type of DC (pDC). In recent years, the study of multiple autoimmune diseases has pointed to a central role for type I interferon (IFN-I) in disease pathogenesis, in particular through the IFN-molecular signature deciphered in some of these diseases. One hypothesis would be that IFN directly affects multiple actors of the immune reaction such as T cells and B cells and that it can induce the unabated activation of peripheral dendritic cells. On the other hand, type II IFN has been considered as pathogenic in multiple autoimmune diseases leading to the paradigm of TH-1 type autoimmune diseases. The discovery of the TH-17 type of cells and the protective role IFN-gamma can exert on particular phases of these diseases urge one to re-evaluate this assumption.  相似文献   

10.
Dendritic cells are a relative rare population of specialized antigen presenting cells that are distributed through most lymphoid and non-lymphoid tissues and play a critical role in linking the innate and adaptive arms of the immune system. The liver contains a heterogeneous population of dendritic cells that may contribute to liver inflammation and fibrosis through a number of mechanisms. This review summarizes current knowledge on the development and characterization of liver dendritic cells and their potential impact on liver fibrosis. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.  相似文献   

11.
新生隐球菌( Cn) 是临床上重要的病原真菌, 树突细胞( DC) 则是最重要的抗原呈递细胞。作为宿主固有免疫和适应性免疫的联系枢纽,DC 对于识别病原、呈递抗原、诱导宿主免疫应答十分重要。许多研究证明,DC 可通过细胞表面的多种受体有效识别新生隐球菌抗原( CnAg) , 诱导宿主产生有效的细胞免疫应答。DC 本身也有一定的杀菌能力, 但DC 的不同亚群以及成熟状态对宿主的免疫防御功能有重要影响。另外, 隐球菌除具有甘露糖蛋白等主要免疫显性抗原外, 还有多种抑制机体保护性免疫应答的毒性因子。本文就近年来国内、外对两者之间复杂机制的研究进行概述。  相似文献   

12.
A microbial consortium (AM) obtained by sequential enrichment in liquid culture with a polycyclic aromatic hydrocarbon (PAH) mixture of three- and four-ringed PAHs as a sole source of carbon and energy was examined using a triple-approach method based on various cultivation strategies, denaturing gradient gel electrophoresis (DGGE), and the screening of 16S and 18S rRNA gene clone libraries. Eleven different sequences by culture-dependent techniques and seven by both DGGE and clone libraries were obtained. The comparison of three variable regions (V3-V5) of the 16S rRNA gene between the sequences obtained yielded 19 different microbial components. Proteobacteria were the dominant group, representing 83% of the total, while the Cytophaga-Flexibacter-Bacteroides group (CFB) was 11% and the Ascomycota fungi 6%. Beta-proteobacteria were predominant in the DGGE and clone library methods, whereas they were a minority in culturable strains. The highest diversity and number of noncoincident sequences were achieved by the cultivation method that showed members of the alpha-, beta-, and gamma-Proteobacteria; CFB bacterial group; and Ascomycota fungi. Only six of the 11 strains isolated showed PAH-degrading capability. The bacterial strain (AMS7) and the fungal strain (AMF1), which were similar to Sphingomonas sp. and Fusarium sp., respectively, achieved the greatest PAH depletion. The results indicate that polyphasic assessment is necessary for a proper understanding of the composition of a microbial consortium.  相似文献   

13.
Dendritic cells in the human decidua   总被引:14,自引:0,他引:14  
Dendritic cells (DCs) in the pregnant human uterine mucosa have been poorly characterized, although they are likely to regulate immune responses to both placental trophoblast cells and uterine infections. In this study an HLA-DR+, CD11c+ lin- (CD3-, CD19-, CD56-, CD14-) population has been identified by three-color flow cytometry. The cell isolates were prepared either by collagenase digestion or mechanically from first-trimester decidual tissue. The decidual DCs comprised approximately 1.7% of CD45+ cells in the isolates and had the phenotype of immature myeloid DCs. No CD1a+ Langerhans cells or CD123+ plasmacytoid DCs were detected. The decidual DCs were DC-SIGN-, DEC-205+, CD40+. Two subsets could be distinguished on the basis of relative expression of HLA-DR, which also differed in expression of DC-activation markers. The DCs were identified in situ by immunohistology by DEC-205 staining. Cells with dendritic processes were found scattered through both the decidua basalis (in which trophoblast cells are infiltrating) and the decidua parietalis. They were also visible in endothelial-lined spaces. This is the first study to identify and describe the phenotype and distribution of human decidual DCs.  相似文献   

