首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
粉刺侧孢霉产木质素过氧化物酶酶活性与pH值的关系   总被引:4,自引:1,他引:3  
研究了粉刺侧孢霉 (Phanerochaetechrysosporium)在以微晶纤维素为C源时 ,木素过氧化酶与 pH值的关系 .试验采用 37~ 39°C下液体振荡培养 ,藜芦醇为产酶诱导剂 ,测试不同起始 pH值所得木素过氧化物酶活性 .结果表明 ,起始 pH值 6.0所得酶活最高达 0 .1 2 6U·ml- 1 ,说明以微晶纤维素代替葡萄糖为C源 ,其最佳 pH值相对较高 .菌丝球直径与酶活呈正相关 .  相似文献   

2.
Phenolic compounds, which are present in many industrial wastewaters, have become a cause for worldwide concern due to their persistence, toxicity and health risks. Enzymatic approaches to remove phenol have been tried for some years as they have several advantages compared with the conventional methods. This paper reports some studies on the use of the white rot fungus Phanerochaete chrysosporium which produces the enzyme lignin peroxidases for the removal of phenol, chlorophenol, and dyes. Batch studies in Erylenmeyer flasks showed complete removal of phenol (500 2 10х kg/m3) in 30 h. It was also seen that phenol has a significant inhibitory effect on the biomass growth and the enzyme synthesis if added in the early stages of the growth. However, phenol was effectively removed when added after attaining the maximum enzyme activity. 90% of the dyes were removed in about three days, whereas only 62% of the added 4-chlorophenol was removed in about ten days.  相似文献   

3.
Phanerochaete chrysosporium spores were immobilized both in agarose and agar gel beads, and used for the production of lignin peroxidase in repeated batch cultures on carbon-limited medium both with 0.5 g l−1 glucose and without glucose. Veratryl alcohol was used as an activator of enzyme production. The biocatalyst was more stable in agarose gel with the maximum activity of 245 U l−1 obtained in a 70 h batch. The biocatalyst could be used for at least 12 batches on the glucose medium with a gradual decrease in lignin peroxidase activity after the sixth batch. Further, mycelium pellets grown on carbon-limited medium were employed both in vertical and horizontal column reactors for the continuous production of lignin peroxidase. The bioreactor produced lignin peroxidase for at least 20 days in the horizontal system at 49 h residence time, with a maximum activity of 95 U l−1.  相似文献   

4.
Two cDNA clones encoding lignin peroxidase isozymes from Phanerochaete chrysosporium have been isolated and characterized. One of the clones, lambda ML-4, encodes isozyme H8 as does the previously reported clone lambda ML-1 [Tien, M. and Tu, C.-P.D. Nature 326 (1987) 520-523; 328, 742]. Our data are consistent with lambda ML-1 and lambda ML-4 being allelic variants. The other clone, lambda ML-5, encodes a homologous isozyme. We have also isolated the genomic clone corresponding to lambda ML-4 cDNA. Conserved residues thought to be essential for peroxidase function were identified in the predicted amino acid sequences of both cDNA clones. Northern blot analyses indicate that these isozymes are expressed during secondary metabolism, appearing on day 4 of growth and increasing on days 5 and 6.  相似文献   

5.
The mechanism for the production of hydroxyl radical by lignin peroxidase from the white rot fungus Phanerochaete chrysosporium was investigated. Ferric iron reduction was demonstrated in reaction mixtures containing lignin peroxidase isozyme H2 (LiPH2), H2O2, veratryl alcohol, oxalate, ferric chloride, and 1,10-phenanthroline. The rate of iron reduction was dependent on the concentration of oxalate and was inhibited by the addition of superoxide dismutase. The addition of ferric iron inhibited oxygen consumption in reaction mixtures containing LiPH2, H2O2, veratryl alcohol, and oxalate. Thus, the reduction of ferric iron was thought to be dependent on the LiPH2-catalyzed production of superoxide in which veratryl alcohol and oxalate serve as electron mediators. Oxalate production and degradation in nutrient nitrogen-limited cultures of P. chrysosporium was also studied. The concentration of oxalate in these cultures decreased during the period in which maximum lignin peroxidase activity (veratryl alcohol oxidation) was detected. Electron spin resonance studies using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide were used to obtain evidence for the production of the hydroxyl radical in reaction mixtures containing LiPH2, H2O2, veratryl alcohol, EDTA, and ferric chloride. It was concluded that the white rot fungus might produce hydroxyl radical via a mechanism that includes the secondary metabolites veratryl alcohol and oxalate. Such a mechanism may contribute to the ability of this fungus to degrade environmental pollutants.  相似文献   

