首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cloning of the Saccharomyces cerevisiae FUM1 gene downstream of the strong GAL10 promoter resulted in inducible overexpression of fumarase in the yeast. The overproducing strain exhibited efficient bioconversion of fumaric acid to L-malic acid with an apparent conversion value of 88% and a conversion rate of 80.4 mmol of fumaric acid/h per g of cell wet weight, both of which are much higher than parameters known for industrial bacterial strains. The only product of the conversion reaction was L-malic acid, which was essentially free of the unwanted by-product succinic acid. The GAL10 promoter situated upstream of a promoterless FUM1 gene led to production and correct distribution of the two fumarase isoenzyme activities between cytosolic and mitochondrial subcellular fractions. The amino-terminal sequence of fumarase contains the mitochondrial signal sequence since (i) 92 of 463 amino acid residues from the amino terminus of fumarase are sufficient to localize fumarase-lacZ fusions to mitochondria and (ii) fumarase and fumarase-lacZ fusions lacking the amino-terminal sequence are localized exclusively in the cytosol. The possibility that both mitochondrial and cytosolic fumarases are derived from the same initial translation product is discussed.  相似文献   

3.
Cloning of the Saccharomyces cerevisiae FUM1 gene downstream of the strong GAL10 promoter resulted in inducible overexpression of fumarase in the yeast. The overproducing strain exhibited efficient bioconversion of fumaric acid to L-malic acid with an apparent conversion value of 88% and a conversion rate of 80.4 mmol of fumaric acid/h per g of cell wet weight, both of which are much higher than parameters known for industrial bacterial strains. The only product of the conversion reaction was L-malic acid, which was essentially free of the unwanted by-product succinic acid. The GAL10 promoter situated upstream of a promoterless FUM1 gene led to production and correct distribution of the two fumarase isoenzyme activities between cytosolic and mitochondrial subcellular fractions. The amino-terminal sequence of fumarase contains the mitochondrial signal sequence since (i) 92 of 463 amino acid residues from the amino terminus of fumarase are sufficient to localize fumarase-lacZ fusions to mitochondria and (ii) fumarase and fumarase-lacZ fusions lacking the amino-terminal sequence are localized exclusively in the cytosol. The possibility that both mitochondrial and cytosolic fumarases are derived from the same initial translation product is discussed.  相似文献   

4.
The effect of amino acid deprivation on the activities of D-alanine carboxypeptidase (CPase) and peptidoglycan transpeptidase in Escherichia coli was determined. Enzymes were assayed in ether-treated bacteria (ETB) which were permeable to peptidoglycan nucleotide precursors. ETB were prepared at intervals from cultures grown in the presence and absence of a required amino acid. The specific activity of CPase in ETB decreased 50 to 85% during amino acid deprivation. This was paralleled by a 60 to 70% decrease in the specific activity of peptidoglycan transpeptidase. Both enzymes reached their lowest level of activity about 40 min after the onset of amino acid deprivation. The decrease in CPase activity apparently was not due to degradation of the enzyme, since full activity was restored after disruption of ETB by sonication. A decrease in CPase activity was associated with an enhancement of transpeptidation. The peptidoglycan synthesized in vitro by amino acid-deprived ETB was 1.7 times more cross-linked than the peptidoglycan synthesized by control ETB These results support the proposal that CPase may be involved in regulating transpeptidation in E. coli.  相似文献   

5.
High-Ca2+-requiring calcium-activated neutral protease (mCANP), a dimeric enzyme composed of large (Mr = 80,000) and small (Mr = 28,000) subunits, is resistant to carboxypeptidase Y (CPase Y) in the absence of NaSCN. In the presence of 0.2 M NaSCN, CPase Y digested mCANP, one or two amino acids being released from the COOH-termini of the large and small subunits, but no change occurred in the activity of the digested mCANP. In the presence of 1 M NaSCN, 8-10 amino acids were released from the subunits by CPase Y, and the COOH-terminal potential Ca2+-binding sites of both subunits were destroyed. On digestion under these conditions, mCANP lost the ability to form a complex, and the proteolytic activity was not recovered even when the digested subunits were mixed with native subunits. These results suggest that the COOH-terminal regions of the two subunits of mCANP, which constitute the helical portions of the COOH-terminal E-F hand structures in both subunits, are essential for the subunit association and resulting proteolytic activity.  相似文献   