14.
Paul WE 《Cell》2007,130(6):967-970
Ralph Steinman is to receive the 2007 Albert Lasker Award for Basic Medical Research for his discovery of dendritic cells and his path-breaking work demonstrating their central role as the principal antigen-presenting cells of the immune system and key activators of T cell responses.  相似文献   

15.
Renal biopsies (n = 45) from patients with various forms of glomerulonephritis (GN), comprising mesangial IgA-GN (n = 25), focal glomerular sclerosis (n = 13) and acute GN (n = 7), were examined by double staining immunocytochemistry (APAAP, streptavidinperoxidase) using unconjugated monoclonal antibodies (Ab) against (i) the CD1b antigen expressed on dendritic cells (DCs), (ii) the invariant chain (Ii), and (iii) biotin-conjugated Ab against HLA-DR. In normal control kidneys (n = 7) without interstitial inflammation, CD1b-positive DCs were not detected. Glomerular endothelial cells and a few cells in mesangial areas showed double staining with the Ab against HLA-DR in Ii. In GN without active interstitial inflammation (n = 9), CD1b-positive DCs were not found. In biopsies with interstitial inflammation (n = 36) CDlb-positive DCs were found interspersed among other inflammatory cells. In seven of the biopsies showing IgA-GN DCs were seen in the vicinity of those glomeruli that exhibited either crescents or glomerular sclerosis with splitting of Bowman’s capsule. In proximal tubular epithelial cells de novo expression of HLA-DR/Ii-chain was only seen when DCs were present. We conclude that in different forms of GN: (i) CDlb-positive DCs play an important role in the development of interstitial inflammation, and (ii) their presence may be related to the de novo coexpression of HLA-DR/Ii in tubular epithelial cells, possibly mediated through the production of interferon γ and other cytokines. Supported by the Deutsche Forschungsgemeinschaft (Wa 698/2-1)  相似文献   

16.
17.
Dendritic cells and innate defense against tumor cells   总被引:1,自引:0,他引:1  
Tumor growth results from a delicate balance between intrinsic dysregulation of oncogenes, tumor suppressor and stability genes counteracted by extrinsic defenses composed of immune cells shaping tumor immunogenicity. Although immune subversion might be the ultimate outcome of this process, a complex network of cellular interactions take place eventually leading to tumor specific cognate immune responses. The links between innate and cognate antitumor immunity eliciting protective T cell responses are instigated by cytokines, chemokines and damage associated molecular patterns. The intricate differentiation pathway whereby dendritic cells could undergo an efficient maturation program in the tumor microenvironment appears crucial. We will discuss the role of innate effectors and cancer therapies in the process of defense against tumor cells.  相似文献   

18.
19.
树突状细胞(dendritc cells,DC)是一种抗原提呈细胞,能特异地引发和调控机体免疫。它具有抗原呈现功能而不损害免疫系统,不仅能够激活CD4^ 辅助T细胞和CD8^ 细胞毒性T细胞,还能活化B细胞和自然杀伤细胞。已有的研究让人们看到了癌症疫苗的希望,但还处于早期阶段,有许多尚未确定的因素。因此有关DC疫苗用于对肿瘤的保护性和治疗性免疫还有待于进一步的研究。  相似文献   

20.
提高免疫系统对肿瘤的杀伤能力是肿瘤免疫学上目的,随着对免疫肿瘤抗原的了解以及对T细胞免疫反应和肿瘤逃逸机制的进一步认识。方面军一目的已取得了进展,体内含量稀少的抗原递呈细胞-树突状细胞(DC8)是这些机制的关键。体外从外周血祖细胞诱导扩增这些细胞为肿瘤治疗开辟了新纪元。DC8作为肿瘤疫苗,在B细胞淋巴瘤、黑色素瘤、前列腺癌等病人身上已有了一定的疗效。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号