首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The previously characterized monoclonal antibodies (MAbs) A1, A69, B1, and A20 are directed against assembled or nonassembled adeno-associated virus type 2 (AAV-2) capsid proteins (A. Wistuba, A. Kern, S. Weger, D. Grimm, and J. A. Kleinschmidt, J. Virol. 71:1341-1352, 1997). Here we describe the linear epitopes of A1, A69, and B1 which reside in VP1, VP2, and VP3, respectively, using gene fragment phage display library, peptide scan, and peptide competition experiments. In addition, MAbs A20, C24-B, C37-B, and D3 directed against conformational epitopes on AAV-2 capsids were characterized. Epitope sequences on the capsid surface were identified by enzyme-linked immunoabsorbent assay using AAV-2 mutants and AAV serotypes, peptide scan, and peptide competition experiments. A20 neutralizes infection following receptor attachment by binding an epitope formed during AAV-2 capsid assembly. The newly isolated antibodies C24-B and C37-B inhibit AAV-2 binding to cells, probably by recognizing a loop region involved in binding of AAV-2 to the cellular receptor. In contrast, binding of D3 to a loop near the predicted threefold spike does not neutralize AAV-2 infection. The identified antigenic regions on the AAV-2 capsid surface are discussed with respect to their possible roles in different steps of the viral life cycle.  相似文献   

2.
Adeno-associated virus type 2 (AAV2) has proven to be a valuable vector for gene therapy. Characterization of the functional domains of the AAV capsid proteins can facilitate our understanding of viral tissue tropism, immunoreactivity, viral entry, and DNA packaging, all of which are important issues for generating improved vectors. To obtain a comprehensive genetic map of the AAV capsid gene, we have constructed 93 mutants at 59 different positions in the AAV capsid gene by site-directed mutagenesis. Several types of mutants were studied, including epitope tag or ligand insertion mutants, alanine scanning mutants, and epitope substitution mutants. Analysis of these mutants revealed eight separate phenotypes. Infectious titers of the mutants revealed four classes. Class 1 mutants were viable, class 2 mutants were partially defective, class 3 mutants were temperature sensitive, and class 4 mutants were noninfectious. Further analysis revealed some of the defects in the class 2, 3, and 4 mutants. Among the class 4 mutants, a subset completely abolished capsid formation. These mutants were located predominantly, but not exclusively, in what are likely to be beta-barrel structures in the capsid protein VP3. Two of these mutants were insertions at the N and C termini of VP3, suggesting that both ends of VP3 play a role that is important for capsid assembly or stability. Several class 2 and 3 mutants produced capsids that were unstable during purification of viral particles. One mutant, R432A, made only empty capsids, presumably due to a defect in packaging viral DNA. Additionally, five mutants were defective in heparan binding, a step that is believed to be essential for viral entry. These were distributed into two amino acid clusters in what is likely to be a cell surface loop in the capsid protein VP3. The first cluster spanned amino acids 509 to 522; the second was between amino acids 561 and 591. In addition to the heparan binding clusters, hemagglutinin epitope tag insertions identified several other regions that were on the surface of the capsid. These included insertions at amino acids 1, 34, 138, 266, 447, 591, and 664. Positions 1 and 138 were the N termini of VP1 and VP2, respectively; position 34 was exclusively in VP1; the remaining surface positions were located in putative loop regions of VP3. The remaining mutants, most of them partially defective, were presumably defective in steps of viral entry that were not tested in the preliminary screening, including intracellular trafficking, viral uncoating, or coreceptor binding. Finally, in vitro experiments showed that insertion of the serpin receptor ligand in the N-terminal regions of VP1 or VP2 can change the tropism of AAV. Our results provide information on AAV capsid functional domains and are useful for future design of AAV vectors for targeting of specific tissues.  相似文献   

3.
Full replication of adeno-associated virus type 5 (AAV5) is sustained by adenovirus type 5 (Ad5) helper functions E1a, E1b, E2a, E4Orf6, and virus-associated (VA) RNA; however, their combined net enhancement of AAV5 replication was comprised of both positive and negative individual effects. Although Ad5 E4Orf6 was required for AAV5 genomic DNA replication, it also functioned together with E1b to degrade de novo-expressed, preassembled AAV5 capsid proteins and Rep52 in a proteosome-dependent manner. VA RNA enhanced accumulation of AAV5 protein, overcoming the degradative effects of E4Orf6, and was thus required to restore adequate amounts of AAV5 proteins necessary to achieve efficient virus production.  相似文献   