6.
The reaction of H2O2 with 4-substituted aryl alkyl sulfides (4-XC6H4SR), catalysed by lignin peroxidase (LiP) from Phanerochaete chrysosporium, leads to the formation of sulfoxides, accompanied by diaryl disulfides. The yields of sulfoxide are greater than 95% when X = OMe, but decrease significantly as the electron donating power of the substituent decreases. No reaction is observed for X = CN. The bulkiness of the R group has very little influence on the efficiency of the reaction, except for R = tBu. The reaction exhibits enantioselectivity (up to 62% enantiomeric excess with X = Br, with preferential formation of the sulfoxide with S configuration). Enantioselectivity decreases with increasing electron density of the sulfide. Experiments in H218O show partial or no incorporation of the labelled oxygen into the sulfoxide, with the extent of incorporation decreasing as the ring substituents become more electron-withdrawing. On the basis of these results, it is suggested that LiP compound I (formed by reaction between the native enzyme and H2O2), reacts with the sulfide to form a sulfide radical cation and LiP compound II. The radical cation is then converted to sulfoxide either by reaction with the medium or by a reaction with compound II, the competition between these two pathways depending on the stability of the radical cation.  相似文献   

7.
The cDNA clone lambda ML-1 encoding one of the extracellular lignin peroxidases from the white rot fungus, Phanerochaete chrysosporium, was heterologously expressed in an active form using a recombinant baculovirus system. The glycosylated extracellular form of the recombinant protein contained the ferriprotoporphyrin IX moiety and was capable of oxidizing both iodide and the model lignin compound, veratryl alcohol. In comparative peroxidase assays using guaiacol and Mn(II), the recombinant lignin peroxidase did not appear to be Mn(II) dependent. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated that the heterologously expressed peroxidase had an apparent molecular weight similar to that of the native fungal isozyme H8. The elution profile of the active recombinant enzyme derived by ion-exchange chromatography and immunoblot analysis using an anti-H8 monoclonal antibody provided further evidence that the lambda ML-1 DNA encodes the lignin peroxidase H8.  相似文献   

8.
Summary The lignin mineralization rate in cultures of Phanerochaete chrysosporium increases with lignin peroxidase concentration up to 20 nkat ml–1. At higher concentrations the rate of lignin mineralization decreases with increasing lignin peroxidase concentration. The amount of mycelium is not a limiting factor for lignin mineralization at high exocellular lignin peroxidase in association with the mycelium as pellets and no free exocellular enzyme induce a lignin mineralization rate equivalent to cultures reconstituted with washed pellets supplemented with 15 nkat ml–1 of exogenous free enzyme. These results show that although lignin degradation by lignin peroxidase seems to be facilitated when lignin peroxidase is localised on the surface of the mycelium, free exocellular lignin peroxidase can also efficiently enhance mineralization of lignin by P. chrysosporium.  相似文献   

9.
10.
A strain of white rot fungus, Phanerochaete chrysosporium Burds. ME446, has been characterized with respect to the extent and rate of Betula nigrificans lignin and non-lignin conversion by solid-substrate fermentation for different culture conditions. Moisture content, inoculum density, nitrogen supplementation and autoclaving of birch solids significantly affected lignin conversion rates and yields in 20 day fermentations. Oxygen favoured lignin over non-lignin conversion at partial pressures of 1.0 atm. Oxygen pressures of 2.0 atm severely inhibited both lignin and non-lignin conversions. Carbon dioxide partial pressures of 0.25, 0.5 and 1.0 atm at oxygen pressures of 1.0 atm increasingly inhibited both lignin and non-lignin conversion rates and yields. The results of these studies demonstrate the effects of major process variables and suggest a need to control the gas environment for process optimization.  相似文献   

11.
We investigated the influence of pellet size on the growth and lignin peroxidase (LiP) productivity of Phanerochaete chrysosporium. Different pellet sizes were obtained by varying the vessel diameter under constant shaking conditions. Under these varying conditions the pellet size was in the range of 2–18 mm, while the number of pellets in a single vessel varied from around 1,200 in the Erlenmeyer flask to around 6 in the narrowest vessel. A correlation between the final pellet size and the shear rate was obtained, demonstrating that the pellet size is mainly affected by hydrodynamics. The growth of large pellets was described by a cubic growth model. Despite different pellet sizes, LiP activity appeared in all vessels, but the onset of LiP activity showed a delay based upon the pellet size, while maximal LiP activities varied by only 15%, being around 850 U/l.  相似文献   