6.
1. The cytosolic and mitochondrial fumarases (EC 4.2.1.2) from baker's yeast (Saccharomyces cerevisiae) have been purified to homogeneity. 2. Subunit molecular weights for the cytosolic and mitochondrial isoenzymes were 53,000 and 48,000 respectively. 3. Peptide maps obtained after digestion of the two isoenzymes with trypsin were almost identical but showed significant small differences. The same was true of peptide maps obtained after digestion with the glutamic acid-specific proteinase from S. aureus.  相似文献   

7.
A male infant, whose parents were first cousins, presented at 6 mo of age with hypotonia, microcephaly, and delayed development. He was found to have large amounts of fumaric and succinic acids present in the urine. In lysed cultured skin-fibroblast preparations, the activity of fumarase was found to be 22.7% of that in controls. Cell fractionation by homogenization and by digitonin treatment indicated that the residual activity in the cells of the patient was primarily located in the mitochondrial fraction rather than in the cytosolic fraction. Isoelectric focusing of fibroblast extracts showed that six bands of fumarase activity were discernible in control cell lines, two of them cytosolic with pI's of 5.53 and 5.60 and four of them mitochondrial with a pI of 5.65-6.8. In contrast, isoelectric focusing of fibroblast extracts from the fumarase-deficient patient showed only a single band of activity with a pI corresponding to the mitochondrial type seen in the controls. Immunoprecipitation of proteins with rabbit antifumarase antibody in (35S)-methionine-labeled fibroblasts indicated that a protein of correct size (Mr = 44,000 daltons) corresponding to fumarase was synthesized in similar amounts in both the patients and controls. It is proposed that in the patient's cells a single active species of fumarase that is mitochondrial in location is synthesized. Since it is known that mitochondrial and cytosolic fumarases are encoded by the same gene but differ slightly in amino acid sequence, it is possible that a point mutation might explain these findings.  相似文献   

8.
The populations of mRNA encoding mitochondrial and cytosolic fumarases in the poly A+ RNA fractions purified from polysomes of rat brain and liver were examined. When the in vitro translation products programmed by the poly A+ RNA fraction obtained from rat brain were purified by immunoprecipitation with anti-fumarase antibody and analyzed by SDS polyacrylamide gel electrophoresis and fluorography, only one polypeptide of 50 KD was detected as a precursor of fumarase. In contrast, by the same method, two polypeptides of 50 KD and 45 KD, which is the same size as mature fumarase, were detected as precursors of rat liver fumarase. These results suggest that rat brain polysomes contain only one population of mRNA coding a 50 KD precursor of mitochondrial fumarase with little or no mRNA of the cytosolic fumarase, whereas rat liver polysomes contain two types of mRNA for mitochondrial and cytosolic fumarases, respectively. These findings are consistent with the fact that the brain is the only organ in rats known not to contain cytosolic fumarase.  相似文献   

9.
D-Alanine carboxypeptidase (CPase), a detergent-soluble penicillin-sensitive membrane enzyme of Bacillus stearothermophilus, Mr = 46,500, was digested with either trypsin or alpha-chymotrypsin to yield water-soluble fragments, designated T-CPase and Chy-CPase, respectively, each of Mr = approximately 45,000. These fragments were generated and purified in milligram quantities by digestion of CPase covalently immobilized on a penicillin affinity column. They retained full enzymatic activity, became significantly more resistant to thermal inactivation, and lost micellar detergent binding upon proteolysis. Each was derived from CPase by loss of a COOH-terminal hydrophobic peptide. CPase was reconstituted into bacterial lipid vesicles in an enzymatically active form. Penicillin-binding sites were equally distributed on both sides of the lipid bilayer, suggesting a random orientation of the CPase molecules. Neither T-CPase nor Chy-CPase reconstituted into lipid vesicles when treated in an identical manner. CPase was slowly cleaved from the surface of these vesicles by either trypsin or alpha-chymotrypsin, yielding T-CPase and Chy-CPase, respectively. These results demonstrate that CPase is comprised of a water-soluble catalytic domain and a COOH-terminal hydrophobic region which mediates the anchoring of this enzyme to the bacterial membrane.  相似文献   