4.
Recombinant adeno-associated virus type 5 (rAAV-5) is known to efficiently transduce airway epithelia via apical infection. In contrast, rAAV-2 has been shown to be inherently ineffective at transducing airway epithelia from the apical surface. However, tripeptide proteasome inhibitors (such as LLnL) can dramatically enhance rAAV-2 transduction from the apical surface of human polarized airway epithelia by modulating the intracellular trafficking and processing of the virus. To further investigate potential differences between rAAV-2 and rAAV-5 that might explain their altered ability to transduce airway epithelia from the apical membrane, we examined the functional involvement of the ubiquitin/proteasome pathway and rate-limiting aspects of second-strand synthesis for these two rAAV serotypes. To this end, we conducted studies to compare the extent to which LLnL alters transduction efficiencies with both rAAV-2 and rAAV-2/5 by using luciferase and enhanced green fluorescent protein (EGFP) reporter vectors. Our results demonstrate that the coadministration of LLnL at the time of viral infection significantly enhanced transduction of both rAAV-2/5 and rAAV-2 from the apical surface of airway epithelia. Although rAAV-2/5 was slightly more effective at transducing epithelia from the apical membrane, rAAV-2 transduction was superior to that of rAAV-2/5 in the presence of proteasome inhibitors. Interestingly, the basolateral membrane entry pathways for both serotypes were not significantly affected by the addition of LLnL, which suggests that apical and basolateral infectious pathways possess distinctive intracellular processing pathways for both rAAV-2 and rAAV-5. Studies comparing the transduction of short self-complementary (scAAV) to full-length conventional AAV EGFP vectors suggested that second-strand synthesis of rAAV genomes was not rate limiting for either serotype or altered by proteasome inhibitors following apical infection of polarized airway epithelia. These findings suggest that both rAAV-2 and rAAV-5 share similar intracellular viral processing barriers that involve the ubiquitin/proteasome system, but do not appear to involve second-strand synthesis.  相似文献   

5.
Both the Rep68 and Rep78 proteins of adeno-associated virus type 2 (AAV) bind to AAV terminal repeat hairpin DNA and can mediate site-specific nicking in vitro at the terminal resolution site (trs) within the terminal repeats. To define the regions of the Rep proteins required for these functions, a series of truncated Rep78 derivatives was created. Wild-type and mutant proteins were synthesized by in vitro translation and analyzed for AAV hairpin DNA binding, trs endonuclease activity, and interaction on hairpin DNA. Amino-terminal deletion mutants which lacked the first 29 or 79 amino acid residues of Rep78 did not bind hairpin DNA, which is consistent with our previous identification of a DNA-binding domain in this region. Progressive truncation of the carboxyl-terminal region of Rep78 did not eliminate hairpin DNA binding until the deletion reached amino acid 443. The electrophoretic mobility of the Rep-specific protein-DNA complexes was inversely related to the molecular weight of the Rep derivative. Analysis of the C-terminal deletion mutants by the trs endonuclease assay identified a region (amino acids 467 to 476) that is essential for nicking but is not necessary for DNA binding. When endonuclease-positive, truncated Rep proteins that bound hairpin DNA were mixed with full-length Rep78 or Rep68 protein in electrophoretic mobility shift assays, a smear of protein-DNA complexes was observed. This smear migrated at an intermediate position with respect to the bands generated by the proteins individually. An antibody recognizing only the full-length protein produced a novel supershift band when included in a mixed binding assay containing Rep68 and a truncated Rep mutant. These experiments suggest that the Rep proteins can form hetero-oligomers on the AAV hairpin DNA.  相似文献   

6.
R O Snyder  D S Im    N Muzyczka 《Journal of virology》1990,64(12):6204-6213
We have demonstrated that when the covalently joined ends of linear adeno-associated virus (AAV) DNA are resolved in vitro, the virus-encoded Rep protein becomes covalently attached to the 5' ends of the DNA. The covalent bond is between a tyrosine residue of the AAV Rep protein and a 5' phosphate of a thymidine residue in the AAV genome. Only the Rep protein encoded by the AAV p5 promoter, Rep68, was capable of becoming covalently attached to the ends of the AAV genome; the Rep proteins encoded by the p19 promoter were not. We also investigated some of the requirements for the complete in vitro resolution reaction. Inhibitor studies suggested that terminal resolution required DNA polymerase delta, ATP, and the deoxyribonucleoside triphosphates but did not require the remaining ribonucleoside triphosphates, DNA polymerase alpha, RNA polymerase II, or topoisomerases I and II. Finally, purified AAV Rep68, when added to the crude cytosol from uninfected HeLa cells, was sufficient for resolution. This suggested that terminal resolution relies on host enzymes and the virus-encoded p5 Rep proteins.  相似文献   