12.
Homogeneous manganese peroxidase catalyzed the in vitro partial depolymerization of four different 14C-labeled synthetic lignin preparations. Gel permeation profiles demonstrated significant depolymerization of 14C-sidechain-labeled syringyl lignin, a 14C-sidechain-labeled syringyl-guaiacyl copolymer (angiosperm lignin), and depolymerization of 14C-sidechain- and 14C-ring-labeled guaiacyl lignins (gymnosperm lignin). 3,5-Dimethoxy-1,4-benzo-quinone, 3,5-dimethoxy-1,4-hydroquinone, and syringylaldehyde were identified as degradation products of the syringyl and syringyl-guaiacyl lignins. These results suggest that manganese peroxidase plays a significant role in the depolymerization of lignin by Phanerochaete chrysosporium.  相似文献   

13.
Neem hull waste (containing a high amount of lignin and other phenolic compounds) was used for lignin peroxidase production byPhanerochaete chrysosporum under solid-state fermentation conditions. Maximum decolorization achieved by partially purified lignin peroxidase was 80% for Porocion Brilliant Blue HGR, 83 for Ranocid Fast Blue, 70 for Acid Red 119 and 61 for Navidol Fast Black MSRL. The effects of different concentrations of veratryl alcohol, hydrogen peroxide, enzyme and dye on the efficiency of decolorization have been investigated. Maximum decolorization efficiency was observed at 0.2 and 0.4 mmol/L hydrogen peroxide, 2.5 mmol/L veratryl alcohol and pH 5.0 after a 1-h reaction, using 50 ppm of dyes and 9.96 mkat/L of enzyme.  相似文献   

14.
The ligninolytic white rot fungus Phanerochaete chrysosporium, holds good promise as a biological treatment tool due to its ability to produce the lignin peroxidase enzyme which has the potential to degrade a wide variety of hazardous compounds. The effective application of this technique requires optimisation of the process variables to maximise the enzyme production. Response surface methodology was applied to determine the effects of glucose, ammonium tartarate and ferrous sulphate and their mutual interactions on lignin peroxidase production. With a view to simultaneously reducing the number of experiments and obtaining more information on the mutual interactions between the variables, a 23 full-factorial central composite experimental design was adopted. The experimental data were fitted to a second order polynomial equation using multiple regression analysis and also analysed by appropriate statistical methods. Solving the regression equation using the multi-stage monte-carlo optimisation techniques, the optimum process conditions for enhanced production of lignin peroxidase were obtained as: glucose 0.9728 kg/m3, ammonium tartarate 0.288 kg/m3, and ferrous sulphate 0.097 kg/m3.  相似文献   

15.
Ligninase, isolated from the wood-destroying fungus Phanerochaete chrysosporium, catalyzes the oxidation of lignin and lignin-related compounds. Ligninase reacts with H2O2 to form the classical peroxidase intermediates Compounds I and II. We have determined the activation energy of ligninase Compound I formation to be 5.9 kcal/mol. The effect of pH and ionic strength on the rate of ligninase Compound I formation was studied. In contrast to all other peroxidases, no pH effect was observed. This is despite homology of active-site amino acids residues (Tien, M., and Tu, C.-P. D. (1987) Nature 326, 520-523) which are proposed to affect the pH profile of Compound I formation. Ligninase Compound I formation can also be supported by organic peroxides. The second-order rate constants with the organic peroxides are lower, suggesting that H2O2 is the preferred substrate.  相似文献   

16.
One- and two-dimensional 1H NMR spectroscopy has been used to probe the active site of the high spin ferric resting state and the low spin, cyanide-inhibited derivative of isozyme H2 of the lignin peroxidase, LiP, from Phanerochaete chrysosporium strain BKM 1767. One-dimensional NMR revealed a resting state LiP that is five coordinate at 25 degrees C with an electronic structure similar to that of horseradish peroxidase, HRP. Differential paramagnetic relaxivity was used to identify the C beta H signals of the axial His177. A combination of bond correlation spectroscopy and nuclear Overhauser effect spectroscopy of cyanide-inhibited LiP (LiP-CN) has allowed the assignment of all resolved heme resonances without recourse to isotope labeling, as well as those of the proximal His177 and the distal His48. The surprising effectiveness of the two dimensional NMR methods on such a large and paramagnetic protein indicates that such two dimensional experiments can be expected to have major impact on solution structure determination of diverse classes of heme peroxidases. The two dimensional NMR data of LiP-CN reveal a heme contact shift pattern that reflects a close similarity to that of HRP-CN, including the unusual in-plane trans and cis orientation of the 2- and 4-vinyls. The axial His177 also exhibits the same orientation relative to the heme as in HRP-CN. The proximal His177 contact shifted resonances of both the low spin LiP-CN and high spin LiP are shown to reflect significantly reduced hydrogen bond donation by, or imidazolate character for, the axial histidine in LiP relative to HRP, which may explain the higher redox potential of LiP. The signals are identified for a distal residue that originates from the protonated His48 with disposition relative to the heme similar to that found for the distal His42 in HRP-CN. In contrast, the absence of any resolved signals attributable to an Arg44 in LiP-CN suggest that this distal residue has an altered orientation relative to the heme compared with that of the conserved Arg38 in HRP-CN (Thanabal, V., de Ropp, J. S., and La Mar, G. N. (1987) J. Am. Chem. Soc. 109, 7516-7525).  相似文献   