10.
A membrane-bound protein was purified from rat liver mitochondria. After being digested with V8 protease, two peptides containing identical 14 amino acid residue sequences were obtained. Using the 14 amino acid peptide derived DNA sequence as gene specific primer, the cDNA of correspondent gene 5′-terminal and 3′-terminal were obtained by RACE technique. The full-length cDNAthat encoded a protein of 616 amino acids was thus cloned, which included the above mentioned peptide sequence. The full length cDNA was highly homologous to that of human ETF-QO, indicating that it may be the cDNA of rat ETF-QO. ETF-QO is an iron sulfur protein located in mitochondria inner membrane containing two kinds of redox center: FAD and [4Fe-4S] center. After comparing the sequence from the cDNA of the 616 amino acids protein with that of the mature protein of rat liver mitochondria, it was found that the N terminal 32 amino acid residues did not exist in the mature protein, indicating that the cDNA was that of ETF-QOp. When the cDNA was expressed in Saccharomyces cerevisiae with inducible vectors, the protein product was enriched in mitochondrial fraction and exhibited electron transfer activity (NBT reductase activity) of ETF-QO. Results demonstrated that the 32 amino acid peptide was a mitochondrial targeting peptide, and both FAD and iron-sulfur cluster were inserted properly into the expressed ETF-QO. ETF-QO had a high level expression in rat heart, liver and kidney. The fusion protein of GFP-ETF-QO co-localized with mitochondria in COS-7 cells.  相似文献   

11.
The evolution of uricoteley as a mechanism for hepatic ammonia detoxication in vertebrates required targeting of glutamine synthetase (GS) to liver mitochondria in the sauropsid line of descent leading to the squamate reptiles and archosaurs. Previous studies have shown that in birds and crocodilians, sole survivors of the archosaurian line, hepatic GS is translated without a transient, N-terminal targeting signal common to other mitochondrial matrix proteins. To identify a putative internal targeting sequence in the avian enzyme, the amino acid sequence of chicken liver GS was derived by a combination of sequencing of cloned cDNA, direct sequencing of mRNA, and sequencing of polymerase chain reaction (PCR) products amplified from reverse-transcribed mRNA. Analysis of the first 20 or so N-terminal amino acids of the derived sequence for the chicken enzyme shows that they are devoid of acidic amino acids, contain several hydroxy amino acids, and can be predicted to form a positively charged, amphipathic helix, all of which are characteristic properties of mitochondrial targeting signals. A comparison of the N-terminus of chicken GS with the N-termini of cytosolic mammalian GSs indicates that at least three amino acid replacements may have been responsible for converting the N-terminus of the cytosolic mammalian enzyme into a mitochondrial targeting signal. Two of these, His15 and Lys19, result in additional positive charges, as well as in changes in hydrophilicity. Both could have resulted from third-base-codon substitutions. A third replacement, Ala12, may contribute to the helicity of the N-terminus of the chicken enzyme. The N-terminus of the cytosolic chicken brain GS (positions 1-36) was found to be identical to that of the liver enzyme. The complete sequence of chicken retinal GS is also identical to that of the liver enzyme. GS is coded by a single gene in birds, so these sequence data suggest that, unlike the situation in other tissue-specific compartmental isozymes, differential targeting of avian GS to the mitochondrial or cytosolic compartments is not dependent on the sequence of the primary translation product of its mRNA but may involve some other tissue-specific factor(s).  相似文献   

12.
Graack HR  Bryant ML  O'Brien TW 《Biochemistry》1999,38(50):16569-16577
Bovine mitochondrial ribosomes are presented as a model system for mammalian mitochondrial ribosomes. An alternative system for identifying individual bovine mitochondrial ribosomal proteins (MRPs) by RP-HPLC is described. To identify and to characterize individual MRPs proteins were purified from bovine liver, separated by RP-HPLC, and identified by 2D PAGE techniques and immunoblotting. Molecular masses of individual MRPs were determined. Selected proteins were subjected to N-terminal amino acid sequencing. The peptide sequences obtained were used to screen different databases to identify several corresponding MRP sequences from human, mouse, rat, and yeast. Signal sequences for mitochondrial import were postulated by comparison of the bovine mature N-termini determined by amino acid sequencing with the deduced mammalian MRP sequences. Significant sequence similarities of these new MRPs to known r-proteins from other sources, e.g., E. coli, were detected only for two of the four MRP families presented. This finding suggests that mammalian mitochondrial ribosomes contain several novel proteins. Amino acid sequence information for all of the bovine MRPs will prove invaluable for assigning functions to their genes, which would otherwise remain unknown.  相似文献   