7.
The p5 promoter region of the adeno-associated virus type 2 (AAV-2) rep gene has been described as essential for Rep-mediated site-specific integration (RMSSI) of plasmid sequences in human chromosome 19. We report here that insertion of a full-length or minimal p5 element between the viral inverted terminal repeats does not significantly increase RMSSI of a recombinant AAV (rAAV) vector after infection of growth-arrested or proliferating human cells. This result suggests that the p5 element may not improve RMSSI of rAAV vectors in vivo.  相似文献   

8.
J A Chiorini  L Yang  Y Liu  B Safer    R M Kotin 《Journal of virology》1997,71(9):6823-6833
We have cloned and characterized the full-length genome of adeno-associated virus type 4 (AAV4). The genome of AAV4 is 4,767 nucleotides in length and contains an expanded p5 promoter region compared to AAV2 and AAV3. Within the inverted terminal repeat (ITR), several base changes were identified with respect to AAV2. However, these changes did not affect the ability of this region to fold into a hairpin structure. Within the ITR, the terminal resolution site and Rep binding sites were conserved; however, the Rep binding site was expanded from three GAGC repeats to four. The Rep gene product of AAV4 shows greater than 90% homology to the Rep products of serotypes 2 and 3, with none of the changes occurring in regions which had previously been shown to affect the known functions of Rep68 or Rep78. Most of the differences in the capsid proteins lie in regions which are thought to be on the exterior surface of the viral capsid. It is these unique regions which are most likely to be responsible for the lack of cross-reacting antibodies and the altered tissue tropism compared to AAV2. The results of our studies, performed with a recombinant version of AAV4 carrying a lacZ reporter gene, suggest that AAV4 can transduce human, monkey, and rat cells. Furthermore, comparison of transduction efficiencies in a number of cell lines, competition cotransduction experiments, and the effect of trypsin on transduction efficiency all suggest that the cellular receptor for AAV4 is distinct from that of AAV2.  相似文献   

9.
10.
A new adeno-associated virus (AAV), referred to as AAV(VR-942), has been isolated as a contaminant of adenovirus strain simian virus 17. The sequence of the rep gene places it in the AAV serotype 2 (AAV2) complementation group, while the capsid is only 88% identical to that of AAV2. High-level AAV(VR-942) transduction activity requires cell surface heparan sulfate proteoglycans, although AAV(VR-942) lacks residues equivalent to the AAV2 R585 and R588 amino acid residues essential for mediating the interaction of AAV2 with the heparan sulfate proteoglycan receptor. Instead, AAV(VR-942) uses a distinct transduction region. This finding shows that distinct domains on different AAV isolates can be responsible for the same activities.  相似文献   

11.
Adeno-associated virus (AAV) codes for four closely related nonstructural proteins (Rep) required for AAV DNA replication and gene regulation. In vitro studies have revealed that either Rep78 or Rep68 alone is sufficient for AAV DNA replication. Rep52 and Rep40 are not required for DNA replication but have been reported to enhance the efficiency of accumulation of single-stranded progeny DNA. Previous studies on rep-expressing cell lines had indicated that only a subset of the four Rep proteins are required for the production of infectious AAV. We therefore set out to determine the minimal set of Rep proteins sufficient for the generation of infectious AAV. Transient cotransfections in HeLa cells of constructs for high-level expression of individual Rep proteins with a rep-negative AAV genome revealed that either Rep78 or Rep68 alone could complement for a full replication cycle yielding infectious virus. This result was confirmed by transfection studies in the cell line HeM2, which selectively expresses Rep78 at rather low levels under the control of the glucocorticoid-responsive mouse mammary tumor virus long terminal repeat (C. Hölscher, M. Hörer, J. A. Kleinschmidt, H. Zentgraf, A. Bürkle, and R. Heilbronn, J. Virol. 68:7169-7177, 1994). Increasing the level of Rep78 expression by transfection of a glucocorticoid receptor expression construct resulted in a higher level of DNA replication of a cotransfected rep-negative AAV genome and in the production of infectious rep-negative AAV particles. We further report on the generation of a new rep-expressing cell line, HeCM1, which was obtained by stable supertransfection of a construct for constitutive Rep40 expression into HeM1 cells (Hölscher et al., J. Virol. 68:7169-7177). Transfection of rather large amounts of rep-negative AAV DNA led to detectable virus production in HeCM1 cells even in the absence of the cotransfected glucocorticoid receptor expression construct, but higher yields were obtained after increasing the Rep78 level by coexpression of the glucocorticoid receptor. These data demonstrate that all Rep functions required for the productive replication of AAV in HeLa cells are contained within both Rep78 and Rep68.  相似文献   