17.
Summary Lignin (LiP) and manganese peroxidase (MnP) excretion by Phanerochaete chrysosporium INA-12 was significantly increased in response to fungal extract supplementation. LiP and MnP production was increased 1.7- and 1.8-fold, respectively, with fungal extracts from agitated pellet cultures of strain INA-12, namely fungal extracts P6 and P4. In cultures supplemented with a fungal extract harvested from static cultures of strain INA-12 (fungal extract S4), LiP and MnP production was increased 1.8- and 1.6-fold, respectively. Succinate dehydrogenase activity, a mitochondrial marker, was significantly enhanced (2.7-fold) in cultures with the addition of fungal extracts. Correspondence to: M. Asther  相似文献   

18.
We studied oxidative stress in lignin peroxidase (LIP)-producing cultures (cultures flushed with pure O(2)) of Phanerochaete chrysosporium by comparing levels of reactive oxygen species (ROS), cumulative oxidative damage, and antioxidant enzymes with those found in non-LIP-producing cultures (cultures grown with free exchange of atmospheric air [control cultures]). A significant increase in the intracellular peroxide concentration and the degree of oxidative damage to macromolecules, e.g., DNA, lipids, and proteins, was observed when the fungus was exposed to pure O(2) gas. The specific activities of manganese superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase and the consumption of glutathione were all higher in cultures exposed to pure O(2) (oxygenated cultures) than in cultures grown with atmospheric air. Significantly higher gene expression of the LIP-H2 isozyme occurred in the oxygenated cultures. A hydroxyl radical scavenger, dimethyl sulfoxide (50 mM), added to the culture every 12 h, completely abolished LIP expression at the mRNA and protein levels. This effect was confirmed by in situ generation of hydroxyl radicals via the Fenton reaction, which significantly enhanced LIP expression. The level of intracellular cyclic AMP (cAMP) was correlated with the starvation conditions regardless of the oxygenation regimen applied, and similar cAMP levels were obtained at high O(2) concentrations and in cultures grown with atmospheric air. These results suggest that even though cAMP is a prerequisite for LIP expression, high levels of ROS, preferentially hydroxyl radicals, are required to trigger LIP synthesis. Thus, the induction of LIP expression by O(2) is at least partially mediated by the intracellular ROS.  相似文献   

19.
The lignin peroxidase enzyme system of the white-rot fungus, Phanerochaete chrysosporium was assayed for its capacity to degrade two recalcitrant aliphatic ether compounds, high-molecular-mass polyethylene glycol (PEG 20 000) and methyl tert-butyl ether. Ligninolytic cultures of Phanerochaete chrysosporium were spiked with each ether compound and incubated in reaction vessels. Separate incubations were conducted in which the ether compounds were present as sole carbon source. Other parameters, such as varying the methyl tert-butyl ether concentration and veratryl alcohol additions were tested. No significant degradation of either compound was observed under any of the conditions tested. Implications of these results are discussed with respect to the oxidative limitations of the lignin peroxidase enzyme system and structural features of substrate molecules that may be requisite for oxidation by this system.  相似文献   

20.
Lignin peroxidase H8 from the wood rotting basidiomycete Phanerochaete chrysosporium is able to catalyse oxidation of 9-phenanthrol, forming phenanthrene-9, 10-quinone. This is of interest because 9-phenanthrol is an intermediate in the major pathway for phenanthrene degradation that occurs in this fungus under non-ligninolytic conditions whereas the product, phenanthrene-9, 10-quinone, is an intermediate in the pathway that occurs under ligninolytic conditions. It thus appears reasonable to suggest that, at the onset of idiophase (when cultures become ligninolytic), lignin peroxidases may function to link these two pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号