13.
Sulphydryl groups of mitochondrial aspartate aminotransferase from horse heart were titrated with 5,5'-dithiobis (2-nitrobenzoic acid). From analysis of peptic peptides, 378 amino acid residues (94.3% of the total) in the protein were identified. The results of amino acid sequence analysis are compared with those of cytosolic and mitochondrial aspartate aminotransferases from other sources.  相似文献   

14.
The NH2-terminal blocking group of the membrane-binding domain of NADH-cytochrome b5 reductase has been deduced as myristic (n-tetradecanoyl) acid. This fatty acid was identified by gas chromatography of the digest of the NH2-terminal tetrapeptide of cytochrome b5 reductase. Fast atom bombardment and direct chemical ionization mass spectroscopy of the underivatized NH2-terminal tetrapeptide confirmed the presence of myristic acid, identified its linkage to the NH2 terminus and established CH3(CH2)12-CO-Gly-Ala-Gln-Leu as the NH2-terminal sequence. In addition, the complete amino acid sequence of the membrane-binding domain of cytochrome b5 reductase is also reported. The finding of a myristic acyl chain on the NH2-terminal segment, comprised of hydrophobic amino acid residues, implies that the function of the myristate group may be other than simply to anchor the reductase to the microsomal membrane. This post-translational modification, presumably in the endoplasmic reticulum, may selectively stabilize a particular membrane structure and orientation that optimally facilitates electron transport on the cytosolic surface of this membrane organelle.  相似文献   

15.
Cytoplasmic male sterility is a maternally transmitted inability to produce viable pollen. Male sterility occurs in Texas (T) cytoplasm maize as a consequence of the premature degeneration of the tapetal cell layer during microspore development. This sterility can be overcome by the combined action of two nuclear restorer genes, rf1 and rf2a. The rf2a gene encodes a mitochondrial aldehyde dehydrogenase (ALDH) that is capable of oxidizing a variety of aldehydes. Six additional ALDH genes were cloned from maize and Arabidopsis. In vivo complementation assays and in vitro enzyme analyses demonstrated that all six genes encode functional ALDHs. Some of these ALDHs are predicted to accumulate in the mitochondria, others in the cytosol. The intron/exon boundaries of these genes are highly conserved across maize and Arabidopsis and between mitochondrial and cytosolic ALDHs. Although animal, fungal, and plant genomes each encode both mitochondrial and cytosolic ALDHs, it appears that either the gene duplications that generated the mitochondrial and the cytosolic ALDHs occurred independently within each lineage or that homogenizing gene conversion-like events have occurred independently within each lineage. All studied plant genomes contain two confirmed or predicted mitochondrial ALDHs. It appears that these mitochondrial ALDH genes arose via independent duplications after the divergence of monocots and dicots or that independent gene conversion-like events have homogenized the mitochondrial ALDH genes in the monocot and dicot lineages. A computation approach was used to identify amino acid residues likely to be responsible for functional differences between mitochondrial and cytosolic ALDHs.  相似文献   

16.
The amino acid sequences of pyridoxal-binding tetrapeptide and the NH2-terminal portion of aspartate transaminase from E.coli B were analyzed and compared with those of the corresponding parts of the cytosolic and mitochondrial isozymes from pig heart. After borohydride reduction and chymotryptic digestion of the E.coli enzyme, a pyridoxal-containing peptide was isolated, showing the sequence, Ser-Lys(Pxy)-Asn-Phe, identical with that of the cytosolic isozyme. The NH2-terminal sequence was determined up to 33 residues with a liquid phase sequence analyzer. Nearly the same degree of homology was observed among the NH2-terminal sequences of the three aspartate transaminases.  相似文献   