12.
13.
14.
The adeno-associated virus (AAV) rep gene codes for a family of nonstructural proteins which are required for AAV gene regulation and DNA replication. In addition, rep has been implicated in a variety of activities outside the AAV life cycle which have been difficult to study, since attempts to achieve separate and constitutive expression of rep in stable cell lines have failed so far. Here we report the generation of two cell lines which inducibly express Rep78 under the control of the glucocorticoid-responsive mouse mammary tumor virus promoter. In addition, one of the cell lines constitutively expresses relatively high levels of Rep52. Both cell lines showed similar plating efficiencies with and without induction of Rep78 expression, which rules out cytotoxic effects of Rep78. The cell lines efficiently support DNA replication of a rep-negative AAV genome and initiate the formation of AAV particles. However, despite the correct sizes and stoichiometry of the three capsid proteins, the AAV particles were noninfectious. This was found to be due to a defect in the accumulation of single-stranded AAV DNA. Transient transfection of single expression constructs for constitutive, high-level expression of individual Rep proteins (either Rep78, Rep68, Rep52, or Rep40) complemented this defect. Infectious rep-negative AAV progeny was produced at varying efficiencies depending on the rep expression construct used. These data show that functional expression of full-length Rep in recombinant cell lines is possible and that the state of Rep expression is critical for the infectivity of AAV progeny produced.  相似文献   

15.
16.
S Ozden  F Tangy  M Chamorro    M Brahic 《Journal of virology》1986,60(3):1163-1165
Theiler's virus causes a persistent demyelinating infection of the mouse central nervous system. Our study of the molecular mechanism of persistence led us to sequence 1925 nucleotides located at the 3' end of the viral genome. We observed extensive homologies between this region and the corresponding region of encephalomyocarditis virus, the prototype cardiovirus, and only some homologies with the 3' ends of foot-and-mouth disease virus, rhinovirus, and poliovirus genomes.  相似文献   

17.
The Rep78 protein of adeno-associated virus (AAV) contains amino acid sequence motifs common to rolling-circle replication (RCR) initiator proteins. In this report, we describe RCR initiator-like activities of Rep78. We demonstrate that a maltose-binding protein (MBP)-Rep78 fusion protein can catalyze the cleavage and ligation of single-stranded DNA substrates derived from the AAV origin of replication. Rep-mediated single-stranded DNA cleavage was strictly dependent on the presence of certain divalent cations (e.g., Mn(2+) or Mg(2+)) but did not require the presence of a nucleoside triphosphate cofactor. Electrophoretic mobility shift assays demonstrated that binding of single-stranded DNA by MBP-Rep78 was influenced by the length of the substrate as well as the presence of potential single-stranded cis-acting sequence elements. Site-directed mutagenesis was used to examine the role of specific tyrosine residues within a conserved RCR motif (motif 3) of Rep78. Replacement of Tyr-156 with phenylalanine abolished the ability of MBP-Rep78 to mediate the cleavage and ligation of single-stranded DNA substrates but not the ability to stably bind single-stranded DNA. The cleaving-joining activity of Rep78 is consistent with the mechanism of replicative intermediate dimer resolution proposed for the autonomous parvoviruses and may have implications for targeted integration of recombinant AAV vectors.  相似文献   

18.
We have studied the reactions of hamster embryo cells transformed by ultraviolet-inactivated herpes simplex type 2 (333-8-9 T cells) to infections with adeno-associated satellite virus (AAV) and its adenovirus helpers. Resident HSV structural antigens were not detectable in early or late passage of 333-8-9 T cells. AAV structural antigens were not detected in these cells unless the cells were coinfected with a helper adenovirus. In early passage 333-8-9 T cells were permissive to infections with simian adenovirus SV15 whereas normal hamster cell line LSH was nonpermissive. In some late passages of 333-8-9 T cells infections with SV15 adenovirus led to the production of viruslike particles whose morphology was identical with reoviruses.  相似文献   