17.
Recombinant human interferon-gammas (rHuIFN-gamma s) were obtained from two different mammalian cells (mouse C127 cells and Chinese hamster ovary, CHO, cells) cultured in a microcarrier culture system. Both rHuIFN-gamma s were purified using sequential chromatographies for their comparison of structural properties. The peptide maps of HuIFN-gamma s digested with V8 protease and Western blot analysis demonstrated that C127 cells yielded mainly about 25kDa component and CHO cells produced about 25kDa and about 20kDa components. By the identification of glycosylated peptides, it was suggested that 20kDa and 25kDa components are glycosylated at one and at two sites, respectively. C-terminal amino acid sequence analysis indicated that both rHuIFN-gamma s consisted of at least six different species lacking 2 to 16 amino acid residues from C-terminus, so that C-termini of both rHuIFN-gamma s were slightly different from each other. Amino acid sequence and composition analyses of N-terminal peptides demonstrated that N-termini of both rHuIFN-gamma s were blocked and were supposed to be identical with that of natural HuIFN-gamma. These results suggested that different molecular heterogeneities of rHuIFN-gamma s resulted from the difference of post-translational modifications of host cells.  相似文献   

18.
In this study, we report cDNA sequences of the cytosolic NADP-dependent isocitrate dehydrogenase for humans, mice, and two species of voles (Microtus mexicanus and Microtus ochrogaster). Inferred amino acid sequences from these taxa display a high level of amino acid sequence conservation, comparable to that of myosin beta heavy chain, and share known structural features. A Caenorhabditis elegans enzyme that was previously identified as a protein similar to isocitrate dehydrogenase is most likely the NADP-dependent cytosolic isocitrate dehydrogenase enzyme equivalent, based on amino acid similarity to mammalian enzymes and phylogenetic analysis. We also suggest that NADP-dependent isocitrate dehydrogenases characterized from alfalfa, soybean, and eucalyptus are most likely cytosolic enzymes. The phylogenetic tree of various isocitrate dehydrogenases from eukaryotic sources revealed that independent gene duplications may have given rise to the cytosolic and mitochondrial forms of NADP-dependent isocitrate dehydrogenase in animals and fungi. There appears to be no statistical support for a hypothesis that the mitochondrial and cytosolic forms of the enzyme are orthologous in these groups. A possible scenario of the evolution of NADP-dependent isocitrate dehydrogenases is proposed.   相似文献   

19.
C Carr  A N Tyler  J B Cohen 《FEBS letters》1989,243(1):65-69
The NH2-terminal blocking group of the 43-kDa peripheral membrane protein (43-kDa protein) of Torpedo post-synaptic membranes has been identified as myristic acid. To identify that blocking group pure 43-kDa protein was digested with trypsin and the blocked tryptic peptide was isolated by reverse phase HPLC. That peptide coeluted with and had the same amino acid composition as a synthetic peptide, myristoyl-Gly-Gln-Asp-Gln-Thr-Lys, the structure of the amino terminus predicted from the protein sequence deduced from a cDNA clone. The presence of myristate was confirmed by the precise molecular mass of the peptide, 886.5266, determined by fast atom bombardment mass spectroscopy.  相似文献   

20.
Coagulation factor Va is a cofactor which combines with the serine protease factor Xa on a phospholipid surface to form the prothrombinase complex. The phospholipid-binding domain of bovine factor Va has been reported to be located on the light chain of the molecule and more precisely on a fragment of Mr = 30,000 which is obtained after digestion of factor Va light chain by factor Xa. This proteolytic fragment is located in the NH2-terminal part of factor Va light chain (residues 1564-1765). In order to further characterize the lipid-binding domain of bovine factor Va, isolated bovine light chain was preincubated with synthetic phospholipid vesicles (75% phosphatidylcholine, 25% phosphatidylserine) and digested with trypsin, chymotrypsin, and elastase. Two peptide regions protected from proteolytic cleavage were identified and characterized from each proteolytic digestion. A comparison of the NH2-terminal sequence and amino acid composition of the two tryptic peptides with the deduced sequence of human factor V indicates a match with residues 1657-1791 of the light chain of human factor V for one peptide and residues 1546-1656 for the other peptide. When chymotrypsin or elastase were used for digestion, the NH2-terminal sequence of one peptide showed a match with residues 1667-1797 of the light chain, while the other peptide presented an NH2-terminal sequence identical with the previously described for the bovine factor Va light chain. When these peptides were assayed for direct binding to phospholipid vesicles, only the tryptic and the chymotryptic peptides covering the middle region of the A3 domain of the bovine factor Va light chain demonstrated an ability to interact with phospholipid vesicles. Thus, knowing that the factor Xa cleavage site on the factor Va light chain is located between residues 1765 and 1766 of the light chain this lipid-binding region of the bovine factor Va is further localized to amino acid residues 1667-1765.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号