19.
Epidemiological studies report that 80% of the population maintains antibodies (Ab) to wild-type (wt) adeno-associated virus type 2 (AAV2), with 30% expressing neutralizing Ab (NAb). The blood-brain barrier (BBB) provides limited immune privilege to brain parenchyma, and the immune response to recombinant AAV (rAAV) administration in the brain of a naive animal is minimal. However, central nervous system transduction in preimmunized animals remains unstudied. Vector administration may disrupt the BBB sufficiently to promote an immune response in a previously immunized animal. We tested the hypothesis that intracerebral rAAV administration and readministration would not be affected by the presence of circulating Ab to wt AAV2. Rats peripherally immunized with live wt AAV2 and naive controls were tested with single intrastriatal injections of rAAV2 encoding human glial cell line-derived neurotrophic factor (GDNF) or green fluorescent protein (GFP). Striatal readministration of rAAV2-GDNF was also tested in preimmunized and naive rats. Finally, serotype specificity of the immunization against wt AAV2 was examined by single injections of rAAV5-GFP. Preimmunization resulted in high levels of circulating NAb and prevented transduction by rAAV2 as assessed by striatal GDNF levels. rAAV2-GFP striatal transduction was also prevented by immunization, while rAAV5-GFP-mediated transduction, as assessed by stereological cell counting, was unaffected. Additionally, inflammatory markers were present in those animals that received repeated administrations of rAAV2, including markers of a cell-mediated immune response and cytotoxic damage. A live virus immunization protocol generated the circulating anti-wt-AAV Ab seen in this experiment, while human titers are commonly acquired via natural infection. Regardless, the data show that the presence of high levels of NAb against wt AAV can reduce rAAV-mediated transduction in the brain and should be accounted for in future experiments utilizing this vector.  相似文献   

20.
We have looked for conserved DNA sequences between four herpes simplex virus type 1 (HSV-1) glycoprotein genes encoding gB, gC, gD, and gE and pseudorabies virus (PRV) DNA, HSV-1 DNA fragments representing these four glycoprotein-coding sequences were hybridized to restriction enzyme fragments of PRV DNA by the Southern blot procedure. Specific hybridization was observed only when HSV-1 gB DNA was used as probe. This region of hybridization was localized to a 5.2-kilobase (kb) region mapping at approximately 0.15 map units on the PRV genome. Northern blot (RNA blot) analysis, with a 1.2-kb probe derived from this segment, revealed a predominant hybridizing RNA species of approximately 3 kb in PRV-infected PK15 cells. DNA sequence analysis of the region corresponding to this RNA revealed a single large open reading frame with significant nucleotide homology with the gB gene of HSV-1 KOS 321. In addition, the beginning of the sequenced PRV region also contained the end of an open reading frame with amino acid homology to HSV-1 ICP 18.5, a protein that may be involved in viral glycoprotein transport. This sequence partially overlaps the PRV gB homolog coding sequence. We have shown that the PRV gene with homology to HSV-1 gB encoded the gII glycoprotein gene by expressing a 765-base-pair segment of the PRV open reading frame in Escherichia coli as a protein fused to beta-galactosidase. Antiserum, raised in rabbits, against this fusion protein immunoprecipitated a specific family of PRV glycoproteins of apparent molecular mass 110, 68, and 55 kilodaltons that have been identified as the gII family of glycoproteins. Analysis of the predicted amino acid sequence indicated that the PRV gII protein shares 50% amino acid homology with the aligned HSV-1 gB protein. All 10 cysteine residues located outside of the signal sequence, as well as 4 of 6 potential N-linked glycosylation sites, were conserved between the two proteins. The primary protein sequence for HSV-1 gB regions known to be involved in the rate of virus entry into the cells and cell-cell fusion, as well as regions known to be associated with monoclonal antibody resistance, were highly homologous with the PRV protein sequence. Furthermore, monospecific antibody made against PRV gII immunoprecipitated HSV-1 gB from infected cells. Taken together, these findings suggest significant conservation of structure and function between the two proteins and may indicate a common evolutionary history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号